sampler.cc 73.8 KB
Newer Older
Da Zheng's avatar
Da Zheng committed
1
2
3
4
5
6
7
/*!
 *  Copyright (c) 2018 by Contributors
 * \file graph/sampler.cc
 * \brief DGL sampler implementation
 */
#include <dgl/sampler.h>
#include <dgl/immutable_graph.h>
8
9
#include <dgl/runtime/container.h>
#include <dgl/packed_func_ext.h>
10
#include <dgl/random.h>
11
#include <dmlc/omp.h>
Da Zheng's avatar
Da Zheng committed
12
#include <algorithm>
13
14
#include <cstdlib>
#include <cmath>
15
#include <numeric>
16
#include "../c_api_common.h"
17
#include "../array/common.h"  // for ATEN_FLOAT_TYPE_SWITCH
Da Zheng's avatar
Da Zheng committed
18

19
using namespace dgl::runtime;
20

Da Zheng's avatar
Da Zheng committed
21
22
23
24
25
26
namespace dgl {

namespace {
/*
 * ArrayHeap is used to sample elements from vector
 */
27
template<typename ValueType>
Da Zheng's avatar
Da Zheng committed
28
29
class ArrayHeap {
 public:
30
  explicit ArrayHeap(const std::vector<ValueType>& prob) {
Da Zheng's avatar
Da Zheng committed
31
32
    vec_size_ = prob.size();
    bit_len_ = ceil(log2(vec_size_));
33
    limit_ = 1UL << bit_len_;
Da Zheng's avatar
Da Zheng committed
34
35
36
    // allocate twice the size
    heap_.resize(limit_ << 1, 0);
    // allocate the leaves
37
    for (size_t i = limit_; i < vec_size_+limit_; ++i) {
Da Zheng's avatar
Da Zheng committed
38
39
40
41
      heap_[i] = prob[i-limit_];
    }
    // iterate up the tree (this is O(m))
    for (int i = bit_len_-1; i >= 0; --i) {
42
      for (size_t j = (1UL << i); j < (1UL << (i + 1)); ++j) {
Da Zheng's avatar
Da Zheng committed
43
44
45
46
47
48
49
50
51
52
53
        heap_[j] = heap_[j << 1] + heap_[(j << 1) + 1];
      }
    }
  }
  ~ArrayHeap() {}

  /*
   * Remove term from index (this costs O(log m) steps)
   */
  void Delete(size_t index) {
    size_t i = index + limit_;
54
55
56
57
58
59
60
    heap_[i] = 0;
    i /= 2;
    for (int j = bit_len_-1; j >= 0; --j) {
      // Using heap_[i] = heap_[i] - w will loss some precision in float.
      // Using addition to re-calculate the weight layer by layer.
      heap_[i] = heap_[i << 1] + heap_[(i << 1) + 1];
      i /= 2;
Da Zheng's avatar
Da Zheng committed
61
62
63
64
65
66
    }
  }

  /*
   * Add value w to index (this costs O(log m) steps)
   */
67
  void Add(size_t index, ValueType w) {
Da Zheng's avatar
Da Zheng committed
68
69
70
71
72
73
74
75
76
77
    size_t i = index + limit_;
    for (int j = bit_len_; j >= 0; --j) {
      heap_[i] += w;
      i = i >> 1;
    }
  }

  /*
   * Sample from arrayHeap
   */
78
  size_t Sample() {
79
    // heap_ is empty
80
    ValueType xi = heap_[1] * RandomEngine::ThreadLocal()->Uniform<float>();
81
    size_t i = 1;
Da Zheng's avatar
Da Zheng committed
82
83
84
85
86
87
88
89
90
91
92
93
94
    while (i < limit_) {
      i = i << 1;
      if (xi >= heap_[i]) {
        xi -= heap_[i];
        i += 1;
      }
    }
    return i - limit_;
  }

  /*
   * Sample a vector by given the size n
   */
95
  size_t SampleWithoutReplacement(size_t n, std::vector<size_t>* samples) {
Da Zheng's avatar
Da Zheng committed
96
    // sample n elements
97
98
99
100
101
102
    size_t i = 0;
    for (; i < n; ++i) {
      // heap is empty
      if (heap_[1] == 0) {
        break;
      }
103
      samples->at(i) = this->Sample();
Da Zheng's avatar
Da Zheng committed
104
105
      this->Delete(samples->at(i));
    }
106
107

    return i;
Da Zheng's avatar
Da Zheng committed
108
109
110
  }

 private:
111
  size_t vec_size_;  // sample size
Da Zheng's avatar
Da Zheng committed
112
  int bit_len_;   // bit size
113
  size_t limit_;
114
  std::vector<ValueType> heap_;
Da Zheng's avatar
Da Zheng committed
115
116
};

117
118
119
120
121
122
123
///////////////////////// Samplers //////////////////////////
class EdgeSamplerObject: public Object {
 public:
  EdgeSamplerObject(const GraphPtr gptr,
                    IdArray seed_edges,
                    const int64_t batch_size,
                    const int64_t num_workers,
124
125
                    const bool replacement,
                    const bool reset,
126
127
128
129
130
131
132
133
134
135
136
                    const std::string neg_mode,
                    const int64_t neg_sample_size,
                    const bool exclude_positive,
                    const bool check_false_neg,
                    IdArray relations) {
    gptr_ = gptr;
    seed_edges_ = seed_edges;
    relations_ = relations;

    batch_size_ = batch_size;
    num_workers_ = num_workers;
137
138
    replacement_ = replacement;
    reset_ = reset;
139
140
141
142
143
144
145
146
147
    neg_mode_ = neg_mode;
    neg_sample_size_ = neg_sample_size;
    exclude_positive_ = exclude_positive;
    check_false_neg_ = check_false_neg;
  }

  ~EdgeSamplerObject() {}

  virtual void Fetch(DGLRetValue* rv) = 0;
148
  virtual void Reset() = 0;
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171

 protected:
  virtual void randomSample(size_t set_size, size_t num, std::vector<size_t>* out) = 0;
  virtual void randomSample(size_t set_size, size_t num, const std::vector<size_t> &exclude,
                    std::vector<size_t>* out) = 0;

  NegSubgraph genNegEdgeSubgraph(const Subgraph &pos_subg,
                                 const std::string &neg_mode,
                                 int64_t neg_sample_size,
                                 bool exclude_positive,
                                 bool check_false_neg);
  NegSubgraph genPBGNegEdgeSubgraph(const Subgraph &pos_subg,
                                    const std::string &neg_mode,
                                    int64_t neg_sample_size,
                                    bool exclude_positive,
                                    bool check_false_neg);

  GraphPtr gptr_;
  IdArray seed_edges_;
  IdArray relations_;

  int64_t batch_size_;
  int64_t num_workers_;
172
173
  bool replacement_;
  int64_t reset_;
174
175
176
177
178
179
  std::string neg_mode_;
  int64_t neg_sample_size_;
  bool exclude_positive_;
  bool check_false_neg_;
};

Da Zheng's avatar
Da Zheng committed
180
181
182
/*
 * Uniformly sample integers from [0, set_size) without replacement.
 */
183
void RandomSample(size_t set_size, size_t num, std::vector<size_t>* out) {
Da Zheng's avatar
Da Zheng committed
184
185
186
187
188
189
190
191
192
193
194
195
  if (num < set_size) {
    std::unordered_set<size_t> sampled_idxs;
    while (sampled_idxs.size() < num) {
      sampled_idxs.insert(RandomEngine::ThreadLocal()->RandInt(set_size));
    }
    out->insert(out->end(), sampled_idxs.begin(), sampled_idxs.end());
  } else {
    // If we need to sample all elements in the set, we don't need to
    // generate random numbers.
    for (size_t i = 0; i < set_size; i++)
      out->push_back(i);
  }
Da Zheng's avatar
Da Zheng committed
196
197
}

198
199
200
201
202
203
void RandomSample(size_t set_size, size_t num, const std::vector<size_t> &exclude,
                  std::vector<size_t>* out) {
  std::unordered_map<size_t, int> sampled_idxs;
  for (auto v : exclude) {
    sampled_idxs.insert(std::pair<size_t, int>(v, 0));
  }
Da Zheng's avatar
Da Zheng committed
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
  if (num + exclude.size() < set_size) {
    while (sampled_idxs.size() < num + exclude.size()) {
      size_t rand = RandomEngine::ThreadLocal()->RandInt(set_size);
      sampled_idxs.insert(std::pair<size_t, int>(rand, 1));
    }
    for (auto it = sampled_idxs.begin(); it != sampled_idxs.end(); it++) {
      if (it->second) {
        out->push_back(it->first);
      }
    }
  } else {
    // If we need to sample all elements in the set, we don't need to
    // generate random numbers.
    for (size_t i = 0; i < set_size; i++) {
      // If the element doesn't exist in exclude.
      if (sampled_idxs.find(i) == sampled_idxs.end()) {
        out->push_back(i);
      }
222
223
224
225
    }
  }
}

Da Zheng's avatar
Da Zheng committed
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
/*
 * For a sparse array whose non-zeros are represented by nz_idxs,
 * negate the sparse array and outputs the non-zeros in the negated array.
 */
void NegateArray(const std::vector<size_t> &nz_idxs,
                 size_t arr_size,
                 std::vector<size_t>* out) {
  // nz_idxs must have been sorted.
  auto it = nz_idxs.begin();
  size_t i = 0;
  CHECK_GT(arr_size, nz_idxs.back());
  for (; i < arr_size && it != nz_idxs.end(); i++) {
    if (*it == i) {
      it++;
      continue;
    }
    out->push_back(i);
  }
  for (; i < arr_size; i++) {
    out->push_back(i);
  }
}

/*
 * Uniform sample vertices from a list of vertices.
 */
void GetUniformSample(const dgl_id_t* edge_id_list,
                      const dgl_id_t* vid_list,
                      const size_t ver_len,
                      const size_t max_num_neighbor,
                      std::vector<dgl_id_t>* out_ver,
257
                      std::vector<dgl_id_t>* out_edge) {
Da Zheng's avatar
Da Zheng committed
258
259
260
261
262
263
264
265
266
267
  // Copy vid_list to output
  if (ver_len <= max_num_neighbor) {
    out_ver->insert(out_ver->end(), vid_list, vid_list + ver_len);
    out_edge->insert(out_edge->end(), edge_id_list, edge_id_list + ver_len);
    return;
  }
  // If we just sample a small number of elements from a large neighbor list.
  std::vector<size_t> sorted_idxs;
  if (ver_len > max_num_neighbor * 2) {
    sorted_idxs.reserve(max_num_neighbor);
268
    RandomSample(ver_len, max_num_neighbor, &sorted_idxs);
Da Zheng's avatar
Da Zheng committed
269
270
271
272
    std::sort(sorted_idxs.begin(), sorted_idxs.end());
  } else {
    std::vector<size_t> negate;
    negate.reserve(ver_len - max_num_neighbor);
273
    RandomSample(ver_len, ver_len - max_num_neighbor, &negate);
Da Zheng's avatar
Da Zheng committed
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
    std::sort(negate.begin(), negate.end());
    NegateArray(negate, ver_len, &sorted_idxs);
  }
  // verify the result.
  CHECK_EQ(sorted_idxs.size(), max_num_neighbor);
  for (size_t i = 1; i < sorted_idxs.size(); i++) {
    CHECK_GT(sorted_idxs[i], sorted_idxs[i - 1]);
  }
  for (auto idx : sorted_idxs) {
    out_ver->push_back(vid_list[idx]);
    out_edge->push_back(edge_id_list[idx]);
  }
}

