test_heterograph.py 115 KB
Newer Older
1
2
3
4
5
6
7
8
import dgl
import dgl.function as fn
from collections import Counter
import numpy as np
import scipy.sparse as ssp
import itertools
import backend as F
import networkx as nx
9
import unittest, pytest
10
from dgl import DGLError
11
import test_utils
nv-dlasalle's avatar
nv-dlasalle committed
12
from test_utils import parametrize_idtype, get_cases
13
from utils import assert_is_identical_hetero
14
from scipy.sparse import rand
15
import multiprocessing as mp
16

17
def create_test_heterograph(idtype):
18
    # test heterograph from the docstring, plus a user -- wishes -- game relation
Minjie Wang's avatar
Minjie Wang committed
19
20
21
22
23
24
    # 3 users, 2 games, 2 developers
    # metagraph:
    #    ('user', 'follows', 'user'),
    #    ('user', 'plays', 'game'),
    #    ('user', 'wishes', 'game'),
    #    ('developer', 'develops', 'game')])
25

26
27
28
29
30
31
    g = dgl.heterograph({
        ('user', 'follows', 'user'): ([0, 1], [1, 2]),
        ('user', 'plays', 'game'): ([0, 1, 2, 1], [0, 0, 1, 1]),
        ('user', 'wishes', 'game'): ([0, 2], [1, 0]),
        ('developer', 'develops', 'game'): ([0, 1], [0, 1])
    }, idtype=idtype, device=F.ctx())
32
33
    assert g.idtype == idtype
    assert g.device == F.ctx()
34
35
    return g

36
def create_test_heterograph1(idtype):
Minjie Wang's avatar
Minjie Wang committed
37
    edges = []
38
39
40
41
42
    edges.extend([(0, 1), (1, 2)])  # follows
    edges.extend([(0, 3), (1, 3), (2, 4), (1, 4)])  # plays
    edges.extend([(0, 4), (2, 3)])  # wishes
    edges.extend([(5, 3), (6, 4)])  # develops
    edges = tuple(zip(*edges))
Minjie Wang's avatar
Minjie Wang committed
43
44
    ntypes = F.tensor([0, 0, 0, 1, 1, 2, 2])
    etypes = F.tensor([0, 0, 1, 1, 1, 1, 2, 2, 3, 3])
45
    g0 = dgl.graph(edges, idtype=idtype, device=F.ctx())
Minjie Wang's avatar
Minjie Wang committed
46
47
    g0.ndata[dgl.NTYPE] = ntypes
    g0.edata[dgl.ETYPE] = etypes
48
49
    return dgl.to_heterogeneous(g0, ['user', 'game', 'developer'],
                                ['follows', 'plays', 'wishes', 'develops'])
Minjie Wang's avatar
Minjie Wang committed
50

51
def create_test_heterograph2(idtype):
52
    g = dgl.heterograph({
53
54
        ('user', 'follows', 'user'): ([0, 1], [1, 2]),
        ('user', 'plays', 'game'): ([0, 1, 2, 1], [0, 0, 1, 1]),
55
56
        ('user', 'wishes', 'game'): ('csr', ([0, 1, 1, 2], [1, 0], [])),
        ('developer', 'develops', 'game'): ('csc', ([0, 1, 2], [0, 1], [0, 1])),
57
58
59
        }, idtype=idtype, device=F.ctx())
    assert g.idtype == idtype
    assert g.device == F.ctx()
60
61
    return g

62
63
64
65
66
67
68
def create_test_heterograph3(idtype):
    g = dgl.heterograph({
        ('user', 'plays', 'game'): (F.tensor([0, 1, 1, 2], dtype=idtype),
                                    F.tensor([0, 0, 1, 1], dtype=idtype)),
        ('developer', 'develops', 'game'): (F.tensor([0, 1], dtype=idtype),
                                            F.tensor([0, 1], dtype=idtype))},
        idtype=idtype, device=F.ctx())
69
70
71
72

    g.nodes['user'].data['h'] = F.copy_to(F.tensor([1, 1, 1], dtype=idtype), ctx=F.ctx())
    g.nodes['game'].data['h'] = F.copy_to(F.tensor([2, 2], dtype=idtype), ctx=F.ctx())
    g.nodes['developer'].data['h'] = F.copy_to(F.tensor([3, 3], dtype=idtype), ctx=F.ctx())
73
74
75
    g.edges['plays'].data['h'] = F.copy_to(F.tensor([1, 1, 1, 1], dtype=idtype), ctx=F.ctx())
    return g

76
def create_test_heterograph4(idtype):
77
78
    g = dgl.heterograph({
        ('user', 'follows', 'user'): (F.tensor([0, 1, 1, 2, 2, 2], dtype=idtype),
79
                                      F.tensor([0, 0, 1, 1, 2, 2], dtype=idtype)),
80
        ('user', 'plays', 'game'): (F.tensor([0, 1], dtype=idtype),
81
                                    F.tensor([0, 1], dtype=idtype))},
82
        idtype=idtype, device=F.ctx())
83
84
    g.nodes['user'].data['h'] = F.copy_to(F.tensor([1, 1, 1], dtype=idtype), ctx=F.ctx())
    g.nodes['game'].data['h'] = F.copy_to(F.tensor([2, 2], dtype=idtype), ctx=F.ctx())
85
86
87
88
    g.edges['follows'].data['h'] = F.copy_to(F.tensor([1, 2, 3, 4, 5, 6], dtype=idtype), ctx=F.ctx())
    g.edges['plays'].data['h'] = F.copy_to(F.tensor([1, 2], dtype=idtype), ctx=F.ctx())
    return g

89
def create_test_heterograph5(idtype):
90
91
    g = dgl.heterograph({
        ('user', 'follows', 'user'): (F.tensor([1, 2], dtype=idtype),
92
                                      F.tensor([0, 1], dtype=idtype)),
93
94
95
        ('user', 'plays', 'game'): (F.tensor([0, 1], dtype=idtype),
                                    F.tensor([0, 1], dtype=idtype))},
        idtype=idtype, device=F.ctx())
96
97
    g.nodes['user'].data['h'] = F.copy_to(F.tensor([1, 1, 1], dtype=idtype), ctx=F.ctx())
    g.nodes['game'].data['h'] = F.copy_to(F.tensor([2, 2], dtype=idtype), ctx=F.ctx())
98
99
    g.edges['follows'].data['h'] = F.copy_to(F.tensor([1, 2], dtype=idtype), ctx=F.ctx())
    g.edges['plays'].data['h'] = F.copy_to(F.tensor([1, 2], dtype=idtype), ctx=F.ctx())
100
101
    return g

Minjie Wang's avatar
Minjie Wang committed
102
103
104
def get_redfn(name):
    return getattr(F, name)

nv-dlasalle's avatar
nv-dlasalle committed
105
@parametrize_idtype
106
107
108
109
110
def test_create(idtype):
    device = F.ctx()
    g0 = create_test_heterograph(idtype)
    g1 = create_test_heterograph1(idtype)
    g2 = create_test_heterograph2(idtype)
111
112
    assert set(g0.ntypes) == set(g1.ntypes) == set(g2.ntypes)
    assert set(g0.canonical_etypes) == set(g1.canonical_etypes) == set(g2.canonical_etypes)
Minjie Wang's avatar
Minjie Wang committed
113

114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
    # Create a bipartite graph from a SciPy matrix
    src_ids = np.array([2, 3, 4])
    dst_ids = np.array([1, 2, 3])
    eweight = np.array([0.2, 0.3, 0.5])
    sp_mat = ssp.coo_matrix((eweight, (src_ids, dst_ids)))
    g = dgl.bipartite_from_scipy(sp_mat, utype='user', etype='plays',
                                 vtype='game', idtype=idtype, device=device)
    assert g.idtype == idtype
    assert g.device == device
    assert g.num_src_nodes() == 5
    assert g.num_dst_nodes() == 4
    assert g.num_edges() == 3
    src, dst = g.edges()
    assert F.allclose(src, F.tensor([2, 3, 4], dtype=idtype))
    assert F.allclose(dst, F.tensor([1, 2, 3], dtype=idtype))
    g = dgl.bipartite_from_scipy(sp_mat, utype='_U', etype='_E', vtype='_V',
                                 eweight_name='w', idtype=idtype, device=device)
    assert F.allclose(g.edata['w'], F.tensor(eweight))

    # Create a bipartite graph from a NetworkX graph
    nx_g = nx.DiGraph()
    nx_g.add_nodes_from([1, 3], bipartite=0, feat1=np.zeros((2)), feat2=np.ones((2)))
    nx_g.add_nodes_from([2, 4, 5], bipartite=1, feat3=np.zeros((3)))
    nx_g.add_edge(1, 4, weight=np.ones((1)), eid=np.array([1]))
    nx_g.add_edge(3, 5, weight=np.ones((1)), eid=np.array([0]))
    g = dgl.bipartite_from_networkx(nx_g, utype='user', etype='plays',
                                    vtype='game', idtype=idtype, device=device)
141
142
    assert g.idtype == idtype
    assert g.device == device
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
    assert g.num_src_nodes() == 2
    assert g.num_dst_nodes() == 3
    assert g.num_edges() == 2
    src, dst = g.edges()
    assert F.allclose(src, F.tensor([0, 1], dtype=idtype))
    assert F.allclose(dst, F.tensor([1, 2], dtype=idtype))
    g = dgl.bipartite_from_networkx(nx_g, utype='_U', etype='_E', vtype='V',
                                    u_attrs=['feat1', 'feat2'],
                                    e_attrs = ['weight'], v_attrs = ['feat3'])
    assert F.allclose(g.srcdata['feat1'], F.tensor(np.zeros((2, 2))))
    assert F.allclose(g.srcdata['feat2'], F.tensor(np.ones((2, 2))))
    assert F.allclose(g.dstdata['feat3'], F.tensor(np.zeros((3, 3))))
    assert F.allclose(g.edata['weight'], F.tensor(np.ones((2, 1))))
    g = dgl.bipartite_from_networkx(nx_g, utype='_U', etype='_E', vtype='V',
                                    edge_id_attr_name='eid', idtype=idtype, device=device)
    src, dst = g.edges()
    assert F.allclose(src, F.tensor([1, 0], dtype=idtype))
    assert F.allclose(dst, F.tensor([2, 1], dtype=idtype))
Minjie Wang's avatar
Minjie Wang committed
161
162
163

    # create from scipy
    spmat = ssp.coo_matrix(([1,1,1], ([0, 0, 1], [2, 3, 2])), shape=(4, 4))
164
165
166
    g = dgl.from_scipy(spmat, idtype=idtype, device=device)
    assert g.num_nodes() == 4
    assert g.num_edges() == 3
167
168
    assert g.idtype == idtype
    assert g.device == device
Minjie Wang's avatar
Minjie Wang committed
169

170
171
    # test inferring number of nodes for heterograph
    g = dgl.heterograph({
172
173
174
        ('l0', 'e0', 'l1'): ([0, 0], [1, 2]),
        ('l0', 'e1', 'l2'): ([2], [2]),
        ('l2', 'e2', 'l2'): ([1, 3], [1, 3])
175
        }, idtype=idtype, device=device)
176
177
178
    assert g.num_nodes('l0') == 3
    assert g.num_nodes('l1') == 3
    assert g.num_nodes('l2') == 4
179
180
    assert g.idtype == idtype
    assert g.device == device
181

182
183
    # test if validate flag works
    # homo graph
184
    with pytest.raises(DGLError):
185
186
        g = dgl.graph(
            ([0, 0, 0, 1, 1, 2], [0, 1, 2, 0, 1, 2]),
187
            num_nodes=2,
188
            idtype=idtype, device=device
189
190
191
        )
    # bipartite graph
    def _test_validate_bipartite(card):
192
        with pytest.raises(DGLError):
193
194
195
            g = dgl.heterograph({
                ('_U', '_E', '_V'): ([0, 0, 1, 1, 2], [1, 1, 2, 2, 3])
            }, {'_U': card[0], '_V': card[1]}, idtype=idtype, device=device)
196
197
198
199

    _test_validate_bipartite((3, 3))
    _test_validate_bipartite((2, 4))

200
201
202
203
204
205
206
207
208
209
    # test from_scipy
    num_nodes = 10
    density = 0.25
    for fmt in ['csr', 'coo', 'csc']:
        adj = rand(num_nodes, num_nodes, density=density, format=fmt)
        g = dgl.from_scipy(adj, eweight_name='w', idtype=idtype)
        assert g.idtype == idtype
        assert g.device == F.cpu()
        assert F.array_equal(g.edata['w'], F.copy_to(F.tensor(adj.data), F.cpu()))

210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
def test_create2():
    mat = ssp.random(20, 30, 0.1)

    # coo
    mat = mat.tocoo()
    row = F.tensor(mat.row, dtype=F.int64)
    col = F.tensor(mat.col, dtype=F.int64)
    g = dgl.heterograph(
        {('A', 'AB', 'B'): ('coo', (row, col))}, num_nodes_dict={'A': 20, 'B': 30})

    # csr
    mat = mat.tocsr()
    indptr = F.tensor(mat.indptr, dtype=F.int64)
    indices = F.tensor(mat.indices, dtype=F.int64)
    data = F.tensor([], dtype=F.int64)
    g = dgl.heterograph(
        {('A', 'AB', 'B'): ('csr', (indptr, indices, data))}, num_nodes_dict={'A': 20, 'B': 30})

    # csc
    mat = mat.tocsc()
    indptr = F.tensor(mat.indptr, dtype=F.int64)
    indices = F.tensor(mat.indices, dtype=F.int64)
    data = F.tensor([], dtype=F.int64)
    g = dgl.heterograph(
        {('A', 'AB', 'B'): ('csc', (indptr, indices, data))}, num_nodes_dict={'A': 20, 'B': 30})

nv-dlasalle's avatar
nv-dlasalle committed
236
@parametrize_idtype
237
238
def test_query(idtype):
    g = create_test_heterograph(idtype)
239
240

    ntypes = ['user', 'game', 'developer']
Minjie Wang's avatar
Minjie Wang committed
241
    canonical_etypes = [
242
243
244
245
        ('user', 'follows', 'user'),
        ('user', 'plays', 'game'),
        ('user', 'wishes', 'game'),
        ('developer', 'develops', 'game')]
Minjie Wang's avatar
Minjie Wang committed
246
    etypes = ['follows', 'plays', 'wishes', 'develops']
247
248

    # node & edge types
Minjie Wang's avatar
Minjie Wang committed
249
250
251
    assert set(ntypes) == set(g.ntypes)
    assert set(etypes) == set(g.etypes)
    assert set(canonical_etypes) == set(g.canonical_etypes)
252
253

    # metagraph
254
    mg = g.metagraph()
Minjie Wang's avatar
Minjie Wang committed
255
    assert set(g.ntypes) == set(mg.nodes)
256
257
258
259
260
261
    etype_triplets = [(u, v, e) for u, v, e in mg.edges(keys=True)]
    assert set([
        ('user', 'user', 'follows'),
        ('user', 'game', 'plays'),
        ('user', 'game', 'wishes'),
        ('developer', 'game', 'develops')]) == set(etype_triplets)
Minjie Wang's avatar
Minjie Wang committed
262
263
    for i in range(len(etypes)):
        assert g.to_canonical_etype(etypes[i]) == canonical_etypes[i]
264