/*
 * Non-uniform sample via ArrayHeap
290
291
 *
 * \param probability Transition probability on the entire graph, indexed by edge ID
Da Zheng's avatar
Da Zheng committed
292
 */
293
294
template<typename ValueType>
void GetNonUniformSample(const ValueType* probability,
Da Zheng's avatar
Da Zheng committed
295
296
297
298
299
                         const dgl_id_t* edge_id_list,
                         const dgl_id_t* vid_list,
                         const size_t ver_len,
                         const size_t max_num_neighbor,
                         std::vector<dgl_id_t>* out_ver,
300
                         std::vector<dgl_id_t>* out_edge) {
Da Zheng's avatar
Da Zheng committed
301
302
303
304
305
306
307
308
  // Copy vid_list to output
  if (ver_len <= max_num_neighbor) {
    out_ver->insert(out_ver->end(), vid_list, vid_list + ver_len);
    out_edge->insert(out_edge->end(), edge_id_list, edge_id_list + ver_len);
    return;
  }
  // Make sample
  std::vector<size_t> sp_index(max_num_neighbor);
309
  std::vector<ValueType> sp_prob(ver_len);
Da Zheng's avatar
Da Zheng committed
310
  for (size_t i = 0; i < ver_len; ++i) {
311
    sp_prob[i] = probability[edge_id_list[i]];
Da Zheng's avatar
Da Zheng committed
312
  }
313
  ArrayHeap<ValueType> arrayHeap(sp_prob);
314
  arrayHeap.SampleWithoutReplacement(max_num_neighbor, &sp_index);
Da Zheng's avatar
Da Zheng committed
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
  out_ver->resize(max_num_neighbor);
  out_edge->resize(max_num_neighbor);
  for (size_t i = 0; i < max_num_neighbor; ++i) {
    size_t idx = sp_index[i];
    out_ver->at(i) = vid_list[idx];
    out_edge->at(i) = edge_id_list[idx];
  }
  sort(out_ver->begin(), out_ver->end());
  sort(out_edge->begin(), out_edge->end());
}

/*
 * Used for subgraph sampling
 */
struct neigh_list {
  std::vector<dgl_id_t> neighs;
  std::vector<dgl_id_t> edges;
  neigh_list(const std::vector<dgl_id_t> &_neighs,
             const std::vector<dgl_id_t> &_edges)
    : neighs(_neighs), edges(_edges) {}
};

struct neighbor_info {
  dgl_id_t id;
  size_t pos;
  size_t num_edges;

  neighbor_info(dgl_id_t id, size_t pos, size_t num_edges) {
    this->id = id;
    this->pos = pos;
    this->num_edges = num_edges;
  }
};

NodeFlow ConstructNodeFlow(std::vector<dgl_id_t> neighbor_list,
                           std::vector<dgl_id_t> edge_list,
                           std::vector<size_t> layer_offsets,
                           std::vector<std::pair<dgl_id_t, int> > *sub_vers,
                           std::vector<neighbor_info> *neigh_pos,
                           const std::string &edge_type,
                           int64_t num_edges, int num_hops, bool is_multigraph) {
356
  NodeFlow nf = NodeFlow::Create();
Da Zheng's avatar
Da Zheng committed
357
  uint64_t num_vertices = sub_vers->size();
358
359
360
361
  nf->node_mapping = aten::NewIdArray(num_vertices);
  nf->edge_mapping = aten::NewIdArray(num_edges);
  nf->layer_offsets = aten::NewIdArray(num_hops + 1);
  nf->flow_offsets = aten::NewIdArray(num_hops);
Da Zheng's avatar
Da Zheng committed
362

363
364
365
366
  dgl_id_t *node_map_data = static_cast<dgl_id_t *>(nf->node_mapping->data);
  dgl_id_t *layer_off_data = static_cast<dgl_id_t *>(nf->layer_offsets->data);
  dgl_id_t *flow_off_data = static_cast<dgl_id_t *>(nf->flow_offsets->data);
  dgl_id_t *edge_map_data = static_cast<dgl_id_t *>(nf->edge_mapping->data);
Da Zheng's avatar
Da Zheng committed
367
368

  // Construct sub_csr_graph
369
370
371
372
373
  // TODO(minjie): is nodeflow a multigraph?
  auto subg_csr = CSRPtr(new CSR(num_vertices, num_edges, is_multigraph));
  dgl_id_t* indptr_out = static_cast<dgl_id_t*>(subg_csr->indptr()->data);
  dgl_id_t* col_list_out = static_cast<dgl_id_t*>(subg_csr->indices()->data);
  dgl_id_t* eid_out = static_cast<dgl_id_t*>(subg_csr->edge_ids()->data);
Da Zheng's avatar
Da Zheng committed
374
375
376
377
378
379
380
381
382
383
384
385
  size_t collected_nedges = 0;

  // The data from the previous steps:
  // * node data: sub_vers (vid, layer), neigh_pos,
  // * edge data: neighbor_list, edge_list, probability.
  // * layer_offsets: the offset in sub_vers.
  dgl_id_t ver_id = 0;
  std::vector<std::unordered_map<dgl_id_t, dgl_id_t>> layer_ver_maps;
  layer_ver_maps.resize(num_hops);
  size_t out_node_idx = 0;
  for (int layer_id = num_hops - 1; layer_id >= 0; layer_id--) {
    // We sort the vertices in a layer so that we don't need to sort the neighbor Ids
386
387
388
389
390
391
392
393
394
395
396
    // after remap to a subgraph. However, we don't need to sort the first layer
    // because we want the order of the nodes in the first layer is the same as
    // the input seed nodes.
    if (layer_id > 0) {
      std::sort(sub_vers->begin() + layer_offsets[layer_id],
                sub_vers->begin() + layer_offsets[layer_id + 1],
                [](const std::pair<dgl_id_t, dgl_id_t> &a1,
                   const std::pair<dgl_id_t, dgl_id_t> &a2) {
        return a1.first < a2.first;
      });
    }
Da Zheng's avatar
Da Zheng committed
397
398
399
400
401
402

    // Save the sampled vertices and its layer Id.
    for (size_t i = layer_offsets[layer_id]; i < layer_offsets[layer_id + 1]; i++) {
      node_map_data[out_node_idx++] = sub_vers->at(i).first;
      layer_ver_maps[layer_id].insert(std::pair<dgl_id_t, dgl_id_t>(sub_vers->at(i).first,
                                                                    ver_id++));
403
      CHECK_EQ(sub_vers->at(i).second, layer_id);
Da Zheng's avatar
Da Zheng committed
404
405
406
407
408
409
410
411
412
    }
  }
  CHECK(out_node_idx == num_vertices);

  // sampling algorithms have to start from the seed nodes, so the seed nodes are
  // in the first layer and the input nodes are in the last layer.
  // When we expose the sampled graph to a Python user, we say the input nodes
  // are in the first layer and the seed nodes are in the last layer.
  // Thus, when we copy sampled results to a CSR, we need to reverse the order of layers.
413
414
  std::fill(indptr_out, indptr_out + num_vertices + 1, 0);
  size_t row_idx = layer_offsets[num_hops] - layer_offsets[num_hops - 1];
Da Zheng's avatar
Da Zheng committed
415
416
  layer_off_data[0] = 0;
  layer_off_data[1] = layer_offsets[num_hops] - layer_offsets[num_hops - 1];
417
  int out_layer_idx = 1;
Da Zheng's avatar
Da Zheng committed
418
  for (int layer_id = num_hops - 2; layer_id >= 0; layer_id--) {
419
420
421
422
423
424
425
426
427
    // Because we don't sort the vertices in the first layer above, we can't sort
    // the neighbor positions of the vertices in the first layer either.
    if (layer_id > 0) {
      std::sort(neigh_pos->begin() + layer_offsets[layer_id],
                neigh_pos->begin() + layer_offsets[layer_id + 1],
                [](const neighbor_info &a1, const neighbor_info &a2) {
                  return a1.id < a2.id;
                });
    }
Da Zheng's avatar
Da Zheng committed
428
429
430

    for (size_t i = layer_offsets[layer_id]; i < layer_offsets[layer_id + 1]; i++) {
      dgl_id_t dst_id = sub_vers->at(i).first;
431
      CHECK_EQ(dst_id, neigh_pos->at(i).id);
Da Zheng's avatar
Da Zheng committed
432
      size_t pos = neigh_pos->at(i).pos;
433
      CHECK_LE(pos, neighbor_list.size());
434
435
      const size_t nedges = neigh_pos->at(i).num_edges;
      if (neighbor_list.empty()) CHECK_EQ(nedges, 0);
Da Zheng's avatar
Da Zheng committed
436
437
438

      // We need to map the Ids of the neighbors to the subgraph.
      auto neigh_it = neighbor_list.begin() + pos;
439
      for (size_t i = 0; i < nedges; i++) {
Da Zheng's avatar
Da Zheng committed
440
        dgl_id_t neigh = *(neigh_it + i);
441
        CHECK(layer_ver_maps[layer_id + 1].find(neigh) != layer_ver_maps[layer_id + 1].end());
Da Zheng's avatar
Da Zheng committed
442
443
444
445
        col_list_out[collected_nedges + i] = layer_ver_maps[layer_id + 1][neigh];
      }
      // We can simply copy the edge Ids.
      std::copy_n(edge_list.begin() + pos,
446
447
448
                  nedges, edge_map_data + collected_nedges);
      collected_nedges += nedges;
      indptr_out[row_idx+1] = indptr_out[row_idx] + nedges;
Da Zheng's avatar
Da Zheng committed
449
450
451
452
453
454
      row_idx++;
    }
    layer_off_data[out_layer_idx + 1] = layer_off_data[out_layer_idx]
        + layer_offsets[layer_id + 1] - layer_offsets[layer_id];
    out_layer_idx++;
  }
455
456
457
458
  CHECK_EQ(row_idx, num_vertices);
  CHECK_EQ(indptr_out[row_idx], num_edges);
  CHECK_EQ(out_layer_idx, num_hops);
  CHECK_EQ(layer_off_data[out_layer_idx], num_vertices);
Da Zheng's avatar
Da Zheng committed
459
460
461

  // Copy flow offsets.
  flow_off_data[0] = 0;
462
463
  int out_flow_idx = 0;
  for (size_t i = 0; i < layer_offsets.size() - 2; i++) {
464
    size_t num_edges = indptr_out[layer_off_data[i + 2]] - indptr_out[layer_off_data[i + 1]];
Da Zheng's avatar
Da Zheng committed
465
466
467
468
    flow_off_data[out_flow_idx + 1] = flow_off_data[out_flow_idx] + num_edges;
    out_flow_idx++;
  }
  CHECK(out_flow_idx == num_hops - 1);
469
  CHECK(flow_off_data[num_hops - 1] == static_cast<uint64_t>(num_edges));
Da Zheng's avatar
Da Zheng committed
470

471
  std::iota(eid_out, eid_out + num_edges, 0);
Da Zheng's avatar
Da Zheng committed
472