265
266
    def _test(g):
        # number of nodes
267
        assert [g.num_nodes(ntype) for ntype in ntypes] == [3, 2, 2]
268

269
        # number of edges
270
        assert [g.num_edges(etype) for etype in etypes] == [2, 4, 2, 2]
271

272
273
274
275
276
277
278
279
        # has_node & has_nodes
        for ntype in ntypes:
            n = g.number_of_nodes(ntype)
            for i in range(n):
                assert g.has_node(i, ntype)
            assert not g.has_node(n, ntype)
            assert np.array_equal(
                F.asnumpy(g.has_nodes([0, n], ntype)).astype('int32'), [1, 0])
Minjie Wang's avatar
Minjie Wang committed
280

281
        assert not g.is_multigraph
Minjie Wang's avatar
Minjie Wang committed
282
283
284
285

        for etype in etypes:
            srcs, dsts = edges[etype]
            for src, dst in zip(srcs, dsts):
286
                assert g.has_edges_between(src, dst, etype)
Minjie Wang's avatar
Minjie Wang committed
287
288
289
290
            assert F.asnumpy(g.has_edges_between(srcs, dsts, etype)).all()

            srcs, dsts = negative_edges[etype]
            for src, dst in zip(srcs, dsts):
291
                assert not g.has_edges_between(src, dst, etype)
Minjie Wang's avatar
Minjie Wang committed
292
293
294
295
296
297
298
299
300
301
302
            assert not F.asnumpy(g.has_edges_between(srcs, dsts, etype)).any()

            srcs, dsts = edges[etype]
            n_edges = len(srcs)

            # predecessors & in_edges & in_degree
            pred = [s for s, d in zip(srcs, dsts) if d == 0]
            assert set(F.asnumpy(g.predecessors(0, etype)).tolist()) == set(pred)
            u, v = g.in_edges([0], etype=etype)
            assert F.asnumpy(v).tolist() == [0] * len(pred)
            assert set(F.asnumpy(u).tolist()) == set(pred)
303
            assert g.in_degrees(0, etype) == len(pred)
Minjie Wang's avatar
Minjie Wang committed
304
305
306
307
308
309
310

            # successors & out_edges & out_degree
            succ = [d for s, d in zip(srcs, dsts) if s == 0]
            assert set(F.asnumpy(g.successors(0, etype)).tolist()) == set(succ)
            u, v = g.out_edges([0], etype=etype)
            assert F.asnumpy(u).tolist() == [0] * len(succ)
            assert set(F.asnumpy(v).tolist()) == set(succ)
311
            assert g.out_degrees(0, etype) == len(succ)
Minjie Wang's avatar
Minjie Wang committed
312
313
314

            # edge_id & edge_ids
            for i, (src, dst) in enumerate(zip(srcs, dsts)):
315
316
317
                assert g.edge_ids(src, dst, etype=etype) == i
                _, _, eid = g.edge_ids(src, dst, etype=etype, return_uv=True)
                assert eid == i
Minjie Wang's avatar
Minjie Wang committed
318
            assert F.asnumpy(g.edge_ids(srcs, dsts, etype=etype)).tolist() == list(range(n_edges))
319
            u, v, e = g.edge_ids(srcs, dsts, etype=etype, return_uv=True)
320
321
322
            u, v, e = F.asnumpy(u), F.asnumpy(v), F.asnumpy(e)
            assert u[e].tolist() == srcs
            assert v[e].tolist() == dsts
323

Minjie Wang's avatar
Minjie Wang committed
324
            # find_edges
325
326
            for eid in [list(range(n_edges)), np.arange(n_edges), F.astype(F.arange(0, n_edges), g.idtype)]:
                u, v = g.find_edges(eid, etype)
327
328
                assert F.asnumpy(u).tolist() == srcs
                assert F.asnumpy(v).tolist() == dsts
Minjie Wang's avatar
Minjie Wang committed
329
330
331

            # all_edges.
            for order in ['eid']:
332
                u, v, e = g.edges('all', order, etype)
Minjie Wang's avatar
Minjie Wang committed
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
                assert F.asnumpy(u).tolist() == srcs
                assert F.asnumpy(v).tolist() == dsts
                assert F.asnumpy(e).tolist() == list(range(n_edges))

            # in_degrees & out_degrees
            in_degrees = F.asnumpy(g.in_degrees(etype=etype))
            out_degrees = F.asnumpy(g.out_degrees(etype=etype))
            src_count = Counter(srcs)
            dst_count = Counter(dsts)
            utype, _, vtype = g.to_canonical_etype(etype)
            for i in range(g.number_of_nodes(utype)):
                assert out_degrees[i] == src_count[i]
            for i in range(g.number_of_nodes(vtype)):
                assert in_degrees[i] == dst_count[i]

    edges = {
        'follows': ([0, 1], [1, 2]),
        'plays': ([0, 1, 2, 1], [0, 0, 1, 1]),
        'wishes': ([0, 2], [1, 0]),
        'develops': ([0, 1], [0, 1]),
    }
    # edges that does not exist in the graph
    negative_edges = {
        'follows': ([0, 1], [0, 1]),
        'plays': ([0, 2], [1, 0]),
        'wishes': ([0, 1], [0, 1]),
        'develops': ([0, 1], [1, 0]),
    }
361
    g = create_test_heterograph(idtype)
Minjie Wang's avatar
Minjie Wang committed
362
    _test(g)
363
    g = create_test_heterograph1(idtype)
364
    _test(g)
365
366
    if F._default_context_str != 'gpu':
        # XXX: CUDA COO operators have not been live yet.
367
        g = create_test_heterograph2(idtype)
368
        _test(g)
Minjie Wang's avatar
Minjie Wang committed
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383

    etypes = canonical_etypes
    edges = {
        ('user', 'follows', 'user'): ([0, 1], [1, 2]),
        ('user', 'plays', 'game'): ([0, 1, 2, 1], [0, 0, 1, 1]),
        ('user', 'wishes', 'game'): ([0, 2], [1, 0]),
        ('developer', 'develops', 'game'): ([0, 1], [0, 1]),
    }
    # edges that does not exist in the graph
    negative_edges = {
        ('user', 'follows', 'user'): ([0, 1], [0, 1]),
        ('user', 'plays', 'game'): ([0, 2], [1, 0]),
        ('user', 'wishes', 'game'): ([0, 1], [0, 1]),
        ('developer', 'develops', 'game'): ([0, 1], [1, 0]),
        }
384
    g = create_test_heterograph(idtype)
Minjie Wang's avatar
Minjie Wang committed
385
    _test(g)
386
    g = create_test_heterograph1(idtype)
387
    _test(g)
388
389
    if F._default_context_str != 'gpu':
        # XXX: CUDA COO operators have not been live yet.
390
        g = create_test_heterograph2(idtype)
391
        _test(g)
Minjie Wang's avatar
Minjie Wang committed
392
393
394
395

    # test repr
    print(g)

nv-dlasalle's avatar
nv-dlasalle committed
396
@parametrize_idtype
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
def test_empty_query(idtype):
    g = dgl.graph(([1, 2, 3], [0, 4, 5]), idtype=idtype, device=F.ctx())
    g.add_nodes(0)
    g.add_edges([], [])
    g.remove_edges([])
    g.remove_nodes([])
    assert F.shape(g.has_nodes([])) == (0,)
    assert F.shape(g.has_edges_between([], [])) == (0,)
    g.edge_ids([], [])
    g.edge_ids([], [], return_uv=True)
    g.find_edges([])

    assert F.shape(g.in_edges([], form='eid')) == (0,)
    u, v = g.in_edges([], form='uv')
    assert F.shape(u) == (0,)
    assert F.shape(v) == (0,)
    u, v, e = g.in_edges([], form='all')
    assert F.shape(u) == (0,)
    assert F.shape(v) == (0,)
    assert F.shape(e) == (0,)

    assert F.shape(g.out_edges([], form='eid')) == (0,)
    u, v = g.out_edges([], form='uv')
    assert F.shape(u) == (0,)
    assert F.shape(v) == (0,)
    u, v, e = g.out_edges([], form='all')
    assert F.shape(u) == (0,)
    assert F.shape(v) == (0,)
    assert F.shape(e) == (0,)

    assert F.shape(g.in_degrees([])) == (0,)
    assert F.shape(g.out_degrees([])) == (0,)

Quan (Andy) Gan's avatar
Quan (Andy) Gan committed
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
    g = dgl.graph(([], []), idtype=idtype, device=F.ctx())
    error_thrown = True
    try:
        g.in_degrees([0])
        fail = False
    except:
        pass
    assert error_thrown
    error_thrown = True
    try:
        g.out_degrees([0])
        fail = False
    except:
        pass
    assert error_thrown

446
@unittest.skipIf(F._default_context_str == 'gpu', reason="GPU does not have COO impl.")
447
def _test_hypersparse():
448
449
450
451
    N1 = 1 << 50        # should crash if allocated a CSR
    N2 = 1 << 48

    g = dgl.heterograph({
452
453
        ('user', 'follows', 'user'): (F.tensor([0], F.int64), F.tensor([1], F.int64)),
        ('user', 'plays', 'game'): (F.tensor([0], F.int64), F.tensor([N2], F.int64))},
454
        {'user': N1, 'game': N1},
455
        device=F.ctx())
456
457
458
459
460
    assert g.number_of_nodes('user') == N1
    assert g.number_of_nodes('game') == N1
    assert g.number_of_edges('follows') == 1
    assert g.number_of_edges('plays') == 1

461
462
    assert g.has_edges_between(0, 1, 'follows')
    assert not g.has_edges_between(0, 0, 'follows')
463
464
465
    mask = F.asnumpy(g.has_edges_between([0, 0], [0, 1], 'follows')).tolist()
    assert mask == [0, 1]

466
467
    assert g.has_edges_between(0, N2, 'plays')
    assert not g.has_edges_between(0, 0, 'plays')
468
469
470
471
472
473
474
475
476
477
478
479
480
    mask = F.asnumpy(g.has_edges_between([0, 0], [0, N2], 'plays')).tolist()
    assert mask == [0, 1]

    assert F.asnumpy(g.predecessors(0, 'follows')).tolist() == []
    assert F.asnumpy(g.successors(0, 'follows')).tolist() == [1]
    assert F.asnumpy(g.predecessors(1, 'follows')).tolist() == [0]
    assert F.asnumpy(g.successors(1, 'follows')).tolist() == []

    assert F.asnumpy(g.predecessors(0, 'plays')).tolist() == []
    assert F.asnumpy(g.successors(0, 'plays')).tolist() == [N2]
    assert F.asnumpy(g.predecessors(N2, 'plays')).tolist() == [0]
    assert F.asnumpy(g.successors(N2, 'plays')).tolist() == []

481
482
    assert g.edge_ids(0, 1, etype='follows') == 0
    assert g.edge_ids(0, N2, etype='plays') == 0
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498

    u, v = g.find_edges([0], 'follows')
    assert F.asnumpy(u).tolist() == [0]
    assert F.asnumpy(v).tolist() == [1]
    u, v = g.find_edges([0], 'plays')
    assert F.asnumpy(u).tolist() == [0]
    assert F.asnumpy(v).tolist() == [N2]
    u, v, e = g.all_edges('all', 'eid', 'follows')
    assert F.asnumpy(u).tolist() == [0]
    assert F.asnumpy(v).tolist() == [1]
    assert F.asnumpy(e).tolist() == [0]
    u, v, e = g.all_edges('all', 'eid', 'plays')
    assert F.asnumpy(u).tolist() == [0]
    assert F.asnumpy(v).tolist() == [N2]
    assert F.asnumpy(e).tolist() == [0]

499
500
    assert g.in_degrees(0, 'follows') == 0
    assert g.in_degrees(1, 'follows') == 1
501
    assert F.asnumpy(g.in_degrees([0, 1], 'follows')).tolist() == [0, 1]
502
503
    assert g.in_degrees(0, 'plays') == 0
    assert g.in_degrees(N2, 'plays') == 1
504
    assert F.asnumpy(g.in_degrees([0, N2], 'plays')).tolist() == [0, 1]
505
506
    assert g.out_degrees(0, 'follows') == 1
    assert g.out_degrees(1, 'follows') == 0
507
    assert F.asnumpy(g.out_degrees([0, 1], 'follows')).tolist() == [1, 0]
508
509
    assert g.out_degrees(0, 'plays') == 1
    assert g.out_degrees(N2, 'plays') == 0
510
511
    assert F.asnumpy(g.out_degrees([0, N2], 'plays')).tolist() == [1, 0]

512
def _test_edge_ids():
513
514
515
516
    N1 = 1 << 50        # should crash if allocated a CSR
    N2 = 1 << 48

    g = dgl.heterograph({
517
518
        ('user', 'follows', 'user'): (F.tensor([0], F.int64), F.tensor([1], F.int64)),
        ('user', 'plays', 'game'): (F.tensor([0], F.int64), F.tensor([N2], F.int64))},
519
        {'user': N1, 'game': N1})
520
521
    with pytest.raises(DGLError):
        eid = g.edge_ids(0, 0, etype='follows')
522
523

    g2 = dgl.heterograph({
524
525
526
        ('user', 'follows', 'user'): (F.tensor([0, 0], F.int64), F.tensor([1, 1], F.int64)),
        ('user', 'plays', 'game'): (F.tensor([0], F.int64), F.tensor([N2], F.int64))},
        {'user': N1, 'game': N1}, device=F.cpu())
527

528
529
    eid = g2.edge_ids(0, 1, etype='follows')
    assert eid == 0
530

nv-dlasalle's avatar
nv-dlasalle committed
531
@parametrize_idtype
532
533
def test_adj(idtype):
    g = create_test_heterograph(idtype)
534
    adj = F.sparse_to_numpy(g.adj(transpose=True, etype='follows'))
Minjie Wang's avatar
Minjie Wang committed
535
536
537
538
539
    assert np.allclose(
            adj,
            np.array([[0., 0., 0.],
                      [1., 0., 0.],
                      [0., 1., 0.]]))
540
    adj = F.sparse_to_numpy(g.adj(transpose=False, etype='follows'))
Minjie Wang's avatar
Minjie Wang committed
541
542
543
544
545
    assert np.allclose(
            adj,
            np.array([[0., 1., 0.],
                      [0., 0., 1.],
                      [0., 0., 0.]]))
546
    adj = F.sparse_to_numpy(g.adj(transpose=True, etype='plays'))
Minjie Wang's avatar
Minjie Wang committed
547
548
549
550
    assert np.allclose(
            adj,
            np.array([[1., 1., 0.],
                      [0., 1., 1.]]))
551
    adj = F.sparse_to_numpy(g.adj(transpose=False, etype='plays'))
Minjie Wang's avatar
Minjie Wang committed
552
553
554
555
556
557
    assert np.allclose(
            adj,
            np.array([[1., 0.],
                      [1., 1.],
                      [0., 1.]]))

558
    adj = g.adj(transpose=True, scipy_fmt='csr', etype='follows')
Minjie Wang's avatar
Minjie Wang committed
559
560
561
562
563
    assert np.allclose(
            adj.todense(),
            np.array([[0., 0., 0.],
                      [1., 0., 0.],
                      [0., 1., 0.]]))
564
    adj = g.adj(transpose=True, scipy_fmt='coo', etype='follows')
Minjie Wang's avatar
Minjie Wang committed
565
566
567
568
569
    assert np.allclose(
            adj.todense(),
            np.array([[0., 0., 0.],
                      [1., 0., 0.],
                      [0., 1., 0.]]))
570
    adj = g.adj(transpose=True, scipy_fmt='csr', etype='plays')
Minjie Wang's avatar
Minjie Wang committed
571
572
573
574
    assert np.allclose(
            adj.todense(),
            np.array([[1., 1., 0.],
                      [0., 1., 1.]]))
575
    adj = g.adj(transpose=True, scipy_fmt='coo', etype='plays')
Minjie Wang's avatar
Minjie Wang committed
576
577
578
579
    assert np.allclose(
            adj.todense(),
            np.array([[1., 1., 0.],
                      [0., 1., 1.]]))
580
    adj = F.sparse_to_numpy(g['follows'].adj(transpose=True))
Minjie Wang's avatar
Minjie Wang committed
581
582
583
584
585
586
    assert np.allclose(
            adj,
            np.array([[0., 0., 0.],
                      [1., 0., 0.],
                      [0., 1., 0.]]))

nv-dlasalle's avatar
nv-dlasalle committed
587
@parametrize_idtype
588
589
def test_inc(idtype):
    g = create_test_heterograph(idtype)
Minjie Wang's avatar
Minjie Wang committed
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
    adj = F.sparse_to_numpy(g['follows'].inc('in'))
    assert np.allclose(
            adj,
            np.array([[0., 0.],
                      [1., 0.],
                      [0., 1.]]))
    adj = F.sparse_to_numpy(g['follows'].inc('out'))
    assert np.allclose(
            adj,
            np.array([[1., 0.],
                      [0., 1.],
                      [0., 0.]]))
    adj = F.sparse_to_numpy(g['follows'].inc('both'))
    assert np.allclose(
            adj,
            np.array([[-1., 0.],
                      [1., -1.],
                      [0., 1.]]))
    adj = F.sparse_to_numpy(g.inc('in', etype='plays'))
    assert np.allclose(
            adj,
            np.array([[1., 1., 0., 0.],
                      [0., 0., 1., 1.]]))
    adj = F.sparse_to_numpy(g.inc('out', etype='plays'))
    assert np.allclose(
            adj,
            np.array([[1., 0., 0., 0.],
                      [0., 1., 0., 1.],
                      [0., 0., 1., 0.]]))
    adj = F.sparse_to_numpy(g.inc('both', etype='follows'))
    assert np.allclose(
            adj,
            np.array([[-1., 0.],
                      [1., -1.],
                      [0., 1.]]))
625

nv-dlasalle's avatar
nv-dlasalle committed
626
@parametrize_idtype
627
def test_view(idtype):
628
    # test single node type
629
630
631
    g = dgl.heterograph({
        ('user', 'follows', 'user'): ([0, 1], [1, 2])
    }, idtype=idtype, device=F.ctx())
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
    f1 = F.randn((3, 6))
    g.ndata['h'] = f1
    f2 = g.nodes['user'].data['h']
    assert F.array_equal(f1, f2)
    fail = False
    try:
        g.ndata['h'] = {'user' : f1}
    except Exception:
        fail = True
    assert fail

    # test single edge type
    f3 = F.randn((2, 4))
    g.edata['h'] = f3
    f4 = g.edges['follows'].data['h']
    assert F.array_equal(f3, f4)
    fail = False
    try:
        g.edata['h'] = {'follows' : f3}
    except Exception:
        fail = True
    assert fail

Minjie Wang's avatar
Minjie Wang committed
655
    # test data view
656
    g = create_test_heterograph(idtype)
657
658

    f1 = F.randn((3, 6))
Minjie Wang's avatar
Minjie Wang committed
659
660
    g.nodes['user'].data['h'] = f1       # ok
    f2 = g.nodes['user'].data['h']
661
    assert F.array_equal(f1, f2)
662
    assert F.array_equal(g.nodes('user'), F.arange(0, 3, idtype))
663
664
665
666
667
668
669
670
671
672
673
    g.nodes['user'].data.pop('h')

    # multi type ndata
    f1 = F.randn((3, 6))
    f2 = F.randn((2, 6))
    fail = False
    try:
        g.ndata['h'] = f1
    except Exception:
        fail = True
    assert fail
674
675

    f3 = F.randn((2, 4))
Minjie Wang's avatar
Minjie Wang committed
676
677
678
    g.edges['user', 'follows', 'user'].data['h'] = f3
    f4 = g.edges['user', 'follows', 'user'].data['h']
    f5 = g.edges['follows'].data['h']
679
    assert F.array_equal(f3, f4)
Minjie Wang's avatar
Minjie Wang committed
680
    assert F.array_equal(f3, f5)
681
    assert F.array_equal(g.edges(etype='follows', form='eid'), F.arange(0, 2, idtype))
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
    g.edges['follows'].data.pop('h')

    f3 = F.randn((2, 4))
    fail = False
    try:
        g.edata['h'] = f3
    except Exception:
        fail = True
    assert fail

    # test srcdata
    f1 = F.randn((3, 6))
    g.srcnodes['user'].data['h'] = f1       # ok
    f2 = g.srcnodes['user'].data['h']
    assert F.array_equal(f1, f2)
697
    assert F.array_equal(g.srcnodes('user'), F.arange(0, 3, idtype))
698
699
700
701
702
703
704
    g.srcnodes['user'].data.pop('h')

    # test dstdata
    f1 = F.randn((3, 6))
    g.dstnodes['user'].data['h'] = f1       # ok
    f2 = g.dstnodes['user'].data['h']
    assert F.array_equal(f1, f2)
705
    assert F.array_equal(g.dstnodes('user'), F.arange(0, 3, idtype))
706
707
    g.dstnodes['user'].data.pop('h')

nv-dlasalle's avatar
nv-dlasalle committed
708
@parametrize_idtype
709
def test_view1(idtype):
Minjie Wang's avatar
Minjie Wang committed
710
    # test relation view
711
    HG = create_test_heterograph(idtype)
Minjie Wang's avatar
Minjie Wang committed
712
713
714
715
716
717
718
719
720
721
722
723
724
725
    ntypes = ['user', 'game', 'developer']
    canonical_etypes = [
        ('user', 'follows', 'user'),
        ('user', 'plays', 'game'),
        ('user', 'wishes', 'game'),
        ('developer', 'develops', 'game')]
    etypes = ['follows', 'plays', 'wishes', 'develops']

    def _test_query():
        for etype in etypes:
            utype, _, vtype = HG.to_canonical_etype(etype)
            g = HG[etype]
            srcs, dsts = edges[etype]
            for src, dst in zip(srcs, dsts):
726
                assert g.has_edges_between(src, dst)
Minjie Wang's avatar
Minjie Wang committed
727
728
729
730
            assert F.asnumpy(g.has_edges_between(srcs, dsts)).all()

            srcs, dsts = negative_edges[etype]
            for src, dst in zip(srcs, dsts):
731
                assert not g.has_edges_between(src, dst)
Minjie Wang's avatar
Minjie Wang committed
732
733
734
735
736
737
738
739
740
741
742
            assert not F.asnumpy(g.has_edges_between(srcs, dsts)).any()

            srcs, dsts = edges[etype]
            n_edges = len(srcs)

            # predecessors & in_edges & in_degree
            pred = [s for s, d in zip(srcs, dsts) if d == 0]
            assert set(F.asnumpy(g.predecessors(0)).tolist()) == set(pred)
            u, v = g.in_edges([0])
            assert F.asnumpy(v).tolist() == [0] * len(pred)
            assert set(F.asnumpy(u).tolist()) == set(pred)
743
            assert g.in_degrees(0) == len(pred)
Minjie Wang's avatar
Minjie Wang committed
744
745
746
747
748
749
750

            # successors & out_edges & out_degree
            succ = [d for s, d in zip(srcs, dsts) if s == 0]
            assert set(F.asnumpy(g.successors(0)).tolist()) == set(succ)
            u, v = g.out_edges([0])
            assert F.asnumpy(u).tolist() == [0] * len(succ)
            assert set(F.asnumpy(v).tolist()) == set(succ)
751
            assert g.out_degrees(0) == len(succ)
Minjie Wang's avatar
Minjie Wang committed
752
753
754

            # edge_id & edge_ids
            for i, (src, dst) in enumerate(zip(srcs, dsts)):
755
756
757
                assert g.edge_ids(src, dst, etype=etype) == i
                _, _, eid = g.edge_ids(src, dst, etype=etype, return_uv=True)
                assert eid == i
Minjie Wang's avatar
Minjie Wang committed
758
            assert F.asnumpy(g.edge_ids(srcs, dsts)).tolist() == list(range(n_edges))
759
            u, v, e = g.edge_ids(srcs, dsts, return_uv=True)
760
761
762
            u, v, e = F.asnumpy(u), F.asnumpy(v), F.asnumpy(e)
            assert u[e].tolist() == srcs
            assert v[e].tolist() == dsts
Minjie Wang's avatar
Minjie Wang committed
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783

            # find_edges
            u, v = g.find_edges(list(range(n_edges)))
            assert F.asnumpy(u).tolist() == srcs
            assert F.asnumpy(v).tolist() == dsts

            # all_edges.
            for order in ['eid']:
                u, v, e = g.all_edges(form='all', order=order)
                assert F.asnumpy(u).tolist() == srcs
                assert F.asnumpy(v).tolist() == dsts
                assert F.asnumpy(e).tolist() == list(range(n_edges))

            # in_degrees & out_degrees
            in_degrees = F.asnumpy(g.in_degrees())
            out_degrees = F.asnumpy(g.out_degrees())
            src_count = Counter(srcs)
            dst_count = Counter(dsts)
            for i in range(g.number_of_nodes(utype)):
                assert out_degrees[i] == src_count[i]
            for i in range(g.number_of_nodes(vtype)):
784
                assert in_degrees[i] == dst_count[i]
Minjie Wang's avatar
Minjie Wang committed
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828

    edges = {
        'follows': ([0, 1], [1, 2]),
        'plays': ([0, 1, 2, 1], [0, 0, 1, 1]),
        'wishes': ([0, 2], [1, 0]),
        'develops': ([0, 1], [0, 1]),
    }
    # edges that does not exist in the graph
    negative_edges = {
        'follows': ([0, 1], [0, 1]),
        'plays': ([0, 2], [1, 0]),
        'wishes': ([0, 1], [0, 1]),
        'develops': ([0, 1], [1, 0]),
    }
    _test_query()
    etypes = canonical_etypes
    edges = {
        ('user', 'follows', 'user'): ([0, 1], [1, 2]),
        ('user', 'plays', 'game'): ([0, 1, 2, 1], [0, 0, 1, 1]),
        ('user', 'wishes', 'game'): ([0, 2], [1, 0]),
        ('developer', 'develops', 'game'): ([0, 1], [0, 1]),
    }
    # edges that does not exist in the graph
    negative_edges = {
        ('user', 'follows', 'user'): ([0, 1], [0, 1]),
        ('user', 'plays', 'game'): ([0, 2], [1, 0]),
        ('user', 'wishes', 'game'): ([0, 1], [0, 1]),
        ('developer', 'develops', 'game'): ([0, 1], [1, 0]),
        }
    _test_query()

    # test features
    HG.nodes['user'].data['h'] = F.ones((HG.number_of_nodes('user'), 5))
    HG.nodes['game'].data['m'] = F.ones((HG.number_of_nodes('game'), 3)) * 2

    # test only one node type
    g = HG['follows']
    assert g.number_of_nodes() == 3

    # test ndata and edata
    f1 = F.randn((3, 6))
    g.ndata['h'] = f1       # ok
    f2 = HG.nodes['user'].data['h']
    assert F.array_equal(f1, f2)
829
    assert F.array_equal(g.nodes(), F.arange(0, 3, g.idtype))
Minjie Wang's avatar
Minjie Wang committed
830
831
832
833
834

    f3 = F.randn((2, 4))
    g.edata['h'] = f3
    f4 = HG.edges['follows'].data['h']
    assert F.array_equal(f3, f4)
835
    assert F.array_equal(g.edges(form='eid'), F.arange(0, 2, g.idtype))
Minjie Wang's avatar
Minjie Wang committed
836

nv-dlasalle's avatar
nv-dlasalle committed
837
@parametrize_idtype
838
def test_flatten(idtype):
Minjie Wang's avatar
Minjie Wang committed
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
    def check_mapping(g, fg):
        if len(fg.ntypes) == 1:
            SRC = DST = fg.ntypes[0]
        else:
            SRC = fg.ntypes[0]
            DST = fg.ntypes[1]

        etypes = F.asnumpy(fg.edata[dgl.ETYPE]).tolist()
        eids = F.asnumpy(fg.edata[dgl.EID]).tolist()

        for i, (etype, eid) in enumerate(zip(etypes, eids)):
            src_g, dst_g = g.find_edges([eid], g.canonical_etypes[etype])
            src_fg, dst_fg = fg.find_edges([i])
            # TODO(gq): I feel this code is quite redundant; can we just add new members (like
            # "induced_srcid") to returned heterograph object and not store them as features?
854
            assert F.asnumpy(src_g) == F.asnumpy(F.gather_row(fg.nodes[SRC].data[dgl.NID], src_fg)[0])
VoVAllen's avatar
VoVAllen committed
855
            tid = F.asnumpy(F.gather_row(fg.nodes[SRC].data[dgl.NTYPE], src_fg)).item()
Minjie Wang's avatar
Minjie Wang committed
856
            assert g.canonical_etypes[etype][0] == g.ntypes[tid]
857
            assert F.asnumpy(dst_g) == F.asnumpy(F.gather_row(fg.nodes[DST].data[dgl.NID], dst_fg)[0])
VoVAllen's avatar
VoVAllen committed
858
            tid = F.asnumpy(F.gather_row(fg.nodes[DST].data[dgl.NTYPE], dst_fg)).item()
Minjie Wang's avatar
Minjie Wang committed
859
860
861
            assert g.canonical_etypes[etype][2] == g.ntypes[tid]