473
  if (edge_type == std::string("in")) {
474
    nf->graph = GraphPtr(new ImmutableGraph(subg_csr, nullptr));
Da Zheng's avatar
Da Zheng committed
475
  } else {
476
    nf->graph = GraphPtr(new ImmutableGraph(nullptr, subg_csr));
Da Zheng's avatar
Da Zheng committed
477
478
479
480
481
  }

  return nf;
}

482
template<typename ValueType>
Da Zheng's avatar
Da Zheng committed
483
NodeFlow SampleSubgraph(const ImmutableGraph *graph,
484
                        const std::vector<dgl_id_t>& seeds,
485
                        const ValueType* probability,
Da Zheng's avatar
Da Zheng committed
486
487
                        const std::string &edge_type,
                        int num_hops,
488
489
                        size_t num_neighbor,
                        const bool add_self_loop) {
490
  CHECK_EQ(graph->NumBits(), 64) << "32 bit graph is not supported yet";
491
  const size_t num_seeds = seeds.size();
Da Zheng's avatar
Da Zheng committed
492
  auto orig_csr = edge_type == "in" ? graph->GetInCSR() : graph->GetOutCSR();
493
494
495
  const dgl_id_t* val_list = static_cast<dgl_id_t*>(orig_csr->edge_ids()->data);
  const dgl_id_t* col_list = static_cast<dgl_id_t*>(orig_csr->indices()->data);
  const dgl_id_t* indptr = static_cast<dgl_id_t*>(orig_csr->indptr()->data);
Da Zheng's avatar
Da Zheng committed
496
497
498
499
500
501

  std::unordered_set<dgl_id_t> sub_ver_map;  // The vertex Ids in a layer.
  std::vector<std::pair<dgl_id_t, int> > sub_vers;
  sub_vers.reserve(num_seeds * 10);
  // add seed vertices
  for (size_t i = 0; i < num_seeds; ++i) {
502
    auto ret = sub_ver_map.insert(seeds[i]);
Da Zheng's avatar
Da Zheng committed
503
504
    // If the vertex is inserted successfully.
    if (ret.second) {
505
      sub_vers.emplace_back(seeds[i], 0);
Da Zheng's avatar
Da Zheng committed
506
507
508
509
510
511
512
513
514
515
516
517
518
519
    }
  }
  std::vector<dgl_id_t> tmp_sampled_src_list;
  std::vector<dgl_id_t> tmp_sampled_edge_list;
  // ver_id, position
  std::vector<neighbor_info> neigh_pos;
  neigh_pos.reserve(num_seeds);
  std::vector<dgl_id_t> neighbor_list;
  std::vector<dgl_id_t> edge_list;
  std::vector<size_t> layer_offsets(num_hops + 1);
  int64_t num_edges = 0;

  layer_offsets[0] = 0;
  layer_offsets[1] = sub_vers.size();
520
  for (int layer_id = 1; layer_id < num_hops; layer_id++) {
Da Zheng's avatar
Da Zheng committed
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
    // We need to avoid resampling the same node in a layer, but we allow a node
    // to be resampled in multiple layers. We use `sub_ver_map` to keep track of
    // sampled nodes in a layer, and clear it when entering a new layer.
    sub_ver_map.clear();
    // Previous iteration collects all nodes in sub_vers, which are collected
    // in the previous layer. sub_vers is used both as a node collection and a queue.
    for (size_t idx = layer_offsets[layer_id - 1]; idx < layer_offsets[layer_id]; idx++) {
      dgl_id_t dst_id = sub_vers[idx].first;
      const int cur_node_level = sub_vers[idx].second;

      tmp_sampled_src_list.clear();
      tmp_sampled_edge_list.clear();
      dgl_id_t ver_len = *(indptr+dst_id+1) - *(indptr+dst_id);
      if (probability == nullptr) {  // uniform-sample
        GetUniformSample(val_list + *(indptr + dst_id),
                         col_list + *(indptr + dst_id),
                         ver_len,
                         num_neighbor,
                         &tmp_sampled_src_list,
540
                         &tmp_sampled_edge_list);
Da Zheng's avatar
Da Zheng committed
541
542
543
544
545
546
547
      } else {  // non-uniform-sample
        GetNonUniformSample(probability,
                            val_list + *(indptr + dst_id),
                            col_list + *(indptr + dst_id),
                            ver_len,
                            num_neighbor,
                            &tmp_sampled_src_list,
548
                            &tmp_sampled_edge_list);
Da Zheng's avatar
Da Zheng committed
549
      }
Da Zheng's avatar
Da Zheng committed
550
551
552
      // If we need to add self loop and it doesn't exist in the sampled neighbor list.
      if (add_self_loop && std::find(tmp_sampled_src_list.begin(), tmp_sampled_src_list.end(),
                                     dst_id) == tmp_sampled_src_list.end()) {
553
        tmp_sampled_src_list.push_back(dst_id);
Da Zheng's avatar
Da Zheng committed
554
555
556
557
558
559
560
561
562
563
        const dgl_id_t *src_list = col_list + *(indptr + dst_id);
        const dgl_id_t *eid_list = val_list + *(indptr + dst_id);
        // TODO(zhengda) this operation has O(N) complexity. It can be pretty slow.
        const dgl_id_t *src = std::find(src_list, src_list + ver_len, dst_id);
        // If there doesn't exist a self loop in the graph.
        // we have to add -1 as the edge id for the self-loop edge.
        if (src == src_list + ver_len)
          tmp_sampled_edge_list.push_back(-1);
        else
          tmp_sampled_edge_list.push_back(eid_list[src - src_list]);
564
      }
Da Zheng's avatar
Da Zheng committed
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
      CHECK_EQ(tmp_sampled_src_list.size(), tmp_sampled_edge_list.size());
      neigh_pos.emplace_back(dst_id, neighbor_list.size(), tmp_sampled_src_list.size());
      // Then push the vertices
      for (size_t i = 0; i < tmp_sampled_src_list.size(); ++i) {
        neighbor_list.push_back(tmp_sampled_src_list[i]);
      }
      // Finally we push the edge list
      for (size_t i = 0; i < tmp_sampled_edge_list.size(); ++i) {
        edge_list.push_back(tmp_sampled_edge_list[i]);
      }
      num_edges += tmp_sampled_src_list.size();
      for (size_t i = 0; i < tmp_sampled_src_list.size(); ++i) {
        // We need to add the neighbor in the hashtable here. This ensures that
        // the vertex in the queue is unique. If we see a vertex before, we don't
        // need to add it to the queue again.
        auto ret = sub_ver_map.insert(tmp_sampled_src_list[i]);
        // If the sampled neighbor is inserted to the map successfully.
        if (ret.second) {
          sub_vers.emplace_back(tmp_sampled_src_list[i], cur_node_level + 1);
        }
      }
    }
    layer_offsets[layer_id + 1] = layer_offsets[layer_id] + sub_ver_map.size();
    CHECK_EQ(layer_offsets[layer_id + 1], sub_vers.size());
  }

  return ConstructNodeFlow(neighbor_list, edge_list, layer_offsets, &sub_vers, &neigh_pos,
                           edge_type, num_edges, num_hops, graph->IsMultigraph());
}

595
}  // namespace
Da Zheng's avatar
Da Zheng committed
596

597
598
DGL_REGISTER_GLOBAL("nodeflow._CAPI_NodeFlowGetGraph")
.set_body([] (DGLArgs args, DGLRetValue* rv) {
599
600
    NodeFlow nflow = args[0];
    *rv = nflow->graph;
601
602
603
604
  });

DGL_REGISTER_GLOBAL("nodeflow._CAPI_NodeFlowGetNodeMapping")
.set_body([] (DGLArgs args, DGLRetValue* rv) {
605
    NodeFlow nflow = args[0];
606
607
608
609
610
    *rv = nflow->node_mapping;
  });

DGL_REGISTER_GLOBAL("nodeflow._CAPI_NodeFlowGetEdgeMapping")
.set_body([] (DGLArgs args, DGLRetValue* rv) {
611
    NodeFlow nflow = args[0];
612
613
614
615
616
    *rv = nflow->edge_mapping;
  });

DGL_REGISTER_GLOBAL("nodeflow._CAPI_NodeFlowGetLayerOffsets")
.set_body([] (DGLArgs args, DGLRetValue* rv) {
617
    NodeFlow nflow = args[0];
618
619
620
621
622
    *rv = nflow->layer_offsets;
  });

DGL_REGISTER_GLOBAL("nodeflow._CAPI_NodeFlowGetBlockOffsets")
.set_body([] (DGLArgs args, DGLRetValue* rv) {
623
    NodeFlow nflow = args[0];
624
625
626
    *rv = nflow->flow_offsets;
  });

627
628
629
630
631
632
633
template<typename ValueType>
NodeFlow SamplerOp::NeighborSample(const ImmutableGraph *graph,
                                   const std::vector<dgl_id_t>& seeds,
                                   const std::string &edge_type,
                                   int num_hops, int expand_factor,
                                   const bool add_self_loop,
                                   const ValueType *probability) {
Da Zheng's avatar
Da Zheng committed
634
  return SampleSubgraph(graph,
635
636
                        seeds,
                        probability,
Da Zheng's avatar
Da Zheng committed
637
638
                        edge_type,
                        num_hops + 1,
639
640
                        expand_factor,
                        add_self_loop);
Da Zheng's avatar
Da Zheng committed
641
642
}

643
namespace {
644
  void ConstructLayers(const dgl_id_t *indptr,
645
                       const dgl_id_t *indices,
646
647
                       const std::vector<dgl_id_t>& seed_array,
                       IdArray layer_sizes,
648
649
650
651
652
653
654
655
656
                       std::vector<dgl_id_t> *layer_offsets,
                       std::vector<dgl_id_t> *node_mapping,
                       std::vector<int64_t> *actl_layer_sizes,
                       std::vector<float> *probabilities) {
    /*
     * Given a graph and a collection of seed nodes, this function constructs NodeFlow
     * layers via uniform layer-wise sampling, and return the resultant layers and their
     * corresponding probabilities.
     */
657
    std::copy(seed_array.begin(), seed_array.end(), std::back_inserter(*node_mapping));
658
659
    actl_layer_sizes->push_back(node_mapping->size());
    probabilities->insert(probabilities->end(), node_mapping->size(), 1);
660
661
    const int64_t* layer_sizes_data = static_cast<int64_t*>(layer_sizes->data);
    const int64_t num_layers = layer_sizes->shape[0];
662
663
664

    size_t curr = 0;
    size_t next = node_mapping->size();
665
666
    for (int64_t i = num_layers - 1; i >= 0; --i) {
      const int64_t layer_size = layer_sizes_data[i];
667
668
669
670
671
672
673
674
675
676
677
678
      std::unordered_set<dgl_id_t> candidate_set;
      for (auto j = curr; j != next; ++j) {
        auto src = (*node_mapping)[j];
        candidate_set.insert(indices + indptr[src], indices + indptr[src + 1]);
      }

      std::vector<dgl_id_t> candidate_vector;
      std::copy(candidate_set.begin(), candidate_set.end(),
                std::back_inserter(candidate_vector));

      std::unordered_map<dgl_id_t, size_t> n_occurrences;
      auto n_candidates = candidate_vector.size();
679
      for (int64_t j = 0; j != layer_size; ++j) {
680
681
        auto dst = candidate_vector[
          RandomEngine::ThreadLocal()->RandInt(n_candidates)];
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
        if (!n_occurrences.insert(std::make_pair(dst, 1)).second) {
          ++n_occurrences[dst];
        }
      }

      for (auto const &pair : n_occurrences) {
        node_mapping->push_back(pair.first);
        float p = pair.second * n_candidates / static_cast<float>(layer_size);
        probabilities->push_back(p);
      }

      actl_layer_sizes->push_back(node_mapping->size() - next);
      curr = next;
      next = node_mapping->size();
    }
    std::reverse(node_mapping->begin(), node_mapping->end());
    std::reverse(actl_layer_sizes->begin(), actl_layer_sizes->end());
    layer_offsets->push_back(0);
    for (const auto &size : *actl_layer_sizes) {
      layer_offsets->push_back(size + layer_offsets->back());
    }
  }