    # check for wildcard slices
862
    g = create_test_heterograph(idtype)
Minjie Wang's avatar
Minjie Wang committed
863
864
865
866
867
868
869
870
871
872
    g.nodes['user'].data['h'] = F.ones((3, 5))
    g.nodes['game'].data['i'] = F.ones((2, 5))
    g.edges['plays'].data['e'] = F.ones((4, 4))
    g.edges['wishes'].data['e'] = F.ones((2, 4))
    g.edges['wishes'].data['f'] = F.ones((2, 4))

    fg = g['user', :, 'game']   # user--plays->game and user--wishes->game
    assert len(fg.ntypes) == 2
    assert fg.ntypes == ['user', 'game']
    assert fg.etypes == ['plays+wishes']
873
874
    assert fg.idtype == g.idtype
    assert fg.device == g.device
875
876
    etype = fg.etypes[0]
    assert fg[etype] is not None        # Issue #2166
Minjie Wang's avatar
Minjie Wang committed
877
878
879
880
881
882
883
884

    assert F.array_equal(fg.nodes['user'].data['h'], F.ones((3, 5)))
    assert F.array_equal(fg.nodes['game'].data['i'], F.ones((2, 5)))
    assert F.array_equal(fg.edata['e'], F.ones((6, 4)))
    assert 'f' not in fg.edata

    etypes = F.asnumpy(fg.edata[dgl.ETYPE]).tolist()
    eids = F.asnumpy(fg.edata[dgl.EID]).tolist()
885
    assert set(zip(etypes, eids)) == set([(3, 0), (3, 1), (2, 1), (2, 0), (2, 3), (2, 2)])
Minjie Wang's avatar
Minjie Wang committed
886
887
888
889

    check_mapping(g, fg)

    fg = g['user', :, 'user']
890
891
    assert fg.idtype == g.idtype
    assert fg.device == g.device
Minjie Wang's avatar
Minjie Wang committed
892
893
894
895
896
897
898
899
900
901
    # NOTE(gq): The node/edge types from the parent graph is returned if there is only one
    # node/edge type.  This differs from the behavior above.
    assert fg.ntypes == ['user']
    assert fg.etypes == ['follows']
    u1, v1 = g.edges(etype='follows', order='eid')
    u2, v2 = fg.edges(etype='follows', order='eid')
    assert F.array_equal(u1, u2)
    assert F.array_equal(v1, v2)

    fg = g['developer', :, 'game']
902
903
    assert fg.idtype == g.idtype
    assert fg.device == g.device
Minjie Wang's avatar
Minjie Wang committed
904
905
906
907
908
909
910
911
    assert fg.ntypes == ['developer', 'game']
    assert fg.etypes == ['develops']
    u1, v1 = g.edges(etype='develops', order='eid')
    u2, v2 = fg.edges(etype='develops', order='eid')
    assert F.array_equal(u1, u2)
    assert F.array_equal(v1, v2)

    fg = g[:, :, :]
912
913
    assert fg.idtype == g.idtype
    assert fg.device == g.device
Minjie Wang's avatar
Minjie Wang committed
914
915
916
917
918
    assert fg.ntypes == ['developer+user', 'game+user']
    assert fg.etypes == ['develops+follows+plays+wishes']
    check_mapping(g, fg)

    # Test another heterograph
919
920
921
922
923
924
925
926
    g = dgl.heterograph({
        ('user', 'follows', 'user'): ([0, 1, 2], [1, 2, 3]),
        ('user', 'knows', 'user'): ([0, 2], [2, 3])
    }, idtype=idtype, device=F.ctx())
    g.nodes['user'].data['h'] = F.randn((4, 3))
    g.edges['follows'].data['w'] = F.randn((3, 2))
    g.nodes['user'].data['hh'] = F.randn((4, 5))
    g.edges['knows'].data['ww'] = F.randn((2, 10))
Minjie Wang's avatar
Minjie Wang committed
927
928

    fg = g['user', :, 'user']
929
930
    assert fg.idtype == g.idtype
    assert fg.device == g.device
Minjie Wang's avatar
Minjie Wang committed
931
932
933
934
935
    assert fg.ntypes == ['user']
    assert fg.etypes == ['follows+knows']
    check_mapping(g, fg)

    fg = g['user', :, :]
936
937
    assert fg.idtype == g.idtype
    assert fg.device == g.device
Minjie Wang's avatar
Minjie Wang committed
938
939
940
941
    assert fg.ntypes == ['user']
    assert fg.etypes == ['follows+knows']
    check_mapping(g, fg)

942
@unittest.skipIf(F._default_context_str == 'cpu', reason="Need gpu for this test")
nv-dlasalle's avatar
nv-dlasalle committed
943
@parametrize_idtype
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
def test_to_device(idtype):
    # TODO: rewrite this test case to accept different graphs so we
    #  can test reverse graph and batched graph
    g = create_test_heterograph(idtype)
    g.nodes['user'].data['h'] = F.ones((3, 5))
    g.nodes['game'].data['i'] = F.ones((2, 5))
    g.edges['plays'].data['e'] = F.ones((4, 4))
    assert g.device == F.ctx()
    g = g.to(F.cpu())
    assert g.device == F.cpu()
    assert F.context(g.nodes['user'].data['h']) == F.cpu()
    assert F.context(g.nodes['game'].data['i']) == F.cpu()
    assert F.context(g.edges['plays'].data['e']) == F.cpu()
    for ntype in g.ntypes:
        assert F.context(g.batch_num_nodes(ntype)) == F.cpu()
    for etype in g.canonical_etypes:
        assert F.context(g.batch_num_edges(etype)) == F.cpu()

962
    if F.is_cuda_available():
963
        g1 = g.to(F.cuda())
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
        assert g1.device == F.cuda()
        assert F.context(g1.nodes['user'].data['h']) == F.cuda()
        assert F.context(g1.nodes['game'].data['i']) == F.cuda()
        assert F.context(g1.edges['plays'].data['e']) == F.cuda()
        for ntype in g1.ntypes:
            assert F.context(g1.batch_num_nodes(ntype)) == F.cuda()
        for etype in g1.canonical_etypes:
            assert F.context(g1.batch_num_edges(etype)) == F.cuda()
        assert F.context(g.nodes['user'].data['h']) == F.cpu()
        assert F.context(g.nodes['game'].data['i']) == F.cpu()
        assert F.context(g.edges['plays'].data['e']) == F.cpu()
        for ntype in g.ntypes:
            assert F.context(g.batch_num_nodes(ntype)) == F.cpu()
        for etype in g.canonical_etypes:
            assert F.context(g.batch_num_edges(etype)) == F.cpu()
        with pytest.raises(DGLError):
            g1.nodes['user'].data['h'] = F.copy_to(F.ones((3, 5)), F.cpu())
        with pytest.raises(DGLError):
            g1.edges['plays'].data['e'] = F.copy_to(F.ones((4, 4)), F.cpu())
983

984
@unittest.skipIf(F._default_context_str == 'cpu', reason="Need gpu for this test")
nv-dlasalle's avatar
nv-dlasalle committed
985
@parametrize_idtype
986
987
988
989
990
@pytest.mark.parametrize('g', get_cases(['block']))
def test_to_device2(g, idtype):
    g = g.astype(idtype)
    g = g.to(F.cpu())
    assert g.device == F.cpu()
991
992
    if F.is_cuda_available():
        g1 = g.to(F.cuda())
993
994
995
996
        assert g1.device == F.cuda()
        assert g1.ntypes == g.ntypes
        assert g1.etypes == g.etypes
        assert g1.canonical_etypes == g.canonical_etypes
997

998
@unittest.skipIf(F._default_context_str == 'cpu', reason="Need gpu for this test")
999
@unittest.skipIf(dgl.backend.backend_name != "pytorch", reason="Pinning graph inplace only supported for PyTorch")
nv-dlasalle's avatar
nv-dlasalle committed
1000
@parametrize_idtype
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
def test_pin_memory_(idtype):
    # TODO: rewrite this test case to accept different graphs so we
    #  can test reverse graph and batched graph
    g = create_test_heterograph(idtype)
    g.nodes['user'].data['h'] = F.ones((3, 5))
    g.nodes['game'].data['i'] = F.ones((2, 5))
    g.edges['plays'].data['e'] = F.ones((4, 4))
    g = g.to(F.cpu())
    assert not g.is_pinned()

    if F.is_cuda_available():
        # unpin an unpinned CPU graph, directly return
        g.unpin_memory_()
        assert not g.is_pinned()
        assert g.device == F.cpu()

        # pin a CPU graph
        g.pin_memory_()
        assert g.is_pinned()
        assert g.device == F.cpu()
        assert F.context(g.nodes['user'].data['h']) == F.cpu()
        assert F.context(g.nodes['game'].data['i']) == F.cpu()
        assert F.context(g.edges['plays'].data['e']) == F.cpu()
        for ntype in g.ntypes:
            assert F.context(g.batch_num_nodes(ntype)) == F.cpu()
        for etype in g.canonical_etypes:
            assert F.context(g.batch_num_edges(etype)) == F.cpu()

        # it's fine to clone with new formats, but new graphs are not pinned
        # >>> g.formats()
        # {'created': ['coo'], 'not created': ['csr', 'csc']}
        assert not g.formats('csc').is_pinned()
        assert not g.formats('csr').is_pinned()
        # 'coo' formats is already created and thus not cloned
        assert g.formats('coo').is_pinned()

1037
        # pin a pinned graph, directly return
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
        g.pin_memory_()
        assert g.is_pinned()
        assert g.device == F.cpu()

        # unpin a pinned graph
        g.unpin_memory_()
        assert not g.is_pinned()
        assert g.device == F.cpu()

        g1 = g.to(F.cuda())

        # unpin an unpinned GPU graph, directly return
        g1.unpin_memory_()
        assert not g1.is_pinned()
        assert g1.device == F.cuda()

        # error pinning a GPU graph
        with pytest.raises(DGLError):
            g1.pin_memory_()

nv-dlasalle's avatar
nv-dlasalle committed
1058
@parametrize_idtype
1059
def test_convert_bound(idtype):
1060
    def _test_bipartite_bound(data, card):
1061
        with pytest.raises(DGLError):
1062
1063
1064
            dgl.heterograph({
                ('_U', '_E', '_V'): data
            }, {'_U': card[0], '_V': card[1]}, idtype=idtype, device=F.ctx())
1065
1066

    def _test_graph_bound(data, card):
1067
1068
        with pytest.raises(DGLError):
            dgl.graph(data, num_nodes=card, idtype=idtype, device=F.ctx())
1069

1070
1071
1072
1073
    _test_bipartite_bound(([1, 2], [1, 2]), (2, 3))
    _test_bipartite_bound(([0, 1], [1, 4]), (2, 3))
    _test_graph_bound(([1, 3], [1, 2]), 3)
    _test_graph_bound(([0, 1], [1, 3]), 3)
1074
1075


nv-dlasalle's avatar
nv-dlasalle committed
1076
@parametrize_idtype
1077
1078
def test_convert(idtype):
    hg = create_test_heterograph(idtype)
Minjie Wang's avatar
Minjie Wang committed
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
    hs = []
    for ntype in hg.ntypes:
        h = F.randn((hg.number_of_nodes(ntype), 5))
        hg.nodes[ntype].data['h'] = h
        hs.append(h)
    hg.nodes['user'].data['x'] = F.randn((3, 3))
    ws = []
    for etype in hg.canonical_etypes:
        w = F.randn((hg.number_of_edges(etype), 5))
        hg.edges[etype].data['w'] = w
        ws.append(w)
    hg.edges['plays'].data['x'] = F.randn((4, 3))

1092
    g = dgl.to_homogeneous(hg, ndata=['h'], edata=['w'])
1093
1094
    assert g.idtype == idtype
    assert g.device == hg.device
Minjie Wang's avatar
Minjie Wang committed
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
    assert F.array_equal(F.cat(hs, dim=0), g.ndata['h'])
    assert 'x' not in g.ndata
    assert F.array_equal(F.cat(ws, dim=0), g.edata['w'])
    assert 'x' not in g.edata

    src, dst = g.all_edges(order='eid')
    src = F.asnumpy(src)
    dst = F.asnumpy(dst)
    etype_id, eid = F.asnumpy(g.edata[dgl.ETYPE]), F.asnumpy(g.edata[dgl.EID])
    ntype_id, nid = F.asnumpy(g.ndata[dgl.NTYPE]), F.asnumpy(g.ndata[dgl.NID])
    for i in range(g.number_of_edges()):
        srctype = hg.ntypes[ntype_id[src[i]]]
        dsttype = hg.ntypes[ntype_id[dst[i]]]
        etype = hg.etypes[etype_id[i]]
        src_i, dst_i = hg.find_edges([eid[i]], (srctype, etype, dsttype))
        assert np.asscalar(F.asnumpy(src_i)) == nid[src[i]]
        assert np.asscalar(F.asnumpy(dst_i)) == nid[dst[i]]

    mg = nx.MultiDiGraph([
        ('user', 'user', 'follows'),
        ('user', 'game', 'plays'),
        ('user', 'game', 'wishes'),
        ('developer', 'game', 'develops')])

    for _mg in [None, mg]:
1120
        hg2 = dgl.to_heterogeneous(
1121
                g, hg.ntypes, hg.etypes,
Minjie Wang's avatar
Minjie Wang committed
1122
                ntype_field=dgl.NTYPE, etype_field=dgl.ETYPE, metagraph=_mg)
1123
1124
        assert hg2.idtype == hg.idtype
        assert hg2.device == hg.device
Minjie Wang's avatar
Minjie Wang committed
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
        assert set(hg.ntypes) == set(hg2.ntypes)
        assert set(hg.canonical_etypes) == set(hg2.canonical_etypes)
        for ntype in hg.ntypes:
            assert hg.number_of_nodes(ntype) == hg2.number_of_nodes(ntype)
            assert F.array_equal(hg.nodes[ntype].data['h'], hg2.nodes[ntype].data['h'])
        for canonical_etype in hg.canonical_etypes:
            src, dst = hg.all_edges(etype=canonical_etype, order='eid')
            src2, dst2 = hg2.all_edges(etype=canonical_etype, order='eid')
            assert F.array_equal(src, src2)
            assert F.array_equal(dst, dst2)
            assert F.array_equal(hg.edges[canonical_etype].data['w'], hg2.edges[canonical_etype].data['w'])

    # hetero_from_homo test case 2
1138
    g = dgl.graph(([0, 1, 2, 0], [2, 2, 3, 3]), idtype=idtype, device=F.ctx())
Minjie Wang's avatar
Minjie Wang committed
1139
1140
    g.ndata[dgl.NTYPE] = F.tensor([0, 0, 1, 2])
    g.edata[dgl.ETYPE] = F.tensor([0, 0, 1, 2])
1141
    hg = dgl.to_heterogeneous(g, ['l0', 'l1', 'l2'], ['e0', 'e1', 'e2'])
1142
1143
    assert hg.idtype == idtype
    assert hg.device == g.device
Minjie Wang's avatar
Minjie Wang committed
1144
1145
1146
1147
1148
1149
1150
1151
    assert set(hg.canonical_etypes) == set(
        [('l0', 'e0', 'l1'), ('l1', 'e1', 'l2'), ('l0', 'e2', 'l2')])
    assert hg.number_of_nodes('l0') == 2
    assert hg.number_of_nodes('l1') == 1
    assert hg.number_of_nodes('l2') == 1
    assert hg.number_of_edges('e0') == 2
    assert hg.number_of_edges('e1') == 1
    assert hg.number_of_edges('e2') == 1
1152
1153
1154
1155
1156
1157
    assert F.array_equal(hg.ndata[dgl.NID]['l0'], F.tensor([0, 1], F.int64))
    assert F.array_equal(hg.ndata[dgl.NID]['l1'], F.tensor([2], F.int64))
    assert F.array_equal(hg.ndata[dgl.NID]['l2'], F.tensor([3], F.int64))
    assert F.array_equal(hg.edata[dgl.EID][('l0', 'e0', 'l1')], F.tensor([0, 1], F.int64))
    assert F.array_equal(hg.edata[dgl.EID][('l0', 'e2', 'l2')], F.tensor([3], F.int64))
    assert F.array_equal(hg.edata[dgl.EID][('l1', 'e1', 'l2')], F.tensor([2], F.int64))
Minjie Wang's avatar
Minjie Wang committed
1158
1159
1160
1161
1162

    # hetero_from_homo test case 3
    mg = nx.MultiDiGraph([
        ('user', 'movie', 'watches'),
        ('user', 'TV', 'watches')])
1163
    g = dgl.graph(((0, 0), (1, 2)), idtype=idtype, device=F.ctx())
Minjie Wang's avatar
Minjie Wang committed
1164
1165
1166
    g.ndata[dgl.NTYPE] = F.tensor([0, 1, 2])
    g.edata[dgl.ETYPE] = F.tensor([0, 0])
    for _mg in [None, mg]:
1167
        hg = dgl.to_heterogeneous(g, ['user', 'TV', 'movie'], ['watches'], metagraph=_mg)
1168
1169
        assert hg.idtype == g.idtype
        assert hg.device == g.device
Minjie Wang's avatar
Minjie Wang committed
1170
1171
1172
1173
1174
1175
1176
1177
1178
        assert set(hg.canonical_etypes) == set(
            [('user', 'watches', 'movie'), ('user', 'watches', 'TV')])
        assert hg.number_of_nodes('user') == 1
        assert hg.number_of_nodes('TV') == 1
        assert hg.number_of_nodes('movie') == 1
        assert hg.number_of_edges(('user', 'watches', 'TV')) == 1
        assert hg.number_of_edges(('user', 'watches', 'movie')) == 1
        assert len(hg.etypes) == 2

1179
    # hetero_to_homo test case 2
1180
1181
1182
1183
    hg = dgl.heterograph({
        ('_U', '_E', '_V'): ([0, 1], [0, 1])
    }, {'_U': 2, '_V': 3}, idtype=idtype, device=F.ctx())
    g = dgl.to_homogeneous(hg)
1184
1185
    assert hg.idtype == g.idtype
    assert hg.device == g.device
1186
1187
    assert g.number_of_nodes() == 5

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
    # hetero_to_subgraph_to_homo
    hg = dgl.heterograph({
        ('user', 'plays', 'game'): ([0, 1, 1, 2], [0, 0, 2, 1]),
        ('user', 'follows', 'user'): ([0, 1, 1], [1, 2, 2])
    }, idtype=idtype, device=F.ctx())
    hg.nodes['user'].data['h'] = F.copy_to(
        F.tensor([[1, 0], [0, 1], [1, 1]], dtype=idtype), ctx=F.ctx())
    sg = dgl.node_subgraph(hg, {'user': [1, 2]})
    assert len(sg.ntypes) == 2
    assert len(sg.etypes) == 2
    assert sg.num_nodes('user') == 2
    assert sg.num_nodes('game') == 0
    g = dgl.to_homogeneous(sg, ndata=['h'])
    assert 'h' in g.ndata.keys()
    assert g.num_nodes() == 2

1204
@unittest.skipIf(F._default_context_str == 'gpu', reason="Test on cpu is enough")
nv-dlasalle's avatar
nv-dlasalle committed
1205
@parametrize_idtype
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
def test_to_homo_zero_nodes(idtype):
    # Fix gihub issue #2870
    g = dgl.heterograph({
        ('A', 'AB', 'B'): (np.random.randint(0, 200, (1000,)), np.random.randint(0, 200, (1000,))),
        ('B', 'BA', 'A'): (np.random.randint(0, 200, (1000,)), np.random.randint(0, 200, (1000,))),
    }, num_nodes_dict={'A': 200, 'B': 200, 'C': 0}, idtype=idtype)
    g.nodes['A'].data['x'] = F.randn((200, 3))
    g.nodes['B'].data['x'] = F.randn((200, 3))
    gg = dgl.to_homogeneous(g, ['x'])
    assert 'x' in gg.ndata

nv-dlasalle's avatar
nv-dlasalle committed
1217
@parametrize_idtype
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
def test_to_homo2(idtype):
    # test the result homogeneous graph has nodes and edges sorted by their types
    hg = create_test_heterograph(idtype)
    g = dgl.to_homogeneous(hg)
    ntypes = F.asnumpy(g.ndata[dgl.NTYPE])
    etypes = F.asnumpy(g.edata[dgl.ETYPE])
    p = 0
    for tid, ntype in enumerate(hg.ntypes):
        num_nodes = hg.num_nodes(ntype)
        for i in range(p, p + num_nodes):
            assert ntypes[i] == tid
        p += num_nodes
    p = 0
    for tid, etype in enumerate(hg.canonical_etypes):
        num_edges = hg.num_edges(etype)
        for i in range(p, p + num_edges):
            assert etypes[i] == tid
        p += num_edges
    # test store_type=False
    g = dgl.to_homogeneous(hg, store_type=False)
    assert dgl.NTYPE not in g.ndata
    assert dgl.ETYPE not in g.edata
    # test return_count=True
    g, ntype_count, etype_count = dgl.to_homogeneous(hg, return_count=True)
    for i, count in enumerate(ntype_count):
        assert count == hg.num_nodes(hg.ntypes[i])
    for i, count in enumerate(etype_count):
        assert count == hg.num_edges(hg.canonical_etypes[i])

nv-dlasalle's avatar
nv-dlasalle committed
1247
@parametrize_idtype
1248
1249
1250
1251
1252
1253
1254
def test_invertible_conversion(idtype):
    # Test whether to_homogeneous and to_heterogeneous are invertible
    hg = create_test_heterograph(idtype)
    g = dgl.to_homogeneous(hg)
    hg2 = dgl.to_heterogeneous(g, hg.ntypes, hg.etypes)
    assert_is_identical_hetero(hg, hg2, True)

nv-dlasalle's avatar
nv-dlasalle committed
1255
@parametrize_idtype
1256
1257
def test_metagraph_reachable(idtype):
    g = create_test_heterograph(idtype)
Mufei Li's avatar
Mufei Li committed
1258
1259
1260
1261
    x = F.randn((3, 5))
    g.nodes['user'].data['h'] = x

    new_g = dgl.metapath_reachable_graph(g, ['follows', 'plays'])
1262
    assert new_g.idtype == idtype
1263
    assert new_g.ntypes == ['game', 'user']
Mufei Li's avatar
Mufei Li committed
1264
1265
1266
1267
    assert new_g.number_of_edges() == 3
    assert F.asnumpy(new_g.has_edges_between([0, 0, 1], [0, 1, 1])).all()

    new_g = dgl.metapath_reachable_graph(g, ['follows'])
1268
    assert new_g.idtype == idtype
Mufei Li's avatar
Mufei Li committed
1269
1270
1271
1272
    assert new_g.ntypes == ['user']
    assert new_g.number_of_edges() == 2
    assert F.asnumpy(new_g.has_edges_between([0, 1], [1, 2])).all()

1273
@unittest.skipIf(dgl.backend.backend_name == "mxnet", reason="MXNet doesn't support bool tensor")
nv-dlasalle's avatar
nv-dlasalle committed
1274
@parametrize_idtype
1275
1276
def test_subgraph_mask(idtype):
    g = create_test_heterograph(idtype)
1277
1278
1279
1280
1281
1282
1283
1284
1285
    g_graph = g['follows']
    g_bipartite = g['plays']

    x = F.randn((3, 5))
    y = F.randn((2, 4))
    g.nodes['user'].data['h'] = x
    g.edges['follows'].data['h'] = y

    def _check_subgraph(g, sg):
1286
1287
        assert sg.idtype == g.idtype
        assert sg.device == g.device
1288
1289
1290
1291
        assert sg.ntypes == g.ntypes
        assert sg.etypes == g.etypes
        assert sg.canonical_etypes == g.canonical_etypes
        assert F.array_equal(F.tensor(sg.nodes['user'].data[dgl.NID]),
1292
                             F.tensor([1, 2], idtype))
1293
        assert F.array_equal(F.tensor(sg.nodes['game'].data[dgl.NID]),
1294
                             F.tensor([0], idtype))
1295
        assert F.array_equal(F.tensor(sg.edges['follows'].data[dgl.EID]),
1296
                             F.tensor([1], idtype))
1297
        assert F.array_equal(F.tensor(sg.edges['plays'].data[dgl.EID]),
1298
                             F.tensor([1], idtype))
1299
        assert F.array_equal(F.tensor(sg.edges['wishes'].data[dgl.EID]),
1300
                             F.tensor([1], idtype))
1301
1302
1303
1304
1305
        assert sg.number_of_nodes('developer') == 0
        assert sg.number_of_edges('develops') == 0
        assert F.array_equal(sg.nodes['user'].data['h'], g.nodes['user'].data['h'][1:3])
        assert F.array_equal(sg.edges['follows'].data['h'], g.edges['follows'].data['h'][1:2])

1306
1307
    sg1 = g.subgraph({'user': F.tensor([False, True, True], dtype=F.bool),
                      'game': F.tensor([True, False, False, False], dtype=F.bool)})
1308
    _check_subgraph(g, sg1)
1309
1310
1311
1312
1313
1314
    if F._default_context_str != 'gpu':
        # TODO(minjie): enable this later
        sg2 = g.edge_subgraph({'follows': F.tensor([False, True], dtype=F.bool),
                               'plays': F.tensor([False, True, False, False], dtype=F.bool),
                               'wishes': F.tensor([False, True], dtype=F.bool)})
        _check_subgraph(g, sg2)
1315

nv-dlasalle's avatar
nv-dlasalle committed
1316
@parametrize_idtype
1317
1318
def test_subgraph(idtype):
    g = create_test_heterograph(idtype)
Quan (Andy) Gan's avatar
Quan (Andy) Gan committed
1319
1320
1321
    g_graph = g['follows']
    g_bipartite = g['plays']

Minjie Wang's avatar
Minjie Wang committed
1322
1323
1324
1325
1326
1327
    x = F.randn((3, 5))
    y = F.randn((2, 4))
    g.nodes['user'].data['h'] = x
    g.edges['follows'].data['h'] = y

    def _check_subgraph(g, sg):
1328
1329
        assert sg.idtype == g.idtype
        assert sg.device == g.device
1330
1331
1332
        assert sg.ntypes == g.ntypes
        assert sg.etypes == g.etypes
        assert sg.canonical_etypes == g.canonical_etypes
Minjie Wang's avatar
Minjie Wang committed
1333
        assert F.array_equal(F.tensor(sg.nodes['user'].data[dgl.NID]),
1334
                             F.tensor([1, 2], g.idtype))
Minjie Wang's avatar
Minjie Wang committed
1335
        assert F.array_equal(F.tensor(sg.nodes['game'].data[dgl.NID]),
1336
                             F.tensor([0], g.idtype))
Minjie Wang's avatar
Minjie Wang committed
1337
        assert F.array_equal(F.tensor(sg.edges['follows'].data[dgl.EID]),
1338
                             F.tensor([1], g.idtype))
Minjie Wang's avatar
Minjie Wang committed
1339
        assert F.array_equal(F.tensor(sg.edges['plays'].data[dgl.EID]),
1340
                             F.tensor([1], g.idtype))
Minjie Wang's avatar
Minjie Wang committed
1341
        assert F.array_equal(F.tensor(sg.edges['wishes'].data[dgl.EID]),
1342
                             F.tensor([1], g.idtype))
Minjie Wang's avatar
Minjie Wang committed
1343
1344
1345
1346
1347
1348
1349
        assert sg.number_of_nodes('developer') == 0
        assert sg.number_of_edges('develops') == 0
        assert F.array_equal(sg.nodes['user'].data['h'], g.nodes['user'].data['h'][1:3])
        assert F.array_equal(sg.edges['follows'].data['h'], g.edges['follows'].data['h'][1:2])

    sg1 = g.subgraph({'user': [1, 2], 'game': [0]})
    _check_subgraph(g, sg1)
1350
1351
1352
1353
    if F._default_context_str != 'gpu':
        # TODO(minjie): enable this later
        sg2 = g.edge_subgraph({'follows': [1], 'plays': [1], 'wishes': [1]})
        _check_subgraph(g, sg2)
Minjie Wang's avatar
Minjie Wang committed
1354

1355
    # backend tensor input
1356
1357
    sg1 = g.subgraph({'user': F.tensor([1, 2], dtype=idtype),
                      'game': F.tensor([0], dtype=idtype)})
1358
    _check_subgraph(g, sg1)
1359
1360
1361
1362
1363
1364
    if F._default_context_str != 'gpu':
        # TODO(minjie): enable this later
        sg2 = g.edge_subgraph({'follows': F.tensor([1], dtype=idtype),
                               'plays': F.tensor([1], dtype=idtype),
                               'wishes': F.tensor([1], dtype=idtype)})
        _check_subgraph(g, sg2)
1365
1366
1367
1368
1369

    # numpy input
    sg1 = g.subgraph({'user': np.array([1, 2]),
                      'game': np.array([0])})
    _check_subgraph(g, sg1)
1370
1371
1372
1373
1374
1375
    if F._default_context_str != 'gpu':
        # TODO(minjie): enable this later
        sg2 = g.edge_subgraph({'follows': np.array([1]),
                               'plays': np.array([1]),
                               'wishes': np.array([1])})
        _check_subgraph(g, sg2)
1376

Quan (Andy) Gan's avatar
Quan (Andy) Gan committed
1377
    def _check_subgraph_single_ntype(g, sg, preserve_nodes=False):
1378
1379
        assert sg.idtype == g.idtype
        assert sg.device == g.device
Quan (Andy) Gan's avatar
Quan (Andy) Gan committed
1380
1381
1382
        assert sg.ntypes == g.ntypes
        assert sg.etypes == g.etypes
        assert sg.canonical_etypes == g.canonical_etypes
Quan (Andy) Gan's avatar
Quan (Andy) Gan committed
1383
1384
1385

        if not preserve_nodes:
            assert F.array_equal(F.tensor(sg.nodes['user'].data[dgl.NID]),
1386
                                 F.tensor([1, 2], g.idtype))
Quan (Andy) Gan's avatar
Quan (Andy) Gan committed
1387
1388
1389
1390
        else:
            for ntype in sg.ntypes:
                assert g.number_of_nodes(ntype) == sg.number_of_nodes(ntype)