705
  void ConstructFlows(const dgl_id_t *indptr,
706
707
708
709
                      const dgl_id_t *indices,
                      const dgl_id_t *eids,
                      const std::vector<dgl_id_t> &node_mapping,
                      const std::vector<int64_t> &actl_layer_sizes,
710
711
712
                      std::vector<dgl_id_t> *sub_indptr,
                      std::vector<dgl_id_t> *sub_indices,
                      std::vector<dgl_id_t> *sub_eids,
713
714
715
716
717
718
719
                      std::vector<dgl_id_t> *flow_offsets,
                      std::vector<dgl_id_t> *edge_mapping) {
    /*
     * Given a graph and a sequence of NodeFlow layers, this function constructs dense
     * subgraphs (flows) between consecutive layers.
     */
    auto n_flows = actl_layer_sizes.size() - 1;
720
721
    for (int64_t i = 0; i < actl_layer_sizes.front() + 1; i++)
      sub_indptr->push_back(0);
722
723
724
725
726
727
728
729
730
731
732
733
734
    flow_offsets->push_back(0);
    int64_t first = 0;
    for (size_t i = 0; i < n_flows; ++i) {
      auto src_size = actl_layer_sizes[i];
      std::unordered_map<dgl_id_t, dgl_id_t> source_map;
      for (int64_t j = 0; j < src_size; ++j) {
        source_map.insert(std::make_pair(node_mapping[first + j], first + j));
      }
      auto dst_size = actl_layer_sizes[i + 1];
      for (int64_t j = 0; j < dst_size; ++j) {
        auto dst = node_mapping[first + src_size + j];
        typedef std::pair<dgl_id_t, dgl_id_t> id_pair;
        std::vector<id_pair> neighbor_indices;
735
        for (dgl_id_t k = indptr[dst]; k < indptr[dst + 1]; ++k) {
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
          // TODO(gaiyu): accelerate hash table lookup
          auto ret = source_map.find(indices[k]);
          if (ret != source_map.end()) {
            neighbor_indices.push_back(std::make_pair(ret->second, eids[k]));
          }
        }
        auto cmp = [](const id_pair p, const id_pair q)->bool { return p.first < q.first; };
        std::sort(neighbor_indices.begin(), neighbor_indices.end(), cmp);
        for (const auto &pair : neighbor_indices) {
          sub_indices->push_back(pair.first);
          edge_mapping->push_back(pair.second);
        }
        sub_indptr->push_back(sub_indices->size());
      }
      flow_offsets->push_back(sub_indices->size());
      first += src_size;
    }
    sub_eids->resize(sub_indices->size());
    std::iota(sub_eids->begin(), sub_eids->end(), 0);
  }
}  // namespace

NodeFlow SamplerOp::LayerUniformSample(const ImmutableGraph *graph,
759
                                       const std::vector<dgl_id_t>& seeds,
760
                                       const std::string &neighbor_type,
761
                                       IdArray layer_sizes) {
762
  const auto g_csr = neighbor_type == "in" ? graph->GetInCSR() : graph->GetOutCSR();
763
764
765
  const dgl_id_t *indptr = static_cast<dgl_id_t*>(g_csr->indptr()->data);
  const dgl_id_t *indices = static_cast<dgl_id_t*>(g_csr->indices()->data);
  const dgl_id_t *eids = static_cast<dgl_id_t*>(g_csr->edge_ids()->data);
766
767
768
769
770
771
772

  std::vector<dgl_id_t> layer_offsets;
  std::vector<dgl_id_t> node_mapping;
  std::vector<int64_t> actl_layer_sizes;
  std::vector<float> probabilities;
  ConstructLayers(indptr,
                  indices,
773
                  seeds,
774
775
776
777
778
779
                  layer_sizes,
                  &layer_offsets,
                  &node_mapping,
                  &actl_layer_sizes,
                  &probabilities);

780
  std::vector<dgl_id_t> sub_indptr, sub_indices, sub_edge_ids;
781
782
783
784
785
786
787
  std::vector<dgl_id_t> flow_offsets;
  std::vector<dgl_id_t> edge_mapping;
  ConstructFlows(indptr,
                 indices,
                 eids,
                 node_mapping,
                 actl_layer_sizes,
788
789
790
                 &sub_indptr,
                 &sub_indices,
                 &sub_edge_ids,
791
792
                 &flow_offsets,
                 &edge_mapping);
793
794
795
796
797
  // sanity check
  CHECK_GT(sub_indptr.size(), 0);
  CHECK_EQ(sub_indptr[0], 0);
  CHECK_EQ(sub_indptr.back(), sub_indices.size());
  CHECK_EQ(sub_indices.size(), sub_edge_ids.size());
798

799
  NodeFlow nf = NodeFlow::Create();
800
801
802
  auto sub_csr = CSRPtr(new CSR(aten::VecToIdArray(sub_indptr),
                                aten::VecToIdArray(sub_indices),
                                aten::VecToIdArray(sub_edge_ids)));
803
804

  if (neighbor_type == std::string("in")) {
805
    nf->graph = GraphPtr(new ImmutableGraph(sub_csr, nullptr));
806
  } else {
807
    nf->graph = GraphPtr(new ImmutableGraph(nullptr, sub_csr));
808
809
  }

810
811
812
813
  nf->node_mapping = aten::VecToIdArray(node_mapping);
  nf->edge_mapping = aten::VecToIdArray(edge_mapping);
  nf->layer_offsets = aten::VecToIdArray(layer_offsets);
  nf->flow_offsets = aten::VecToIdArray(flow_offsets);
814
815
816
817

  return nf;
}

Da Zheng's avatar
Da Zheng committed
818
819
820
821
822
823
824
825
826
827
828
829
void BuildCsr(const ImmutableGraph &g, const std::string neigh_type) {
  if (neigh_type == "in") {
    auto csr = g.GetInCSR();
    assert(csr);
  } else if (neigh_type == "out") {
    auto csr = g.GetOutCSR();
    assert(csr);
  } else {
    LOG(FATAL) << "We don't support sample from neighbor type " << neigh_type;
  }
}

830
831
832
833
834
835
836
837
838
839
840
template<typename ValueType>
std::vector<NodeFlow> NeighborSamplingImpl(const ImmutableGraphPtr gptr,
                                           const IdArray seed_nodes,
                                           const int64_t batch_start_id,
                                           const int64_t batch_size,
                                           const int64_t max_num_workers,
                                           const int64_t expand_factor,
                                           const int64_t num_hops,
                                           const std::string neigh_type,
                                           const bool add_self_loop,
                                           const ValueType *probability) {
841
    // process args
842
    CHECK(aten::IsValidIdArray(seed_nodes));
843
844
845
846
    const dgl_id_t* seed_nodes_data = static_cast<dgl_id_t*>(seed_nodes->data);
    const int64_t num_seeds = seed_nodes->shape[0];
    const int64_t num_workers = std::min(max_num_workers,
        (num_seeds + batch_size - 1) / batch_size - batch_start_id);
Da Zheng's avatar
Da Zheng committed
847
848
    // We need to make sure we have the right CSR before we enter parallel sampling.
    BuildCsr(*gptr, neigh_type);
849
    // generate node flows
850
    std::vector<NodeFlow> nflows(num_workers);
851
852
853
854
855
856
857
858
859
#pragma omp parallel for
    for (int i = 0; i < num_workers; i++) {
      // create per-worker seed nodes.
      const int64_t start = (batch_start_id + i) * batch_size;
      const int64_t end = std::min(start + batch_size, num_seeds);
      // TODO(minjie): the vector allocation/copy is unnecessary
      std::vector<dgl_id_t> worker_seeds(end - start);
      std::copy(seed_nodes_data + start, seed_nodes_data + end,
                worker_seeds.begin());
860
861
862
      nflows[i] = SamplerOp::NeighborSample(
          gptr.get(), worker_seeds, neigh_type, num_hops, expand_factor,
          add_self_loop, probability);
863
    }
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
    return nflows;
}

DGL_REGISTER_GLOBAL("sampling._CAPI_UniformSampling")
.set_body([] (DGLArgs args, DGLRetValue* rv) {
    // arguments
    const GraphRef g = args[0];
    const IdArray seed_nodes = args[1];
    const int64_t batch_start_id = args[2];
    const int64_t batch_size = args[3];
    const int64_t max_num_workers = args[4];
    const int64_t expand_factor = args[5];
    const int64_t num_hops = args[6];
    const std::string neigh_type = args[7];
    const bool add_self_loop = args[8];

    auto gptr = std::dynamic_pointer_cast<ImmutableGraph>(g.sptr());
    CHECK(gptr) << "sampling isn't implemented in mutable graph";

883
884
885
886
    CHECK(aten::IsValidIdArray(seed_nodes));
    CHECK_EQ(seed_nodes->ctx.device_type, kDLCPU)
      << "UniformSampler only support CPU sampling";

887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
    std::vector<NodeFlow> nflows = NeighborSamplingImpl<float>(
        gptr, seed_nodes, batch_start_id, batch_size, max_num_workers,
        expand_factor, num_hops, neigh_type, add_self_loop, nullptr);

    *rv = List<NodeFlow>(nflows);
  });

DGL_REGISTER_GLOBAL("sampling._CAPI_NeighborSampling")
.set_body([] (DGLArgs args, DGLRetValue* rv) {
    // arguments
    const GraphRef g = args[0];
    const IdArray seed_nodes = args[1];
    const int64_t batch_start_id = args[2];
    const int64_t batch_size = args[3];
    const int64_t max_num_workers = args[4];
    const int64_t expand_factor = args[5];
    const int64_t num_hops = args[6];
    const std::string neigh_type = args[7];
    const bool add_self_loop = args[8];
    const NDArray probability = args[9];

    auto gptr = std::dynamic_pointer_cast<ImmutableGraph>(g.sptr());
    CHECK(gptr) << "sampling isn't implemented in mutable graph";

911
912
913
914
    CHECK(aten::IsValidIdArray(seed_nodes));
    CHECK_EQ(seed_nodes->ctx.device_type, kDLCPU)
      << "NeighborSampler only support CPU sampling";

915
916
917
918
919
920
    std::vector<NodeFlow> nflows;

    CHECK(probability->dtype.code == kDLFloat)
      << "transition probability must be float";
    CHECK(probability->ndim == 1)
      << "transition probability must be a 1-dimensional vector";
921
922
    CHECK_EQ(probability->ctx.device_type, kDLCPU)
      << "NeighborSampling only support CPU sampling";
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945

    ATEN_FLOAT_TYPE_SWITCH(
      probability->dtype,
      FloatType,
      "transition probability",
      {
        const FloatType *prob;

        if (probability->ndim == 1 && probability->shape[0] == 0) {
          prob = nullptr;
        } else {
          CHECK(probability->shape[0] == gptr->NumEdges())
            << "transition probability must have same number of elements as edges";
          CHECK(probability.IsContiguous())
            << "transition probability must be contiguous tensor";
          prob = static_cast<const FloatType *>(probability->data);
        }

        nflows = NeighborSamplingImpl(
            gptr, seed_nodes, batch_start_id, batch_size, max_num_workers,
            expand_factor, num_hops, neigh_type, add_self_loop, prob);
    });

946
    *rv = List<NodeFlow>(nflows);
947
948
949
950
951
  });

DGL_REGISTER_GLOBAL("sampling._CAPI_LayerSampling")
.set_body([] (DGLArgs args, DGLRetValue* rv) {
    // arguments
952
    GraphRef g = args[0];
953
    const IdArray seed_nodes = args[1];
954
955
956
    const int64_t batch_start_id = args[2];
    const int64_t batch_size = args[3];
    const int64_t max_num_workers = args[4];
957
    const IdArray layer_sizes = args[5];
958
959
    const std::string neigh_type = args[6];
    // process args
960
    auto gptr = std::dynamic_pointer_cast<ImmutableGraph>(g.sptr());
961
    CHECK(gptr) << "sampling isn't implemented in mutable graph";
962
    CHECK(aten::IsValidIdArray(seed_nodes));
963
964
965
966
967
968
969
    CHECK_EQ(seed_nodes->ctx.device_type, kDLCPU)
      << "LayerSampler only support CPU sampling";

    CHECK(aten::IsValidIdArray(layer_sizes));
    CHECK_EQ(layer_sizes->ctx.device_type, kDLCPU)
      << "LayerSampler only support CPU sampling";

970
971
972
973
    const dgl_id_t* seed_nodes_data = static_cast<dgl_id_t*>(seed_nodes->data);
    const int64_t num_seeds = seed_nodes->shape[0];
    const int64_t num_workers = std::min(max_num_workers,
        (num_seeds + batch_size - 1) / batch_size - batch_start_id);
Da Zheng's avatar
Da Zheng committed
974
975
    // We need to make sure we have the right CSR before we enter parallel sampling.
    BuildCsr(*gptr, neigh_type);
976
    // generate node flows
977
    std::vector<NodeFlow> nflows(num_workers);
978
979
980
981
982
983
984
985
986
#pragma omp parallel for
    for (int i = 0; i < num_workers; i++) {
      // create per-worker seed nodes.
      const int64_t start = (batch_start_id + i) * batch_size;
      const int64_t end = std::min(start + batch_size, num_seeds);
      // TODO(minjie): the vector allocation/copy is unnecessary
      std::vector<dgl_id_t> worker_seeds(end - start);
      std::copy(seed_nodes_data + start, seed_nodes_data + end,
                worker_seeds.begin());
987
988
      nflows[i] = SamplerOp::LayerUniformSample(
          gptr.get(), worker_seeds, neigh_type, layer_sizes);
989
    }
990
    *rv = List<NodeFlow>(nflows);
991
992
  });

993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
namespace {

void BuildCoo(const ImmutableGraph &g) {
  auto coo = g.GetCOO();
  assert(coo);
}


dgl_id_t global2local_map(dgl_id_t global_id,
                          std::unordered_map<dgl_id_t, dgl_id_t> *map) {
  auto it = map->find(global_id);
  if (it == map->end()) {
    dgl_id_t local_id = map->size();
    map->insert(std::pair<dgl_id_t, dgl_id_t>(global_id, local_id));
    return local_id;
  } else {
    return it->second;
  }
}

Da Zheng's avatar
Da Zheng committed
1013
inline bool IsNegativeHeadMode(const std::string &mode) {
1014
1015
1016
  return mode == "head";
}

1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
IdArray GetGlobalVid(IdArray induced_nid, IdArray subg_nid) {
  IdArray gnid = IdArray::Empty({subg_nid->shape[0]}, subg_nid->dtype, subg_nid->ctx);
  const dgl_id_t *induced_nid_data = static_cast<dgl_id_t *>(induced_nid->data);
  const dgl_id_t *subg_nid_data = static_cast<dgl_id_t *>(subg_nid->data);
  dgl_id_t *gnid_data = static_cast<dgl_id_t *>(gnid->data);
  for (int64_t i = 0; i < subg_nid->shape[0]; i++) {
    gnid_data[i] = induced_nid_data[subg_nid_data[i]];
  }
  return gnid;
}

IdArray CheckExistence(GraphPtr gptr, IdArray neg_src, IdArray neg_dst,
                       IdArray induced_nid) {
  return gptr->HasEdgesBetween(GetGlobalVid(induced_nid, neg_src),
                               GetGlobalVid(induced_nid, neg_dst));
}

IdArray CheckExistence(GraphPtr gptr, IdArray relations,
                       IdArray neg_src, IdArray neg_dst,
                       IdArray induced_nid, IdArray neg_eid) {
  neg_src = GetGlobalVid(induced_nid, neg_src);
  neg_dst = GetGlobalVid(induced_nid, neg_dst);
  BoolArray exist = gptr->HasEdgesBetween(neg_src, neg_dst);
  dgl_id_t *neg_dst_data = static_cast<dgl_id_t *>(neg_dst->data);
  dgl_id_t *neg_src_data = static_cast<dgl_id_t *>(neg_src->data);
  dgl_id_t *neg_eid_data = static_cast<dgl_id_t *>(neg_eid->data);
  dgl_id_t *relation_data = static_cast<dgl_id_t *>(relations->data);
  // TODO(zhengda) is this right?
  dgl_id_t *exist_data = static_cast<dgl_id_t *>(exist->data);
  int64_t num_neg_edges = neg_src->shape[0];
  for (int64_t i = 0; i < num_neg_edges; i++) {
    // If the edge doesn't exist, we don't need to do anything.
    if (!exist_data[i])
      continue;
    // If the edge exists, we need to double check if the relations match.
    // If they match, this negative edge isn't really a negative edge.
    dgl_id_t eid1 = neg_eid_data[i];
    dgl_id_t orig_neg_rel1 = relation_data[eid1];
    IdArray eids = gptr->EdgeId(neg_src_data[i], neg_dst_data[i]);
    dgl_id_t *eid_data = static_cast<dgl_id_t *>(eids->data);
    int64_t num_edges_between = eids->shape[0];
    bool same_rel = false;
    for (int64_t j = 0; j < num_edges_between; j++) {
      dgl_id_t neg_rel1 = relation_data[eid_data[j]];
      if (neg_rel1 == orig_neg_rel1) {
        same_rel = true;
        break;
      }
    }
    exist_data[i] = same_rel;
  }
  return exist;
}

Da Zheng's avatar
Da Zheng committed
1071
std::vector<dgl_id_t> Global2Local(const std::vector<size_t> &ids,
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
                                   const std::unordered_map<dgl_id_t, dgl_id_t> &map) {
  std::vector<dgl_id_t> local_ids(ids.size());
  for (size_t i = 0; i < ids.size(); i++) {
    auto it = map.find(ids[i]);
    assert(it != map.end());
    local_ids[i] = it->second;
  }
  return local_ids;
}

1082
1083
1084
1085
1086
1087
NegSubgraph EdgeSamplerObject::genNegEdgeSubgraph(const Subgraph &pos_subg,
                                                  const std::string &neg_mode,
                                                  int64_t neg_sample_size,
                                                  bool exclude_positive,
                                                  bool check_false_neg) {
  int64_t num_tot_nodes = gptr_->NumVertices();
Da Zheng's avatar
Da Zheng committed
1088
1089
  if (neg_sample_size > num_tot_nodes)
    neg_sample_size = num_tot_nodes;
1090
  bool is_multigraph = gptr_->IsMultigraph();
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
  std::vector<IdArray> adj = pos_subg.graph->GetAdj(false, "coo");
  IdArray coo = adj[0];
  int64_t num_pos_edges = coo->shape[0] / 2;
  int64_t num_neg_edges = num_pos_edges * neg_sample_size;
  IdArray neg_dst = IdArray::Empty({num_neg_edges}, coo->dtype, coo->ctx);
  IdArray neg_src = IdArray::Empty({num_neg_edges}, coo->dtype, coo->ctx);
  IdArray induced_neg_eid = IdArray::Empty({num_neg_edges}, coo->dtype, coo->ctx);

  // These are vids in the positive subgraph.
  const dgl_id_t *dst_data = static_cast<const dgl_id_t *>(coo->data);
  const dgl_id_t *src_data = static_cast<const dgl_id_t *>(coo->data) + num_pos_edges;
1102
1103
1104
1105
  const dgl_id_t *induced_vid_data =
      static_cast<const dgl_id_t *>(pos_subg.induced_vertices->data);
  const dgl_id_t *induced_eid_data =
      static_cast<const dgl_id_t *>(pos_subg.induced_edges->data);
1106
1107
1108
1109
1110
1111
1112
  size_t num_pos_nodes = pos_subg.graph->NumVertices();
  std::vector<size_t> pos_nodes(induced_vid_data, induced_vid_data + num_pos_nodes);

  dgl_id_t *neg_dst_data = static_cast<dgl_id_t *>(neg_dst->data);
  dgl_id_t *neg_src_data = static_cast<dgl_id_t *>(neg_src->data);
  dgl_id_t *induced_neg_eid_data = static_cast<dgl_id_t *>(induced_neg_eid->data);

Da Zheng's avatar
Da Zheng committed
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
  const dgl_id_t *unchanged;
  dgl_id_t *neg_unchanged;
  dgl_id_t *neg_changed;
  if (IsNegativeHeadMode(neg_mode)) {
    unchanged = dst_data;
    neg_unchanged = neg_dst_data;
    neg_changed = neg_src_data;
  } else {
    unchanged = src_data;
    neg_unchanged = neg_src_data;
    neg_changed = neg_dst_data;
  }

1126
1127
1128
1129
  std::unordered_map<dgl_id_t, dgl_id_t> neg_map;
  std::vector<dgl_id_t> local_pos_vids;
  local_pos_vids.reserve(num_pos_edges);

1130
1131
  std::vector<size_t> neg_vids;
  neg_vids.reserve(neg_sample_size);
Da Zheng's avatar
Da Zheng committed
1132
1133
1134
1135
1136
1137
1138
1139
  // If we don't exclude positive edges, we are actually sampling more than
  // the total number of nodes in the graph.
  if (!exclude_positive && neg_sample_size >= num_tot_nodes) {
    // We add all nodes as negative nodes.
    for (int64_t i = 0; i < num_tot_nodes; i++) {
      neg_vids.push_back(i);
      neg_map[i] = i;
    }
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160

    // Get all nodes in the positive side.
    for (int64_t i = 0; i < num_pos_edges; i++) {
      dgl_id_t vid = induced_vid_data[unchanged[i]];
      local_pos_vids.push_back(neg_map[vid]);
    }
    // There is no guarantee that the nodes in the vector are unique.
    std::sort(local_pos_vids.begin(), local_pos_vids.end());
    auto it = std::unique(local_pos_vids.begin(), local_pos_vids.end());
    local_pos_vids.resize(it - local_pos_vids.begin());
  } else {
    // Collect nodes in the positive side.
    dgl_id_t local_vid = 0;
    for (int64_t i = 0; i < num_pos_edges; i++) {
      dgl_id_t vid = induced_vid_data[unchanged[i]];
      auto it = neg_map.find(vid);
      if (it == neg_map.end()) {
        local_pos_vids.push_back(local_vid);
        neg_map.insert(std::pair<dgl_id_t, dgl_id_t>(vid, local_vid++));
      }
    }
Da Zheng's avatar
Da Zheng committed
1161
1162
  }

1163
  int64_t prev_neg_offset = 0;
1164
1165
1166
1167
1168
  for (int64_t i = 0; i < num_pos_edges; i++) {
    size_t neg_idx = i * neg_sample_size;

    std::vector<size_t> neighbors;
    DGLIdIters neigh_it;
Da Zheng's avatar
Da Zheng committed
1169
    if (IsNegativeHeadMode(neg_mode)) {
1170
      neigh_it = gptr_->PredVec(induced_vid_data[unchanged[i]]);
1171
    } else {
1172
      neigh_it = gptr_->SuccVec(induced_vid_data[unchanged[i]]);
1173
1174
    }

Da Zheng's avatar
Da Zheng committed
1175
1176
1177
    // If the number of negative nodes is smaller than the number of total nodes
    // in the graph.
    if (exclude_positive && neg_sample_size < num_tot_nodes) {
1178
1179
      std::vector<size_t> exclude;
      for (auto it = neigh_it.begin(); it != neigh_it.end(); it++) {
1180
1181
        dgl_id_t global_vid = *it;
        exclude.push_back(global_vid);
1182
      }
1183
      prev_neg_offset = neg_vids.size();
1184
      randomSample(num_tot_nodes, neg_sample_size, exclude, &neg_vids);
1185
      assert(prev_neg_offset + neg_sample_size == neg_vids.size());
Da Zheng's avatar
Da Zheng committed
1186
    } else if (neg_sample_size < num_tot_nodes) {
1187
      prev_neg_offset = neg_vids.size();
1188
      randomSample(num_tot_nodes, neg_sample_size, &neg_vids);
1189
      assert(prev_neg_offset + neg_sample_size == neg_vids.size());
Da Zheng's avatar
Da Zheng committed
1190
    } else if (exclude_positive) {
1191
1192
      LOG(FATAL) << "We can't exclude positive edges"
                    "when sampling negative edges with all nodes.";
Da Zheng's avatar
Da Zheng committed
1193
1194
1195
1196
1197
    } else {
      // We don't need to do anything here.
      // In this case, every edge has the same negative edges. That is,
      // neg_vids contains all nodes of the graph. They have been generated
      // before the for loop.
1198
1199
1200
1201
1202
1203
1204
    }

    dgl_id_t global_unchanged = induced_vid_data[unchanged[i]];
    dgl_id_t local_unchanged = global2local_map(global_unchanged, &neg_map);

    for (int64_t j = 0; j < neg_sample_size; j++) {
      neg_unchanged[neg_idx + j] = local_unchanged;
1205
      dgl_id_t local_changed = global2local_map(neg_vids[j + prev_neg_offset], &neg_map);
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
      neg_changed[neg_idx + j] = local_changed;
      // induced negative eid references to the positive one.
      induced_neg_eid_data[neg_idx + j] = induced_eid_data[i];
    }
  }