Quan (Andy) Gan's avatar
Quan (Andy) Gan committed
1391
        assert F.array_equal(F.tensor(sg.edges['follows'].data[dgl.EID]),
1392
                             F.tensor([1], g.idtype))
Quan (Andy) Gan's avatar
Quan (Andy) Gan committed
1393
1394
1395

        if not preserve_nodes:
            assert F.array_equal(sg.nodes['user'].data['h'], g.nodes['user'].data['h'][1:3])
Quan (Andy) Gan's avatar
Quan (Andy) Gan committed
1396
1397
        assert F.array_equal(sg.edges['follows'].data['h'], g.edges['follows'].data['h'][1:2])

Quan (Andy) Gan's avatar
Quan (Andy) Gan committed
1398
    def _check_subgraph_single_etype(g, sg, preserve_nodes=False):
Quan (Andy) Gan's avatar
Quan (Andy) Gan committed
1399
1400
1401
        assert sg.ntypes == g.ntypes
        assert sg.etypes == g.etypes
        assert sg.canonical_etypes == g.canonical_etypes
Quan (Andy) Gan's avatar
Quan (Andy) Gan committed
1402
1403
1404

        if not preserve_nodes:
            assert F.array_equal(F.tensor(sg.nodes['user'].data[dgl.NID]),
1405
                                 F.tensor([0, 1], g.idtype))
Quan (Andy) Gan's avatar
Quan (Andy) Gan committed
1406
            assert F.array_equal(F.tensor(sg.nodes['game'].data[dgl.NID]),
1407
                                 F.tensor([0], g.idtype))
Quan (Andy) Gan's avatar
Quan (Andy) Gan committed
1408
1409
1410
1411
        else:
            for ntype in sg.ntypes:
                assert g.number_of_nodes(ntype) == sg.number_of_nodes(ntype)

Quan (Andy) Gan's avatar
Quan (Andy) Gan committed
1412
        assert F.array_equal(F.tensor(sg.edges['plays'].data[dgl.EID]),
1413
                             F.tensor([0, 1], g.idtype))
Quan (Andy) Gan's avatar
Quan (Andy) Gan committed
1414
1415
1416

    sg1_graph = g_graph.subgraph([1, 2])
    _check_subgraph_single_ntype(g_graph, sg1_graph)
1417
1418
1419
1420
    if F._default_context_str != 'gpu':
        # TODO(minjie): enable this later
        sg1_graph = g_graph.edge_subgraph([1])
        _check_subgraph_single_ntype(g_graph, sg1_graph)
1421
        sg1_graph = g_graph.edge_subgraph([1], relabel_nodes=False)
1422
1423
1424
        _check_subgraph_single_ntype(g_graph, sg1_graph, True)
        sg2_bipartite = g_bipartite.edge_subgraph([0, 1])
        _check_subgraph_single_etype(g_bipartite, sg2_bipartite)
1425
        sg2_bipartite = g_bipartite.edge_subgraph([0, 1], relabel_nodes=False)
1426
        _check_subgraph_single_etype(g_bipartite, sg2_bipartite, True)
Quan (Andy) Gan's avatar
Quan (Andy) Gan committed
1427

1428
    def _check_typed_subgraph1(g, sg):
1429
1430
        assert g.idtype == sg.idtype
        assert g.device == sg.device
Minjie Wang's avatar
Minjie Wang committed
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
        assert set(sg.ntypes) == {'user', 'game'}
        assert set(sg.etypes) == {'follows', 'plays', 'wishes'}
        for ntype in sg.ntypes:
            assert sg.number_of_nodes(ntype) == g.number_of_nodes(ntype)
        for etype in sg.etypes:
            src_sg, dst_sg = sg.all_edges(etype=etype, order='eid')
            src_g, dst_g = g.all_edges(etype=etype, order='eid')
            assert F.array_equal(src_sg, src_g)
            assert F.array_equal(dst_sg, dst_g)
        assert F.array_equal(sg.nodes['user'].data['h'], g.nodes['user'].data['h'])
        assert F.array_equal(sg.edges['follows'].data['h'], g.edges['follows'].data['h'])
VoVAllen's avatar
VoVAllen committed
1442
1443
        g.nodes['user'].data['h'] = F.scatter_row(g.nodes['user'].data['h'], F.tensor([2]), F.randn((1, 5)))
        g.edges['follows'].data['h'] = F.scatter_row(g.edges['follows'].data['h'], F.tensor([1]), F.randn((1, 4)))
Minjie Wang's avatar
Minjie Wang committed
1444
1445
1446
        assert F.array_equal(sg.nodes['user'].data['h'], g.nodes['user'].data['h'])
        assert F.array_equal(sg.edges['follows'].data['h'], g.edges['follows'].data['h'])

1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
    def _check_typed_subgraph2(g, sg):
        assert set(sg.ntypes) == {'developer', 'game'}
        assert set(sg.etypes) == {'develops'}
        for ntype in sg.ntypes:
            assert sg.number_of_nodes(ntype) == g.number_of_nodes(ntype)
        for etype in sg.etypes:
            src_sg, dst_sg = sg.all_edges(etype=etype, order='eid')
            src_g, dst_g = g.all_edges(etype=etype, order='eid')
            assert F.array_equal(src_sg, src_g)
            assert F.array_equal(dst_sg, dst_g)

Minjie Wang's avatar
Minjie Wang committed
1458
    sg3 = g.node_type_subgraph(['user', 'game'])
1459
1460
1461
1462
1463
    _check_typed_subgraph1(g, sg3)
    sg4 = g.edge_type_subgraph(['develops'])
    _check_typed_subgraph2(g, sg4)
    sg5 = g.edge_type_subgraph(['follows', 'plays', 'wishes'])
    _check_typed_subgraph1(g, sg5)
1464

nv-dlasalle's avatar
nv-dlasalle committed
1465
@parametrize_idtype
1466
def test_apply(idtype):
1467
1468
    def node_udf(nodes):
        return {'h': nodes.data['h'] * 2}
1469
1470
    def node_udf2(nodes):
        return {'h': F.sum(nodes.data['h'], dim=1, keepdims=True)}
1471
1472
1473
    def edge_udf(edges):
        return {'h': edges.data['h'] * 2 + edges.src['h']}

1474
    g = create_test_heterograph(idtype)
Minjie Wang's avatar
Minjie Wang committed
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
    g.nodes['user'].data['h'] = F.ones((3, 5))
    g.apply_nodes(node_udf, ntype='user')
    assert F.array_equal(g.nodes['user'].data['h'], F.ones((3, 5)) * 2)

    g['plays'].edata['h'] = F.ones((4, 5))
    g.apply_edges(edge_udf, etype=('user', 'plays', 'game'))
    assert F.array_equal(g['plays'].edata['h'], F.ones((4, 5)) * 4)

    # test apply on graph with only one type
    g['follows'].apply_nodes(node_udf)
    assert F.array_equal(g.nodes['user'].data['h'], F.ones((3, 5)) * 4)
1486

Minjie Wang's avatar
Minjie Wang committed
1487
1488
1489
    g['plays'].apply_edges(edge_udf)
    assert F.array_equal(g['plays'].edata['h'], F.ones((4, 5)) * 12)

1490
1491
1492
1493
1494
    # Test the case that feature size changes
    g.nodes['user'].data['h'] = F.ones((3, 5))
    g.apply_nodes(node_udf2, ntype='user')
    assert F.array_equal(g.nodes['user'].data['h'], F.ones((3, 1)) * 5)

Minjie Wang's avatar
Minjie Wang committed
1495
1496
    # test fail case
    # fail due to multiple types
1497
    with pytest.raises(DGLError):
Minjie Wang's avatar
Minjie Wang committed
1498
1499
        g.apply_nodes(node_udf)

1500
    with pytest.raises(DGLError):
Minjie Wang's avatar
Minjie Wang committed
1501
1502
        g.apply_edges(edge_udf)

nv-dlasalle's avatar
nv-dlasalle committed
1503
@parametrize_idtype
1504
def test_level2(idtype):
Minjie Wang's avatar
Minjie Wang committed
1505
1506
1507
1508
1509
1510
    #edges = {
    #    'follows': ([0, 1], [1, 2]),
    #    'plays': ([0, 1, 2, 1], [0, 0, 1, 1]),
    #    'wishes': ([0, 2], [1, 0]),
    #    'develops': ([0, 1], [0, 1]),
    #}
1511
    g = create_test_heterograph(idtype)
Minjie Wang's avatar
Minjie Wang committed
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
    def rfunc(nodes):
        return {'y': F.sum(nodes.mailbox['m'], 1)}
    def rfunc2(nodes):
        return {'y': F.max(nodes.mailbox['m'], 1)}
    def mfunc(edges):
        return {'m': edges.src['h']}
    def afunc(nodes):
        return {'y' : nodes.data['y'] + 1}

    #############################################################
    #  send_and_recv
    #############################################################

    g.nodes['user'].data['h'] = F.ones((3, 2))
    g.send_and_recv([2, 3], mfunc, rfunc, etype='plays')
    y = g.nodes['game'].data['y']
    assert F.array_equal(y, F.tensor([[0., 0.], [2., 2.]]))

    # only one type
    g['plays'].send_and_recv([2, 3], mfunc, rfunc)
    y = g.nodes['game'].data['y']
    assert F.array_equal(y, F.tensor([[0., 0.], [2., 2.]]))
1534

Minjie Wang's avatar
Minjie Wang committed
1535
1536
    # test fail case
    # fail due to multiple types
1537
    with pytest.raises(DGLError):
Minjie Wang's avatar
Minjie Wang committed
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
        g.send_and_recv([2, 3], mfunc, rfunc)

    g.nodes['game'].data.clear()

    #############################################################
    #  pull
    #############################################################

    g.nodes['user'].data['h'] = F.ones((3, 2))
    g.pull(1, mfunc, rfunc, etype='plays')
    y = g.nodes['game'].data['y']
    assert F.array_equal(y, F.tensor([[0., 0.], [2., 2.]]))

    # only one type
    g['plays'].pull(1, mfunc, rfunc)
    y = g.nodes['game'].data['y']
    assert F.array_equal(y, F.tensor([[0., 0.], [2., 2.]]))

    # test fail case
1557
    with pytest.raises(DGLError):
Minjie Wang's avatar
Minjie Wang committed
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
        g.pull(1, mfunc, rfunc)

    g.nodes['game'].data.clear()

    #############################################################
    #  update_all
    #############################################################

    g.nodes['user'].data['h'] = F.ones((3, 2))
    g.update_all(mfunc, rfunc, etype='plays')
    y = g.nodes['game'].data['y']
    assert F.array_equal(y, F.tensor([[2., 2.], [2., 2.]]))

    # only one type
    g['plays'].update_all(mfunc, rfunc)
    y = g.nodes['game'].data['y']
    assert F.array_equal(y, F.tensor([[2., 2.], [2., 2.]]))

    # test fail case
    # fail due to multiple types
1578
    with pytest.raises(DGLError):
Minjie Wang's avatar
Minjie Wang committed
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
        g.update_all(mfunc, rfunc)

    # test multi
    g.multi_update_all(
        {'plays' : (mfunc, rfunc),
         ('user', 'wishes', 'game'): (mfunc, rfunc2)},
        'sum')
    assert F.array_equal(g.nodes['game'].data['y'], F.tensor([[3., 3.], [3., 3.]]))

    # test multi
    g.multi_update_all(
        {'plays' : (mfunc, rfunc, afunc),
         ('user', 'wishes', 'game'): (mfunc, rfunc2)},
        'sum', afunc)
    assert F.array_equal(g.nodes['game'].data['y'], F.tensor([[5., 5.], [5., 5.]]))

    # test cross reducer
    g.nodes['user'].data['h'] = F.randn((3, 2))
    for cred in ['sum', 'max', 'min', 'mean', 'stack']:
        g.multi_update_all(
            {'plays' : (mfunc, rfunc, afunc),
             'wishes': (mfunc, rfunc2)},
            cred, afunc)
        y = g.nodes['game'].data['y']
        g['plays'].update_all(mfunc, rfunc, afunc)
        y1 = g.nodes['game'].data['y']
        g['wishes'].update_all(mfunc, rfunc2)
        y2 = g.nodes['game'].data['y']
        if cred == 'stack':
1608
1609
1610
1611
            # stack has an internal order by edge type id
            yy = F.stack([y1, y2], 1)
            yy = yy + 1  # final afunc
            assert F.array_equal(y, yy)
Minjie Wang's avatar
Minjie Wang committed
1612
1613
1614
1615
1616
1617
1618
        else:
            yy = get_redfn(cred)(F.stack([y1, y2], 0), 0)
            yy = yy + 1  # final afunc
            assert F.array_equal(y, yy)

    # test fail case
    # fail because cannot infer ntype
1619
    with pytest.raises(DGLError):
Minjie Wang's avatar
Minjie Wang committed
1620
1621
1622
1623
1624
1625
        g.update_all(
            {'plays' : (mfunc, rfunc),
             'follows': (mfunc, rfunc2)},
            'sum')

    g.nodes['game'].data.clear()
1626

nv-dlasalle's avatar
nv-dlasalle committed
1627
@parametrize_idtype
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
@unittest.skipIf(F._default_context_str == 'cpu', reason="Need gpu for this test")
def test_more_nnz(idtype):
    g = dgl.graph(([0, 0, 0, 0, 0], [1, 1, 1, 1, 1]), idtype=idtype, device=F.ctx())
    g.ndata['x'] = F.copy_to(F.ones((2, 5)), ctx=F.ctx())
    g.update_all(fn.copy_u('x', 'm'), fn.sum('m', 'y'))
    y = g.ndata['y']
    ans = np.zeros((2, 5))
    ans[1] = 5
    ans = F.copy_to(F.tensor(ans, dtype=F.dtype(y)), ctx=F.ctx())
    assert F.array_equal(y, ans)

nv-dlasalle's avatar
nv-dlasalle committed
1639
@parametrize_idtype
1640
def test_updates(idtype):
1641
1642
1643
1644
1645
1646
    def msg_func(edges):
        return {'m': edges.src['h']}
    def reduce_func(nodes):
        return {'y': F.sum(nodes.mailbox['m'], 1)}
    def apply_func(nodes):
        return {'y': nodes.data['y'] * 2}
1647
    g = create_test_heterograph(idtype)
1648
    x = F.randn((3, 5))
Minjie Wang's avatar
Minjie Wang committed
1649
    g.nodes['user'].data['h'] = x
1650
1651
1652
1653
1654
1655
1656

    for msg, red, apply in itertools.product(
            [fn.copy_u('h', 'm'), msg_func], [fn.sum('m', 'y'), reduce_func],
            [None, apply_func]):
        multiplier = 1 if apply is None else 2

        g['user', 'plays', 'game'].update_all(msg, red, apply)
Minjie Wang's avatar
Minjie Wang committed
1657
        y = g.nodes['game'].data['y']
1658
1659
        assert F.array_equal(y[0], (x[0] + x[1]) * multiplier)
        assert F.array_equal(y[1], (x[1] + x[2]) * multiplier)
Minjie Wang's avatar
Minjie Wang committed
1660
        del g.nodes['game'].data['y']
1661
1662

        g['user', 'plays', 'game'].send_and_recv(([0, 1, 2], [0, 1, 1]), msg, red, apply)
Minjie Wang's avatar
Minjie Wang committed
1663
        y = g.nodes['game'].data['y']
1664
1665
        assert F.array_equal(y[0], x[0] * multiplier)
        assert F.array_equal(y[1], (x[1] + x[2]) * multiplier)
Minjie Wang's avatar
Minjie Wang committed
1666
        del g.nodes['game'].data['y']
1667
1668
1669

        # pulls from destination (game) node 0
        g['user', 'plays', 'game'].pull(0, msg, red, apply)
Minjie Wang's avatar
Minjie Wang committed
1670
        y = g.nodes['game'].data['y']
1671
        assert F.array_equal(y[0], (x[0] + x[1]) * multiplier)
Minjie Wang's avatar
Minjie Wang committed
1672
        del g.nodes['game'].data['y']
1673
1674
1675

        # pushes from source (user) node 0
        g['user', 'plays', 'game'].push(0, msg, red, apply)
Minjie Wang's avatar
Minjie Wang committed
1676
        y = g.nodes['game'].data['y']
1677
        assert F.array_equal(y[0], x[0] * multiplier)
Minjie Wang's avatar
Minjie Wang committed
1678
1679
        del g.nodes['game'].data['y']

1680

nv-dlasalle's avatar
nv-dlasalle committed
1681
@parametrize_idtype
1682
1683
def test_backward(idtype):
    g = create_test_heterograph(idtype)
Minjie Wang's avatar
Minjie Wang committed
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
    x = F.randn((3, 5))
    F.attach_grad(x)
    g.nodes['user'].data['h'] = x
    with F.record_grad():
        g.multi_update_all(
            {'plays' : (fn.copy_u('h', 'm'), fn.sum('m', 'y')),
             'wishes': (fn.copy_u('h', 'm'), fn.sum('m', 'y'))},
            'sum')
        y = g.nodes['game'].data['y']
        F.backward(y, F.ones(y.shape))
    print(F.grad(x))
    assert F.array_equal(F.grad(x), F.tensor([[2., 2., 2., 2., 2.],
                                              [2., 2., 2., 2., 2.],
                                              [2., 2., 2., 2., 2.]]))
1698

1699

nv-dlasalle's avatar
nv-dlasalle committed
1700
@parametrize_idtype
1701
def test_empty_heterograph(idtype):
1702
1703
1704
1705
1706
1707
1708
1709
    def assert_empty(g):
        assert g.number_of_nodes('user') == 0
        assert g.number_of_edges('plays') == 0
        assert g.number_of_nodes('game') == 0

    # empty src-dst pair
    assert_empty(dgl.heterograph({('user', 'plays', 'game'): ([], [])}))

1710
    g = dgl.heterograph({('user', 'follows', 'user'): ([], [])}, idtype=idtype, device=F.ctx())
1711
1712
    assert g.idtype == idtype
    assert g.device == F.ctx()
1713
1714
1715
1716
    assert g.number_of_nodes('user') == 0
    assert g.number_of_edges('follows') == 0

    # empty relation graph with others
1717
1718
    g = dgl.heterograph({('user', 'plays', 'game'): ([], []), ('developer', 'develops', 'game'):
        ([0, 1], [0, 1])}, idtype=idtype, device=F.ctx())
1719
1720
    assert g.idtype == idtype
    assert g.device == F.ctx()
1721
1722
1723
1724
1725
1726
    assert g.number_of_nodes('user') == 0
    assert g.number_of_edges('plays') == 0
    assert g.number_of_nodes('game') == 2
    assert g.number_of_edges('develops') == 2
    assert g.number_of_nodes('developer') == 2

nv-dlasalle's avatar
nv-dlasalle committed
1727
@parametrize_idtype
1728
def test_types_in_function(idtype):
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
    def mfunc1(edges):
        assert edges.canonical_etype == ('user', 'follow', 'user')
        return {}

    def rfunc1(nodes):
        assert nodes.ntype == 'user'
        return {}

    def filter_nodes1(nodes):
        assert nodes.ntype == 'user'
        return F.zeros((3,))

    def filter_edges1(edges):
        assert edges.canonical_etype == ('user', 'follow', 'user')
        return F.zeros((2,))

    def mfunc2(edges):
        assert edges.canonical_etype == ('user', 'plays', 'game')
        return {}

    def rfunc2(nodes):
        assert nodes.ntype == 'game'
        return {}

    def filter_nodes2(nodes):
        assert nodes.ntype == 'game'
        return F.zeros((3,))

    def filter_edges2(edges):
        assert edges.canonical_etype == ('user', 'plays', 'game')
        return F.zeros((2,))

1761
1762
    g = dgl.heterograph({('user', 'follow', 'user'): ((0, 1), (1, 2))},
                        idtype=idtype, device=F.ctx())
1763
1764
1765
1766
1767
1768
1769
1770
1771
    g.apply_nodes(rfunc1)
    g.apply_edges(mfunc1)
    g.update_all(mfunc1, rfunc1)
    g.send_and_recv([0, 1], mfunc1, rfunc1)
    g.push([0], mfunc1, rfunc1)
    g.pull([1], mfunc1, rfunc1)
    g.filter_nodes(filter_nodes1)
    g.filter_edges(filter_edges1)

1772
    g = dgl.heterograph({('user', 'plays', 'game'): ([0, 1], [1, 2])}, idtype=idtype, device=F.ctx())
1773
1774
1775
1776
1777
1778
1779
1780
1781
    g.apply_nodes(rfunc2, ntype='game')
    g.apply_edges(mfunc2)
    g.update_all(mfunc2, rfunc2)
    g.send_and_recv([0, 1], mfunc2, rfunc2)
    g.push([0], mfunc2, rfunc2)
    g.pull([1], mfunc2, rfunc2)
    g.filter_nodes(filter_nodes2, ntype='game')
    g.filter_edges(filter_edges2)

nv-dlasalle's avatar
nv-dlasalle committed
1782
@parametrize_idtype
1783
def test_stack_reduce(idtype):
1784
1785
1786
1787
1788
1789
    #edges = {
    #    'follows': ([0, 1], [1, 2]),
    #    'plays': ([0, 1, 2, 1], [0, 0, 1, 1]),
    #    'wishes': ([0, 2], [1, 0]),
    #    'develops': ([0, 1], [0, 1]),
    #}
1790
    g = create_test_heterograph(idtype)
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
    g.nodes['user'].data['h'] = F.randn((3, 200))
    def rfunc(nodes):
        return {'y': F.sum(nodes.mailbox['m'], 1)}
    def rfunc2(nodes):
        return {'y': F.max(nodes.mailbox['m'], 1)}
    def mfunc(edges):
        return {'m': edges.src['h']}
    g.multi_update_all(
            {'plays' : (mfunc, rfunc),
             'wishes': (mfunc, rfunc2)},
            'stack')
    assert g.nodes['game'].data['y'].shape == (g.number_of_nodes('game'), 2, 200)
    # only one type-wise update_all, stack still adds one dimension
    g.multi_update_all(
            {'plays' : (mfunc, rfunc)},
            'stack')
    assert g.nodes['game'].data['y'].shape == (g.number_of_nodes('game'), 1, 200)

nv-dlasalle's avatar
nv-dlasalle committed
1809
@parametrize_idtype
1810
def test_isolated_ntype(idtype):
1811
    g = dgl.heterograph({
1812
        ('A', 'AB', 'B'): ([0, 1, 2], [1, 2, 3])},
1813
1814
        num_nodes_dict={'A': 3, 'B': 4, 'C': 4},
        idtype=idtype, device=F.ctx())
1815
1816
1817
1818
1819
    assert g.number_of_nodes('A') == 3
    assert g.number_of_nodes('B') == 4
    assert g.number_of_nodes('C') == 4

    g = dgl.heterograph({
1820
        ('A', 'AC', 'C'): ([0, 1, 2], [1, 2, 3])},
1821
1822
        num_nodes_dict={'A': 3, 'B': 4, 'C': 4},
        idtype=idtype, device=F.ctx())
1823
1824
1825
1826
    assert g.number_of_nodes('A') == 3
    assert g.number_of_nodes('B') == 4
    assert g.number_of_nodes('C') == 4

1827
    G = dgl.graph(([0, 1, 2], [4, 5, 6]), num_nodes=11, idtype=idtype, device=F.ctx())
1828
1829
    G.ndata[dgl.NTYPE] = F.tensor([0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2], dtype=F.int64)
    G.edata[dgl.ETYPE] = F.tensor([0, 0, 0], dtype=F.int64)
1830
    g = dgl.to_heterogeneous(G, ['A', 'B', 'C'], ['AB'])
1831
1832
1833
1834
    assert g.number_of_nodes('A') == 3
    assert g.number_of_nodes('B') == 4
    assert g.number_of_nodes('C') == 4

1835

nv-dlasalle's avatar
nv-dlasalle committed
1836
@parametrize_idtype
1837
def test_ismultigraph(idtype):
1838
1839
    g1 = dgl.heterograph({('A', 'AB', 'B'): ([0, 0, 1, 2], [1, 2, 5, 5])},
                         {'A': 6, 'B': 6}, idtype=idtype, device=F.ctx())
1840
    assert g1.is_multigraph == False
1841
1842
    g2 = dgl.heterograph({('A', 'AC', 'C'): ([0, 0, 0, 1], [1, 1, 2, 5])},
                         {'A': 6, 'C': 6}, idtype=idtype, device=F.ctx())
1843
    assert g2.is_multigraph == True
1844
    g3 = dgl.graph(((0, 1), (1, 2)), num_nodes=6, idtype=idtype, device=F.ctx())
1845
    assert g3.is_multigraph == False
1846
    g4 = dgl.graph(([0, 0, 1], [1, 1, 2]), num_nodes=6, idtype=idtype, device=F.ctx())
1847
    assert g4.is_multigraph == True
1848
1849
1850
1851
    g = dgl.heterograph({
        ('A', 'AB', 'B'): ([0, 0, 1, 2], [1, 2, 5, 5]),
        ('A', 'AA', 'A'): ([0, 1], [1, 2])},
        {'A': 6, 'B': 6}, idtype=idtype, device=F.ctx())
1852
    assert g.is_multigraph == False
1853
1854
1855
1856
    g = dgl.heterograph({
        ('A', 'AB', 'B'): ([0, 0, 1, 2], [1, 2, 5, 5]),
        ('A', 'AC', 'C'): ([0, 0, 0, 1], [1, 1, 2, 5])},
        {'A': 6, 'B': 6, 'C': 6}, idtype=idtype, device=F.ctx())
1857
    assert g.is_multigraph == True
1858
1859
1860
1861
    g = dgl.heterograph({
        ('A', 'AB', 'B'): ([0, 0, 1, 2], [1, 2, 5, 5]),
        ('A', 'AA', 'A'): ([0, 0, 1], [1, 1, 2])},
        {'A': 6, 'B': 6}, idtype=idtype, device=F.ctx())
1862
    assert g.is_multigraph == True
1863
1864
1865
1866
    g = dgl.heterograph({
        ('A', 'AC', 'C'): ([0, 0, 0, 1], [1, 1, 2, 5]),
        ('A', 'AA', 'A'): ([0, 1], [1, 2])},
        {'A': 6, 'C': 6}, idtype=idtype, device=F.ctx())
1867
1868
    assert g.is_multigraph == True

nv-dlasalle's avatar
nv-dlasalle committed
1869
@parametrize_idtype
1870
def test_bipartite(idtype):
1871
1872
    g1 = dgl.heterograph({('A', 'AB', 'B'): ([0, 0, 1], [1, 2, 5])},
                         idtype=idtype, device=F.ctx())
1873
1874
1875
1876
1877
1878
1879
    assert g1.is_unibipartite
    assert len(g1.ntypes) == 2
    assert g1.etypes == ['AB']
    assert g1.srctypes == ['A']
    assert g1.dsttypes == ['B']
    assert g1.number_of_nodes('A') == 2
    assert g1.number_of_nodes('B') == 6
1880
1881
1882
1883
    assert g1.number_of_src_nodes('A') == 2
    assert g1.number_of_src_nodes() == 2
    assert g1.number_of_dst_nodes('B') == 6
    assert g1.number_of_dst_nodes() == 6
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
    assert g1.number_of_edges() == 3
    g1.srcdata['h'] = F.randn((2, 5))
    assert F.array_equal(g1.srcnodes['A'].data['h'], g1.srcdata['h'])
    assert F.array_equal(g1.nodes['A'].data['h'], g1.srcdata['h'])
    assert F.array_equal(g1.nodes['SRC/A'].data['h'], g1.srcdata['h'])
    g1.dstdata['h'] = F.randn((6, 3))
    assert F.array_equal(g1.dstnodes['B'].data['h'], g1.dstdata['h'])
    assert F.array_equal(g1.nodes['B'].data['h'], g1.dstdata['h'])
    assert F.array_equal(g1.nodes['DST/B'].data['h'], g1.dstdata['h'])

    # more complicated bipartite
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
    g2 = dgl.heterograph({
        ('A', 'AB', 'B'): ([0, 0, 1], [1, 2, 5]),
        ('A', 'AC', 'C'): ([1, 0], [0, 0])
    }, idtype=idtype, device=F.ctx())

    assert g2.is_unibipartite
    assert g2.srctypes == ['A']
    assert set(g2.dsttypes) == {'B', 'C'}
    assert g2.number_of_nodes('A') == 2
    assert g2.number_of_nodes('B') == 6
    assert g2.number_of_nodes('C') == 1
    assert g2.number_of_src_nodes('A') == 2
    assert g2.number_of_src_nodes() == 2
    assert g2.number_of_dst_nodes('B') == 6
    assert g2.number_of_dst_nodes('C') == 1
    g2.srcdata['h'] = F.randn((2, 5))
    assert F.array_equal(g2.srcnodes['A'].data['h'], g2.srcdata['h'])
    assert F.array_equal(g2.nodes['A'].data['h'], g2.srcdata['h'])
    assert F.array_equal(g2.nodes['SRC/A'].data['h'], g2.srcdata['h'])

    g3 = dgl.heterograph({
        ('A', 'AB', 'B'): ([0, 0, 1], [1, 2, 5]),
        ('A', 'AC', 'C'): ([1, 0], [0, 0]),
        ('A', 'AA', 'A'): ([0, 1], [0, 1])
    }, idtype=idtype, device=F.ctx())
    assert not g3.is_unibipartite
1921

1922
1923
1924
1925
1926
1927
1928
    g4 = dgl.heterograph({
        ('A', 'AB', 'B'): ([0, 0, 1], [1, 2, 5]),
        ('C', 'CA', 'A'): ([1, 0], [0, 0])
    }, idtype=idtype, device=F.ctx())

    assert not g4.is_unibipartite

nv-dlasalle's avatar
nv-dlasalle committed
1929
@parametrize_idtype
1930
def test_dtype_cast(idtype):
1931
    g = dgl.graph(([0, 1, 0, 2], [0, 1, 1, 0]), idtype=idtype, device=F.ctx())
1932
    assert g.idtype == idtype
1933
1934
    g.ndata["feat"] = F.tensor([3, 4, 5])
    g.edata["h"] = F.tensor([3, 4, 5, 6])
1935
    if idtype == "int32":
1936
        g_cast = g.long()
1937
        assert g_cast.idtype == F.int64
1938
1939
    else:
        g_cast = g.int()
1940
1941
        assert g_cast.idtype == F.int32
    test_utils.check_graph_equal(g, g_cast, check_idtype=False)
1942