  // Now we know the number of vertices in the negative graph.
  int64_t num_neg_nodes = neg_map.size();
  IdArray induced_neg_vid = IdArray::Empty({num_neg_nodes}, coo->dtype, coo->ctx);
  dgl_id_t *induced_neg_vid_data = static_cast<dgl_id_t *>(induced_neg_vid->data);
  for (auto it = neg_map.begin(); it != neg_map.end(); it++) {
    induced_neg_vid_data[it->second] = it->first;
  }

1220
  NegSubgraph neg_subg;
1221
1222
1223
1224
1225
1226
  // We sample negative vertices without replacement.
  // There shouldn't be duplicated edges.
  COOPtr neg_coo(new COO(num_neg_nodes, neg_src, neg_dst, is_multigraph));
  neg_subg.graph = GraphPtr(new ImmutableGraph(neg_coo));
  neg_subg.induced_vertices = induced_neg_vid;
  neg_subg.induced_edges = induced_neg_eid;
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
  // If we didn't sample all nodes to form negative edges, some of the nodes
  // in the vector might be redundant.
  if (neg_sample_size < num_tot_nodes) {
    std::sort(neg_vids.begin(), neg_vids.end());
    auto it = std::unique(neg_vids.begin(), neg_vids.end());
    neg_vids.resize(it - neg_vids.begin());
  }
  if (IsNegativeHeadMode(neg_mode)) {
    neg_subg.head_nid = aten::VecToIdArray(Global2Local(neg_vids, neg_map));
    neg_subg.tail_nid = aten::VecToIdArray(local_pos_vids);
  } else {
    neg_subg.head_nid = aten::VecToIdArray(local_pos_vids);
    neg_subg.tail_nid = aten::VecToIdArray(Global2Local(neg_vids, neg_map));
  }
1241
  // TODO(zhengda) we should provide an array of 1s if exclude_positive
Da Zheng's avatar
Da Zheng committed
1242
  if (check_false_neg) {
1243
1244
    if (relations_->shape[0] == 0) {
      neg_subg.exist = CheckExistence(gptr_, neg_src, neg_dst, induced_neg_vid);
Da Zheng's avatar
Da Zheng committed
1245
    } else {
1246
      neg_subg.exist = CheckExistence(gptr_, relations_, neg_src, neg_dst,
Da Zheng's avatar
Da Zheng committed
1247
1248
                                      induced_neg_vid, induced_neg_eid);
    }
1249
  }
1250
1251
1252
  return neg_subg;
}

1253
1254
1255
1256
1257
1258
NegSubgraph EdgeSamplerObject::genPBGNegEdgeSubgraph(const Subgraph &pos_subg,
                                                     const std::string &neg_mode,
                                                     int64_t neg_sample_size,
                                                     bool exclude_positive,
                                                     bool check_false_neg) {
  int64_t num_tot_nodes = gptr_->NumVertices();
1259
1260
1261
  std::vector<IdArray> adj = pos_subg.graph->GetAdj(false, "coo");
  IdArray coo = adj[0];
  int64_t num_pos_edges = coo->shape[0] / 2;
Da Zheng's avatar
Da Zheng committed
1262
1263
  if (neg_sample_size > num_tot_nodes)
    neg_sample_size = num_tot_nodes;
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288

  int64_t chunk_size = neg_sample_size;
  // If num_pos_edges isn't divisible by chunk_size, the actual number of chunks
  // is num_chunks + 1 and the last chunk size is last_chunk_size.
  // Otherwise, the actual number of chunks is num_chunks, the last chunk size
  // is 0.
  int64_t num_chunks = num_pos_edges / chunk_size;
  int64_t last_chunk_size = num_pos_edges - num_chunks * chunk_size;

  // The number of negative edges.
  int64_t num_neg_edges = neg_sample_size * chunk_size * num_chunks;
  int64_t num_neg_edges_last_chunk = neg_sample_size * last_chunk_size;
  int64_t num_all_neg_edges = num_neg_edges + num_neg_edges_last_chunk;

  // We should include the last chunk.
  if (last_chunk_size > 0)
    num_chunks++;

  IdArray neg_dst = IdArray::Empty({num_all_neg_edges}, coo->dtype, coo->ctx);
  IdArray neg_src = IdArray::Empty({num_all_neg_edges}, coo->dtype, coo->ctx);
  IdArray induced_neg_eid = IdArray::Empty({num_all_neg_edges}, coo->dtype, coo->ctx);

  // These are vids in the positive subgraph.
  const dgl_id_t *dst_data = static_cast<const dgl_id_t *>(coo->data);
  const dgl_id_t *src_data = static_cast<const dgl_id_t *>(coo->data) + num_pos_edges;
1289
1290
1291
1292
1293
1294
  const dgl_id_t *induced_vid_data =
      static_cast<const dgl_id_t *>(pos_subg.induced_vertices->data);
  const dgl_id_t *induced_eid_data =
      static_cast<const dgl_id_t *>(pos_subg.induced_edges->data);
  int64_t num_pos_nodes = pos_subg.graph->NumVertices();
  std::vector<dgl_id_t> pos_nodes(induced_vid_data, induced_vid_data + num_pos_nodes);
1295
1296
1297
1298
1299
1300
1301
1302

  dgl_id_t *neg_dst_data = static_cast<dgl_id_t *>(neg_dst->data);
  dgl_id_t *neg_src_data = static_cast<dgl_id_t *>(neg_src->data);
  dgl_id_t *induced_neg_eid_data = static_cast<dgl_id_t *>(induced_neg_eid->data);

  const dgl_id_t *unchanged;
  dgl_id_t *neg_unchanged;
  dgl_id_t *neg_changed;
Da Zheng's avatar
Da Zheng committed
1303
  if (IsNegativeHeadMode(neg_mode)) {
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
    unchanged = dst_data;
    neg_unchanged = neg_dst_data;
    neg_changed = neg_src_data;
  } else {
    unchanged = src_data;
    neg_unchanged = neg_src_data;
    neg_changed = neg_dst_data;
  }

  // We first sample all negative edges.
Da Zheng's avatar
Da Zheng committed
1314
1315
  std::vector<size_t> global_neg_vids;
  std::vector<size_t> local_neg_vids;
1316
  randomSample(num_tot_nodes,
1317
               num_chunks * neg_sample_size,
Da Zheng's avatar
Da Zheng committed
1318
               &global_neg_vids);
1319
1320

  std::unordered_map<dgl_id_t, dgl_id_t> neg_map;
1321
  dgl_id_t local_vid = 0;
1322

1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
  // Collect nodes in the positive side.
  std::vector<dgl_id_t> local_pos_vids;
  local_pos_vids.reserve(num_pos_edges);
  for (int64_t i = 0; i < num_pos_edges; i++) {
    dgl_id_t vid = induced_vid_data[unchanged[i]];
    auto it = neg_map.find(vid);
    if (it == neg_map.end()) {
      local_pos_vids.push_back(local_vid);
      neg_map.insert(std::pair<dgl_id_t, dgl_id_t>(vid, local_vid++));
    }
  }

Da Zheng's avatar
Da Zheng committed
1335
1336
1337
1338
1339
1340
1341
  // We should map the global negative nodes to local Ids in advance
  // to reduce computation overhead.
  local_neg_vids.resize(global_neg_vids.size());
  for (size_t i = 0; i < global_neg_vids.size(); i++) {
    local_neg_vids[i] = global2local_map(global_neg_vids[i], &neg_map);;
  }

1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
  for (int64_t i_chunk = 0; i_chunk < num_chunks; i_chunk++) {
    // for each chunk.
    int64_t neg_idx = neg_sample_size * chunk_size * i_chunk;
    int64_t pos_edge_idx = chunk_size * i_chunk;
    int64_t neg_node_idx = neg_sample_size * i_chunk;
    // The actual chunk size. It'll be different for the last chunk.
    int64_t chunk_size1;
    if (i_chunk == num_chunks - 1 && last_chunk_size > 0)
      chunk_size1 = last_chunk_size;
    else
      chunk_size1 = chunk_size;

    for (int64_t in_chunk = 0; in_chunk != chunk_size1; ++in_chunk) {
      // For each positive node in a chunk.
      dgl_id_t global_unchanged = induced_vid_data[unchanged[pos_edge_idx + in_chunk]];
      dgl_id_t local_unchanged = global2local_map(global_unchanged, &neg_map);
      for (int64_t j = 0; j < neg_sample_size; ++j) {
        neg_unchanged[neg_idx] = local_unchanged;
Da Zheng's avatar
Da Zheng committed
1360
        neg_changed[neg_idx] = local_neg_vids[neg_node_idx + j];
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
        induced_neg_eid_data[neg_idx] = induced_eid_data[pos_edge_idx + in_chunk];
        neg_idx++;
      }
    }
  }

  // Now we know the number of vertices in the negative graph.
  int64_t num_neg_nodes = neg_map.size();
  IdArray induced_neg_vid = IdArray::Empty({num_neg_nodes}, coo->dtype, coo->ctx);
  dgl_id_t *induced_neg_vid_data = static_cast<dgl_id_t *>(induced_neg_vid->data);
  for (auto it = neg_map.begin(); it != neg_map.end(); it++) {
    induced_neg_vid_data[it->second] = it->first;
  }

1375
  NegSubgraph neg_subg;
1376
1377
  // We sample negative vertices without replacement.
  // There shouldn't be duplicated edges.
1378
  COOPtr neg_coo(new COO(num_neg_nodes, neg_src, neg_dst, gptr_->IsMultigraph()));
1379
1380
1381
  neg_subg.graph = GraphPtr(new ImmutableGraph(neg_coo));
  neg_subg.induced_vertices = induced_neg_vid;
  neg_subg.induced_edges = induced_neg_eid;
1382
  if (IsNegativeHeadMode(neg_mode)) {
Da Zheng's avatar
Da Zheng committed
1383
    neg_subg.head_nid = aten::VecToIdArray(Global2Local(global_neg_vids, neg_map));
1384
1385
1386
    neg_subg.tail_nid = aten::VecToIdArray(local_pos_vids);
  } else {
    neg_subg.head_nid = aten::VecToIdArray(local_pos_vids);
Da Zheng's avatar
Da Zheng committed
1387
    neg_subg.tail_nid = aten::VecToIdArray(Global2Local(global_neg_vids, neg_map));
1388
  }
Da Zheng's avatar
Da Zheng committed
1389
  if (check_false_neg) {
1390
1391
    if (relations_->shape[0] == 0) {
      neg_subg.exist = CheckExistence(gptr_, neg_src, neg_dst, induced_neg_vid);
Da Zheng's avatar
Da Zheng committed
1392
    } else {
1393
      neg_subg.exist = CheckExistence(gptr_, relations_, neg_src, neg_dst,
Da Zheng's avatar
Da Zheng committed
1394
1395
                                      induced_neg_vid, induced_neg_eid);
    }
1396
  }
1397
1398
1399
  return neg_subg;
}

1400
1401
1402
1403
inline SubgraphRef ConvertRef(const Subgraph &subg) {
    return SubgraphRef(std::shared_ptr<Subgraph>(new Subgraph(subg)));
}

1404
1405
1406
1407
inline SubgraphRef ConvertRef(const NegSubgraph &subg) {
    return SubgraphRef(std::shared_ptr<Subgraph>(new NegSubgraph(subg)));
}

1408
1409
}  // namespace

1410
DGL_REGISTER_GLOBAL("sampling._CAPI_GetNegEdgeExistence")
1411
.set_body([] (DGLArgs args, DGLRetValue* rv) {
1412
1413
1414
1415
  SubgraphRef g = args[0];
  auto gptr = std::dynamic_pointer_cast<NegSubgraph>(g.sptr());
  *rv = gptr->exist;
});
1416

1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
DGL_REGISTER_GLOBAL("sampling._CAPI_GetEdgeSubgraphHead")
.set_body([] (DGLArgs args, DGLRetValue* rv) {
  SubgraphRef g = args[0];
  auto gptr = std::dynamic_pointer_cast<NegSubgraph>(g.sptr());
  *rv = gptr->head_nid;
});

DGL_REGISTER_GLOBAL("sampling._CAPI_GetEdgeSubgraphTail")
.set_body([] (DGLArgs args, DGLRetValue* rv) {
  SubgraphRef g = args[0];
  auto gptr = std::dynamic_pointer_cast<NegSubgraph>(g.sptr());
  *rv = gptr->tail_nid;
});

class UniformEdgeSamplerObject: public EdgeSamplerObject {
public:
  explicit UniformEdgeSamplerObject(const GraphPtr gptr,
                                    IdArray seed_edges,
                                    const int64_t batch_size,
                                    const int64_t num_workers,
1437
1438
                                    const bool replacement,
                                    const bool reset,
1439
1440
1441
1442
1443
1444
1445
1446
1447
                                    const std::string neg_mode,
                                    const int64_t neg_sample_size,
                                    const bool exclude_positive,
                                    const bool check_false_neg,
                                    IdArray relations)
                                    : EdgeSamplerObject(gptr,
                                        seed_edges,
                                        batch_size,
                                        num_workers,
1448
1449
                                        replacement,
                                        reset,
1450
1451
1452
1453
1454
1455
1456
1457
                                        neg_mode,
                                        neg_sample_size,
                                        exclude_positive,
                                        check_false_neg,
                                        relations) {
    batch_curr_id_ = 0;
    num_seeds_ = seed_edges->shape[0];
    max_batch_id_ = (num_seeds_ + batch_size - 1) / batch_size;
1458

1459
1460
1461
1462
1463
1464
1465
    // TODO(song): Tricky thing here to make sure gptr_ has coo cache
    gptr_->FindEdge(0);
  }
  ~UniformEdgeSamplerObject() {}

  void Fetch(DGLRetValue* rv) {
    const int64_t num_workers = std::min(num_workers_, max_batch_id_ - batch_curr_id_);
1466
1467
1468
    // generate subgraphs.
    std::vector<SubgraphRef> positive_subgs(num_workers);
    std::vector<SubgraphRef> negative_subgs(num_workers);
1469

1470
#pragma omp parallel for
1471
1472
1473
    for (int64_t i = 0; i < num_workers; i++) {
      const int64_t start = (batch_curr_id_ + i) * batch_size_;
      const int64_t end = std::min(start + batch_size_, num_seeds_);
1474
      const int64_t num_edges = end - start;
1475
1476
1477
1478
1479
1480
1481
      IdArray worker_seeds;

      if (replacement_ == false) {
        worker_seeds = seed_edges_.CreateView({num_edges}, DLDataType{kDLInt, 64, 1},
                                              sizeof(dgl_id_t) * start);
      } else {
        std::vector<dgl_id_t> seeds;
1482
        const dgl_id_t *seed_edge_ids = static_cast<const dgl_id_t *>(seed_edges_->data);
1483
1484
        // sampling of each edge is a standalone event
        for (int64_t i = 0; i < num_edges; ++i) {
1485
1486
1487
          int64_t seed = static_cast<const int64_t>(
              RandomEngine::ThreadLocal()->RandInt(num_seeds_));
          seeds.push_back(seed_edge_ids[seed]);
1488
1489
        }

1490
        worker_seeds = aten::VecToIdArray(seeds, seed_edges_->dtype.bits);
1491
1492
      }

1493
      EdgeArray arr = gptr_->FindEdges(worker_seeds);
1494
1495
1496
1497
1498
1499
      const dgl_id_t *src_ids = static_cast<const dgl_id_t *>(arr.src->data);
      const dgl_id_t *dst_ids = static_cast<const dgl_id_t *>(arr.dst->data);
      std::vector<dgl_id_t> src_vec(src_ids, src_ids + num_edges);
      std::vector<dgl_id_t> dst_vec(dst_ids, dst_ids + num_edges);
      // TODO(zhengda) what if there are duplicates in the src and dst vectors.

1500
      Subgraph subg = gptr_->EdgeSubgraph(worker_seeds, false);
1501
      positive_subgs[i] = ConvertRef(subg);
1502
1503
      // For PBG negative sampling, we accept "PBG-head" for corrupting head
      // nodes and "PBG-tail" for corrupting tail nodes.
1504
1505
1506
1507
1508
      if (neg_mode_.substr(0, 3) == "PBG") {
        NegSubgraph neg_subg = genPBGNegEdgeSubgraph(subg, neg_mode_.substr(4),
                                                     neg_sample_size_,
                                                     exclude_positive_,
                                                     check_false_neg_);
1509
        negative_subgs[i] = ConvertRef(neg_subg);
1510
1511
1512
1513
1514
      } else if (neg_mode_.size() > 0) {
        NegSubgraph neg_subg = genNegEdgeSubgraph(subg, neg_mode_,
                                                  neg_sample_size_,
                                                  exclude_positive_,
                                                  check_false_neg_);
1515
1516
1517
        negative_subgs[i] = ConvertRef(neg_subg);
      }
    }
1518
    if (neg_mode_.size() > 0) {
1519
1520
      positive_subgs.insert(positive_subgs.end(), negative_subgs.begin(), negative_subgs.end());
    }
1521
1522
    batch_curr_id_ += num_workers;

1523
1524
1525
1526
    if (batch_curr_id_ >= max_batch_id_ && reset_ == true) {
      Reset();
    }

1527
    *rv = List<SubgraphRef>(positive_subgs);
1528
  }
1529

1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
  void Reset() {
    batch_curr_id_ = 0;
    if (replacement_ == false) {
      // Now we should shuffle the data and reset the sampler.
      dgl_id_t *seed_ids = static_cast<dgl_id_t *>(seed_edges_->data);
      std::shuffle(seed_ids, seed_ids + seed_edges_->shape[0],
                   std::default_random_engine());
    }
  }

1540
  DGL_DECLARE_OBJECT_TYPE_INFO(UniformEdgeSamplerObject, Object);
1541

1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
private:
  void randomSample(size_t set_size, size_t num, std::vector<size_t>* out) {
    RandomSample(set_size, num, out);
  }

  void randomSample(size_t set_size, size_t num, const std::vector<size_t> &exclude,
                    std::vector<size_t>* out) {
    RandomSample(set_size, num, exclude, out);
  }

  int64_t batch_curr_id_;
  int64_t max_batch_id_;
  int64_t num_seeds_;
};

class UniformEdgeSampler: public ObjectRef {
 public:
  UniformEdgeSampler() {}
  explicit UniformEdgeSampler(std::shared_ptr<runtime::Object> obj): ObjectRef(obj) {}

  UniformEdgeSamplerObject* operator->() const {
    return static_cast<UniformEdgeSamplerObject*>(obj_.get());
  }

  std::shared_ptr<UniformEdgeSamplerObject> sptr() const {
    return CHECK_NOTNULL(std::dynamic_pointer_cast<UniformEdgeSamplerObject>(obj_));
  }

  operator bool() const { return this->defined(); }
  using ContainerType = UniformEdgeSamplerObject;
};

DGL_REGISTER_GLOBAL("sampling._CAPI_CreateUniformEdgeSampler")
1575
.set_body([] (DGLArgs args, DGLRetValue* rv) {
1576
1577
1578
1579
1580
    // arguments
    GraphRef g = args[0];
    IdArray seed_edges = args[1];
    const int64_t batch_size = args[2];
    const int64_t max_num_workers = args[3];
1581
1582
1583
1584
1585
1586
1587
    const bool replacement = args[4];
    const bool reset = args[5];
    const std::string neg_mode = args[6];
    const int neg_sample_size = args[7];
    const bool exclude_positive = args[8];
    const bool check_false_neg = args[9];
    IdArray relations = args[10];
1588
1589
1590
1591
    // process args
    auto gptr = std::dynamic_pointer_cast<ImmutableGraph>(g.sptr());
    CHECK(gptr) << "sampling isn't implemented in mutable graph";
    CHECK(aten::IsValidIdArray(seed_edges));
1592
1593
1594
1595
1596
1597
1598
1599
    CHECK_EQ(seed_edges->ctx.device_type, kDLCPU)
      << "UniformEdgeSampler only support CPU sampling";

    if (relations->shape[0] > 0) {
      CHECK(aten::IsValidIdArray(relations));
      CHECK_EQ(relations->ctx.device_type, kDLCPU)
        << "WeightedEdgeSampler only support CPU sampling";
    }
1600
1601
1602
1603
1604
1605
    BuildCoo(*gptr);

    auto o = std::make_shared<UniformEdgeSamplerObject>(gptr,
                                                        seed_edges,
                                                        batch_size,
                                                        max_num_workers,
1606
1607
                                                        replacement,
                                                        reset,
1608
1609
1610
1611
1612
1613
                                                        neg_mode,
                                                        neg_sample_size,
                                                        exclude_positive,
                                                        check_false_neg,
                                                        relations);
    *rv = o;
1614
1615
});

1616
DGL_REGISTER_GLOBAL("sampling._CAPI_FetchUniformEdgeSample")
1617
.set_body([] (DGLArgs args, DGLRetValue* rv) {
1618
1619
  UniformEdgeSampler sampler = args[0];
  sampler->Fetch(rv);
1620
1621
});

1622
1623
1624
1625
1626
1627
DGL_REGISTER_GLOBAL("sampling._CAPI_ResetUniformEdgeSample")
.set_body([] (DGLArgs args, DGLRetValue* rv) {
  UniformEdgeSampler sampler = args[0];
  sampler->Reset();
});

1628
1629
template<typename ValueType>
class WeightedEdgeSamplerObject: public EdgeSamplerObject {
1630
 public:
1631
1632
1633
1634
1635
1636
  explicit WeightedEdgeSamplerObject(const GraphPtr gptr,
                                     IdArray seed_edges,
                                     NDArray edge_weight,
                                     NDArray node_weight,
                                     const int64_t batch_size,
                                     const int64_t num_workers,
1637
1638
                                     const bool replacement,
                                     const bool reset,
1639
1640
1641
1642
1643
1644
1645
1646
1647
                                     const std::string neg_mode,
                                     const int64_t neg_sample_size,
                                     const bool exclude_positive,
                                     const bool check_false_neg,
                                     IdArray relations)
                                     : EdgeSamplerObject(gptr,
                                        seed_edges,
                                        batch_size,
                                        num_workers,
1648
1649
                                        replacement,
                                        reset,
1650
1651
1652
1653
1654
                                        neg_mode,
                                        neg_sample_size,
                                        exclude_positive,
                                        check_false_neg,
                                        relations) {
1655
    const int64_t num_edges = edge_weight->shape[0];
1656
1657
    const ValueType *edge_prob = static_cast<const ValueType*>(edge_weight->data);
    std::vector<ValueType> eprob(num_edges);
1658
    for (int64_t i = 0; i < num_edges; ++i) {
1659
1660
1661
      eprob[i] = edge_prob[i];
    }
    edge_selector_ = std::make_shared<ArrayHeap<ValueType>>(eprob);
1662
    edge_weight_ = edge_weight;
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675

    const size_t num_nodes = node_weight->shape[0];
    if (num_nodes == 0) {
      node_selector_ = nullptr;
    } else {
      const ValueType *node_prob = static_cast<const ValueType*>(node_weight->data);
      std::vector<ValueType> nprob(num_nodes);
      for (size_t i = 0; i < num_nodes; ++i) {
        nprob[i] = node_prob[i];
      }
      node_selector_ = std::make_shared<ArrayHeap<ValueType>>(nprob);
    }

1676
1677
1678
    curr_batch_id_ = 0;
    // handle int64 overflow here
    max_batch_id_ = (num_edges + batch_size - 1) / batch_size;
1679
1680
1681
1682
1683
1684
1685
1686
    // TODO(song): Tricky thing here to make sure gptr_ has coo cache
    gptr_->FindEdge(0);
  }

  ~WeightedEdgeSamplerObject() {
  }

  void Fetch(DGLRetValue* rv) {
1687
    const int64_t num_workers = std::min(num_workers_, max_batch_id_ - curr_batch_id_);
1688
    // generate subgraphs.
1689
1690
1691
    std::vector<SubgraphRef> positive_subgs(num_workers);
    std::vector<SubgraphRef> negative_subgs(num_workers);

1692
#pragma omp parallel for
1693
    for (int i = 0; i < num_workers; i++) {
1694
      const dgl_id_t *seed_edge_ids = static_cast<const dgl_id_t *>(seed_edges_->data);
1695
1696
1697
1698
1699
1700
      std::vector<size_t> edge_ids(batch_size_);

      if (replacement_ == false) {
        size_t n = batch_size_;
        size_t num_ids = 0;
#pragma omp critical
1701
1702
1703
1704
1705
1706
        {
          num_ids = edge_selector_->SampleWithoutReplacement(n, &edge_ids);
        }
        edge_ids.resize(num_ids);
        for (size_t i = 0; i < num_ids; ++i) {
          edge_ids[i] = seed_edge_ids[edge_ids[i]];
1707
1708
1709
1710
1711
1712
1713
        }
      } else {
        // sampling of each edge is a standalone event
        for (int i = 0; i < batch_size_; ++i) {
          size_t edge_id = edge_selector_->Sample();
          edge_ids[i] = seed_edge_ids[edge_id];
        }
1714
      }
1715

1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
      auto worker_seeds = aten::VecToIdArray(edge_ids, seed_edges_->dtype.bits);

      EdgeArray arr = gptr_->FindEdges(worker_seeds);
      const dgl_id_t *src_ids = static_cast<const dgl_id_t *>(arr.src->data);
      const dgl_id_t *dst_ids = static_cast<const dgl_id_t *>(arr.dst->data);
      std::vector<dgl_id_t> src_vec(src_ids, src_ids + batch_size_);
      std::vector<dgl_id_t> dst_vec(dst_ids, dst_ids + batch_size_);
      // TODO(zhengda) what if there are duplicates in the src and dst vectors.
      Subgraph subg = gptr_->EdgeSubgraph(worker_seeds, false);
      positive_subgs[i] = ConvertRef(subg);
      // For PBG negative sampling, we accept "PBG-head" for corrupting head
      // nodes and "PBG-tail" for corrupting tail nodes.
      if (neg_mode_.substr(0, 3) == "PBG") {
        NegSubgraph neg_subg = genPBGNegEdgeSubgraph(subg, neg_mode_.substr(4),
                                                     neg_sample_size_,
                                                     exclude_positive_,
                                                     check_false_neg_);
        negative_subgs[i] = ConvertRef(neg_subg);
      } else if (neg_mode_.size() > 0) {
        NegSubgraph neg_subg = genNegEdgeSubgraph(subg, neg_mode_,
                                                  neg_sample_size_,
                                                  exclude_positive_,
                                                  check_false_neg_);
        negative_subgs[i] = ConvertRef(neg_subg);
      }
    }
1742
1743
1744
1745
1746
    curr_batch_id_ += num_workers;

    if (curr_batch_id_ >= max_batch_id_ && reset_ == true) {
      Reset();
    }
1747
1748
1749
1750
1751
1752
1753

    if (neg_mode_.size() > 0) {
      positive_subgs.insert(positive_subgs.end(), negative_subgs.begin(), negative_subgs.end());
    }
    *rv = List<SubgraphRef>(positive_subgs);
  }

1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
  void Reset() {
    curr_batch_id_ = 0;
    if (replacement_ == false) {
      const int64_t num_edges = edge_weight_->shape[0];
      const ValueType *edge_prob = static_cast<const ValueType*>(edge_weight_->data);
      std::vector<ValueType> eprob(num_edges);
      for (int64_t i = 0; i < num_edges; ++i) {
        eprob[i] = edge_prob[i];
      }

      // rebuild the edge_selector_
      edge_selector_ = std::make_shared<ArrayHeap<ValueType>>(eprob);
    }
  }

1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
  DGL_DECLARE_OBJECT_TYPE_INFO(WeightedEdgeSamplerObject<ValueType>, Object);

private:
  void randomSample(size_t set_size, size_t num, std::vector<size_t>* out) {
    if (num < set_size) {
      std::unordered_set<size_t> sampled_idxs;
      while (sampled_idxs.size() < num) {
        if (node_selector_ == nullptr) {
          sampled_idxs.insert(RandomEngine::ThreadLocal()->RandInt(set_size));
        } else {
          size_t id = node_selector_->Sample();
          sampled_idxs.insert(id);
        }
      }

      out->insert(out->end(), sampled_idxs.begin(), sampled_idxs.end());
    } else {
      // If we need to sample all elements in the set, we don't need to
      // generate random numbers.
      for (size_t i = 0; i < set_size; i++)
        out->push_back(i);
    }
  }

  void randomSample(size_t set_size, size_t num, const std::vector<size_t> &exclude,
                    std::vector<size_t>* out) {
    std::unordered_map<size_t, int> sampled_idxs;
    for (auto v : exclude) {
      sampled_idxs.insert(std::pair<size_t, int>(v, 0));
    }
    if (num + exclude.size() < set_size) {
      while (sampled_idxs.size() < num + exclude.size()) {
        size_t rand;
        if (node_selector_ == nullptr) {
          rand =  RandomEngine::ThreadLocal()->RandInt(set_size);
        } else {
          rand = node_selector_->Sample();
        }
        sampled_idxs.insert(std::pair<size_t, int>(rand, 1));
      }
      for (auto it = sampled_idxs.begin(); it != sampled_idxs.end(); it++) {
        if (it->second) {
          out->push_back(it->first);
        }
      }
    } else {
      // If we need to sample all elements in the set, we don't need to
      // generate random numbers.
      for (size_t i = 0; i < set_size; i++) {
        // If the element doesn't exist in exclude.
        if (sampled_idxs.find(i) == sampled_idxs.end()) {
          out->push_back(i);
        }
      }
    }
  }

private:
  std::shared_ptr<ArrayHeap<ValueType>> edge_selector_;
  std::shared_ptr<ArrayHeap<ValueType>> node_selector_;
1829
1830
1831
1832

  NDArray edge_weight_;
  int64_t curr_batch_id_;
  int64_t max_batch_id_;
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
};

template class WeightedEdgeSamplerObject<float>;

class FloatWeightedEdgeSampler: public ObjectRef {
 public:
  FloatWeightedEdgeSampler() {}
  explicit FloatWeightedEdgeSampler(std::shared_ptr<runtime::Object> obj): ObjectRef(obj) {}

  WeightedEdgeSamplerObject<float>* operator->() const {
    return static_cast<WeightedEdgeSamplerObject<float>*>(obj_.get());
  }

  std::shared_ptr<WeightedEdgeSamplerObject<float>> sptr() const {
    return CHECK_NOTNULL(std::dynamic_pointer_cast<WeightedEdgeSamplerObject<float>>(obj_));
  }

  operator bool() const { return this->defined(); }
  using ContainerType = WeightedEdgeSamplerObject<float>;
};

DGL_REGISTER_GLOBAL("sampling._CAPI_CreateWeightedEdgeSampler")
1855
.set_body([] (DGLArgs args, DGLRetValue* rv) {
1856
1857
1858
1859
1860
1861
1862
    // arguments
    GraphRef g = args[0];
    IdArray seed_edges = args[1];
    NDArray edge_weight = args[2];
    NDArray node_weight = args[3];
    const int64_t batch_size = args[4];
    const int64_t max_num_workers = args[5];
1863
1864
1865
1866
1867
1868
1869
    const bool replacement = args[6];
    const bool reset = args[7];
    const std::string neg_mode = args[8];
    const int64_t neg_sample_size = args[9];
    const bool exclude_positive = args[10];
    const bool check_false_neg = args[11];
    IdArray relations = args[12];
1870
1871
1872
1873

    auto gptr = std::dynamic_pointer_cast<ImmutableGraph>(g.sptr());
    CHECK(gptr) << "sampling isn't implemented in mutable graph";
    CHECK(aten::IsValidIdArray(seed_edges));
1874
1875
    CHECK_EQ(seed_edges->ctx.device_type, kDLCPU)
      << "WeightedEdgeSampler only support CPU sampling";
1876
1877
    CHECK(edge_weight->dtype.code == kDLFloat) << "edge_weight should be FloatType";
    CHECK(edge_weight->dtype.bits == 32) << "WeightedEdgeSampler only support float weight";
1878
1879
    CHECK_EQ(edge_weight->ctx.device_type, kDLCPU)
      << "WeightedEdgeSampler only support CPU sampling";
1880
1881
1882
    if (node_weight->shape[0] > 0) {
      CHECK(node_weight->dtype.code == kDLFloat) << "node_weight should be FloatType";
      CHECK(node_weight->dtype.bits == 32) << "WeightedEdgeSampler only support float weight";
1883
1884
1885
1886
1887
1888
1889
      CHECK_EQ(node_weight->ctx.device_type, kDLCPU)
        << "WeightedEdgeSampler only support CPU sampling";
    }
    if (relations->shape[0] > 0) {
      CHECK(aten::IsValidIdArray(relations));
      CHECK_EQ(relations->ctx.device_type, kDLCPU)
        << "WeightedEdgeSampler only support CPU sampling";
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
    }
    BuildCoo(*gptr);

    const int64_t num_seeds = seed_edges->shape[0];
    const int64_t num_workers = std::min(max_num_workers,
        (num_seeds + batch_size - 1) / batch_size);

    auto o = std::make_shared<WeightedEdgeSamplerObject<float>>(gptr,
                                                                seed_edges,
                                                                edge_weight,
                                                                node_weight,
                                                                batch_size,
                                                                num_workers,
1903
1904
                                                                replacement,
                                                                reset,
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
                                                                neg_mode,
                                                                neg_sample_size,
                                                                exclude_positive,
                                                                check_false_neg,
                                                                relations);
    *rv = o;
});

DGL_REGISTER_GLOBAL("sampling._CAPI_FetchWeightedEdgeSample")
.set_body([] (DGLArgs args, DGLRetValue* rv) {
  FloatWeightedEdgeSampler sampler = args[0];
  sampler->Fetch(rv);
1917
1918
});

1919
1920
1921
1922
1923
1924
DGL_REGISTER_GLOBAL("sampling._CAPI_ResetWeightedEdgeSample")
.set_body([] (DGLArgs args, DGLRetValue* rv) {
  FloatWeightedEdgeSampler sampler = args[0];
  sampler->Reset();
});

Da Zheng's avatar
Da Zheng committed
1925
}  // namespace dgl