1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
def test_float_cast():
    for t in [F.float16, F.float32, F.float64]:
        idtype = F.int32
        g = dgl.heterograph({
            ('user', 'follows', 'user'): (F.tensor([0, 1, 1, 2, 2, 3], dtype=idtype),
                                        F.tensor([0, 0, 1, 1, 2, 2], dtype=idtype)),
            ('user', 'plays', 'game'): (F.tensor([0, 1, 1], dtype=idtype),
                                        F.tensor([0, 0, 1], dtype=idtype))},
            idtype=idtype, device=F.ctx())
        uvalues = [1, 2, 3, 4]
        gvalues = [5, 6]
        fvalues = [7, 8, 9, 10, 11, 12]
        pvalues = [13, 14, 15]
        dataNamesTypes = [
            ('a',F.float16),
            ('b',F.float32),
            ('c',F.float64),
            ('d',F.int32),
            ('e',F.int64)]
        for name,type in dataNamesTypes:
            g.nodes['user'].data[name] = F.copy_to(F.tensor(uvalues, dtype=type), ctx=F.ctx())
        for name,type in dataNamesTypes:
            g.nodes['game'].data[name] = F.copy_to(F.tensor(gvalues, dtype=type), ctx=F.ctx())
        for name,type in dataNamesTypes:
            g.edges['follows'].data[name] = F.copy_to(F.tensor(fvalues, dtype=type), ctx=F.ctx())
        for name,type in dataNamesTypes:
            g.edges['plays'].data[name] = F.copy_to(F.tensor(pvalues, dtype=type), ctx=F.ctx())

        if t == F.float16:
            g = dgl.transforms.functional.to_half(g)
        if t == F.float32:
            g = dgl.transforms.functional.to_float(g)
        if t == F.float64:
            g = dgl.transforms.functional.to_double(g)

        for name,origType in dataNamesTypes:
            # integer tensors shouldn't be converted
            reqType = t if (origType in [F.float16,F.float32,F.float64]) else origType

            values = g.nodes['user'].data[name]
            assert values.dtype == reqType
            assert len(values) == len(uvalues)
            assert F.allclose(values, F.tensor(uvalues), 0, 0)

            values = g.nodes['game'].data[name]
            assert values.dtype == reqType
            assert len(values) == len(gvalues)
            assert F.allclose(values, F.tensor(gvalues), 0, 0)

            values = g.edges['follows'].data[name]
            assert values.dtype == reqType
            assert len(values) == len(fvalues)
            assert F.allclose(values, F.tensor(fvalues), 0, 0)

            values = g.edges['plays'].data[name]
            assert values.dtype == reqType
            assert len(values) == len(pvalues)
            assert F.allclose(values, F.tensor(pvalues), 0, 0)

nv-dlasalle's avatar
nv-dlasalle committed
2002
@parametrize_idtype
2003
def test_format(idtype):
2004
    # single relation
2005
    g = dgl.graph(([0, 1, 0, 2], [0, 1, 1, 0]), idtype=idtype, device=F.ctx())
2006
2007
2008
    assert g.formats()['created'] == ['coo']
    g1 = g.formats(['coo', 'csr', 'csc'])
    assert len(g1.formats()['created']) + len(g1.formats()['not created']) == 3
2009
    g1.create_formats_()
2010
2011
    assert len(g1.formats()['created']) == 3
    assert g.formats()['created'] == ['coo']
2012
2013
2014

    # multiple relation
    g = dgl.heterograph({
2015
2016
2017
2018
        ('user', 'follows', 'user'): ([0, 1], [1, 2]),
        ('user', 'plays', 'game'): ([0, 1, 1, 2], [0, 0, 1, 1]),
        ('developer', 'develops', 'game'): ([0, 1], [0, 1])
        }, idtype=idtype, device=F.ctx())
2019
2020
    user_feat = F.randn((g['follows'].number_of_src_nodes(), 5))
    g['follows'].srcdata['h'] = user_feat
2021
    g1 = g.formats('csc')
2022
2023
2024
    # test frame
    assert F.array_equal(g1['follows'].srcdata['h'], user_feat)
    # test each relation graph
2025
2026
    assert g1.formats()['created'] == ['csc']
    assert len(g1.formats()['not created']) == 0
2027

2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
    # in_degrees
    g = dgl.rand_graph(100, 2340).to(F.ctx())
    ind_arr = []
    for vid in range(0, 100):
        ind_arr.append(g.in_degrees(vid))
    in_degrees = g.in_degrees()
    g = g.formats('coo')
    for vid in range(0, 100):
        assert g.in_degrees(vid) == ind_arr[vid]
    assert F.array_equal(in_degrees, g.in_degrees())

nv-dlasalle's avatar
nv-dlasalle committed
2039
@parametrize_idtype
2040
def test_edges_order(idtype):
2041
2042
2043
2044
    # (0, 2), (1, 2), (0, 1), (0, 1), (2, 1)
    g = dgl.graph((
        np.array([0, 1, 0, 0, 2]),
        np.array([2, 2, 1, 1, 1])
2045
    ), idtype=idtype, device=F.ctx())
2046

2047
    print(g.formats())
2048
    src, dst = g.all_edges(order='srcdst')
2049
2050
    assert F.array_equal(src, F.tensor([0, 0, 0, 1, 2], dtype=idtype))
    assert F.array_equal(dst, F.tensor([1, 1, 2, 2, 1], dtype=idtype))
2051

nv-dlasalle's avatar
nv-dlasalle committed
2052
@parametrize_idtype
2053
def test_reverse(idtype):
2054
2055
    g = dgl.heterograph({
        ('user', 'follows', 'user'): ([0, 1, 2, 4, 3 ,1, 3], [1, 2, 3, 2, 0, 0, 1]),
2056
    }, idtype=idtype, device=F.ctx())
2057
    gidx = g._graph
2058
    r_gidx = gidx.reverse()
2059
2060
2061
2062
2063

    assert gidx.number_of_nodes(0) == r_gidx.number_of_nodes(0)
    assert gidx.number_of_edges(0) == r_gidx.number_of_edges(0)
    g_s, g_d, _ = gidx.edges(0)
    rg_s, rg_d, _ = r_gidx.edges(0)
2064
2065
    assert F.array_equal(g_s, rg_d)
    assert F.array_equal(g_d, rg_s)
2066
2067

    # force to start with 'csr'
2068
2069
    gidx = gidx.formats('csr')
    gidx = gidx.formats(['coo', 'csr', 'csc'])
2070
    r_gidx = gidx.reverse()
2071
2072
    assert 'csr' in gidx.formats()['created']
    assert 'csc' in r_gidx.formats()['created']
2073
2074
2075
2076
    assert gidx.number_of_nodes(0) == r_gidx.number_of_nodes(0)
    assert gidx.number_of_edges(0) == r_gidx.number_of_edges(0)
    g_s, g_d, _ = gidx.edges(0)
    rg_s, rg_d, _ = r_gidx.edges(0)
2077
2078
    assert F.array_equal(g_s, rg_d)
    assert F.array_equal(g_d, rg_s)
2079
2080

    # force to start with 'csc'
2081
2082
    gidx = gidx.formats('csc')
    gidx = gidx.formats(['coo', 'csr', 'csc'])
2083
    r_gidx = gidx.reverse()
2084
2085
    assert 'csc' in gidx.formats()['created']
    assert 'csr' in r_gidx.formats()['created']
2086
2087
2088
2089
    assert gidx.number_of_nodes(0) == r_gidx.number_of_nodes(0)
    assert gidx.number_of_edges(0) == r_gidx.number_of_edges(0)
    g_s, g_d, _ = gidx.edges(0)
    rg_s, rg_d, _ = r_gidx.edges(0)
2090
2091
    assert F.array_equal(g_s, rg_d)
    assert F.array_equal(g_d, rg_s)
2092
2093
2094
2095
2096

    g = dgl.heterograph({
        ('user', 'follows', 'user'): ([0, 1, 2, 4, 3 ,1, 3], [1, 2, 3, 2, 0, 0, 1]),
        ('user', 'plays', 'game'): ([0, 0, 2, 3, 3, 4, 1], [1, 0, 1, 0, 1, 0, 0]),
        ('developer', 'develops', 'game'): ([0, 1, 1, 2], [0, 0, 1, 1]),
2097
        }, idtype=idtype, device=F.ctx())
2098
    gidx = g._graph
2099
2100
2101
2102
2103
2104
2105
2106
    r_gidx = gidx.reverse()

    # metagraph
    mg = gidx.metagraph
    r_mg = r_gidx.metagraph
    for etype in range(3):
        assert mg.find_edge(etype) == r_mg.find_edge(etype)[::-1]

2107
2108
2109
2110
2111
2112
2113
2114
2115
    # three node types and three edge types
    assert gidx.number_of_nodes(0) == r_gidx.number_of_nodes(0)
    assert gidx.number_of_nodes(1) == r_gidx.number_of_nodes(1)
    assert gidx.number_of_nodes(2) == r_gidx.number_of_nodes(2)
    assert gidx.number_of_edges(0) == r_gidx.number_of_edges(0)
    assert gidx.number_of_edges(1) == r_gidx.number_of_edges(1)
    assert gidx.number_of_edges(2) == r_gidx.number_of_edges(2)
    g_s, g_d, _ = gidx.edges(0)
    rg_s, rg_d, _ = r_gidx.edges(0)
2116
2117
    assert F.array_equal(g_s, rg_d)
    assert F.array_equal(g_d, rg_s)
2118
2119
    g_s, g_d, _ = gidx.edges(1)
    rg_s, rg_d, _ = r_gidx.edges(1)
2120
2121
    assert F.array_equal(g_s, rg_d)
    assert F.array_equal(g_d, rg_s)
2122
2123
    g_s, g_d, _ = gidx.edges(2)
    rg_s, rg_d, _ = r_gidx.edges(2)
2124
2125
    assert F.array_equal(g_s, rg_d)
    assert F.array_equal(g_d, rg_s)
2126
2127

    # force to start with 'csr'
2128
2129
    gidx = gidx.formats('csr')
    gidx = gidx.formats(['coo', 'csr', 'csc'])
2130
    r_gidx = gidx.reverse()
2131
    # three node types and three edge types
2132
2133
    assert 'csr' in gidx.formats()['created']
    assert 'csc' in r_gidx.formats()['created']
2134
2135
2136
2137
2138
2139
2140
2141
    assert gidx.number_of_nodes(0) == r_gidx.number_of_nodes(0)
    assert gidx.number_of_nodes(1) == r_gidx.number_of_nodes(1)
    assert gidx.number_of_nodes(2) == r_gidx.number_of_nodes(2)
    assert gidx.number_of_edges(0) == r_gidx.number_of_edges(0)
    assert gidx.number_of_edges(1) == r_gidx.number_of_edges(1)
    assert gidx.number_of_edges(2) == r_gidx.number_of_edges(2)
    g_s, g_d, _ = gidx.edges(0)
    rg_s, rg_d, _ = r_gidx.edges(0)
2142
2143
    assert F.array_equal(g_s, rg_d)
    assert F.array_equal(g_d, rg_s)
2144
2145
    g_s, g_d, _ = gidx.edges(1)
    rg_s, rg_d, _ = r_gidx.edges(1)
2146
2147
    assert F.array_equal(g_s, rg_d)
    assert F.array_equal(g_d, rg_s)
2148
2149
    g_s, g_d, _ = gidx.edges(2)
    rg_s, rg_d, _ = r_gidx.edges(2)
2150
2151
    assert F.array_equal(g_s, rg_d)
    assert F.array_equal(g_d, rg_s)
2152
2153

    # force to start with 'csc'
2154
2155
    gidx = gidx.formats('csc')
    gidx = gidx.formats(['coo', 'csr', 'csc'])
2156
    r_gidx = gidx.reverse()
2157
    # three node types and three edge types
2158
2159
    assert 'csc' in gidx.formats()['created']
    assert 'csr' in r_gidx.formats()['created']
2160
2161
2162
2163
2164
2165
2166
2167
    assert gidx.number_of_nodes(0) == r_gidx.number_of_nodes(0)
    assert gidx.number_of_nodes(1) == r_gidx.number_of_nodes(1)
    assert gidx.number_of_nodes(2) == r_gidx.number_of_nodes(2)
    assert gidx.number_of_edges(0) == r_gidx.number_of_edges(0)
    assert gidx.number_of_edges(1) == r_gidx.number_of_edges(1)
    assert gidx.number_of_edges(2) == r_gidx.number_of_edges(2)
    g_s, g_d, _ = gidx.edges(0)
    rg_s, rg_d, _ = r_gidx.edges(0)
2168
2169
    assert F.array_equal(g_s, rg_d)
    assert F.array_equal(g_d, rg_s)
2170
2171
    g_s, g_d, _ = gidx.edges(1)
    rg_s, rg_d, _ = r_gidx.edges(1)
2172
2173
    assert F.array_equal(g_s, rg_d)
    assert F.array_equal(g_d, rg_s)
2174
2175
    g_s, g_d, _ = gidx.edges(2)
    rg_s, rg_d, _ = r_gidx.edges(2)
2176
2177
2178
    assert F.array_equal(g_s, rg_d)
    assert F.array_equal(g_d, rg_s)

nv-dlasalle's avatar
nv-dlasalle committed
2179
@parametrize_idtype
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
def test_clone(idtype):
    g = dgl.graph(([0, 1], [1, 2]), idtype=idtype, device=F.ctx())
    g.ndata['h'] = F.copy_to(F.tensor([1, 1, 1], dtype=idtype), ctx=F.ctx())
    g.edata['h'] = F.copy_to(F.tensor([1, 1], dtype=idtype), ctx=F.ctx())

    new_g = g.clone()
    assert g.number_of_nodes() == new_g.number_of_nodes()
    assert g.number_of_edges() == new_g.number_of_edges()
    assert g.device == new_g.device
    assert g.idtype == new_g.idtype
    assert F.array_equal(g.ndata['h'], new_g.ndata['h'])
    assert F.array_equal(g.edata['h'], new_g.edata['h'])
    # data change
    new_g.ndata['h'] = F.copy_to(F.tensor([2, 2, 2], dtype=idtype), ctx=F.ctx())
    assert (F.array_equal(g.ndata['h'], new_g.ndata['h']) == False)
    g.edata['h'] = F.copy_to(F.tensor([2, 2], dtype=idtype), ctx=F.ctx())
    assert (F.array_equal(g.edata['h'], new_g.edata['h']) == False)
    # graph structure change
    g.add_nodes(1)
    assert g.number_of_nodes() != new_g.number_of_nodes()
    new_g.add_edges(1, 1)
    assert g.number_of_edges() != new_g.number_of_edges()

    # zero data graph
2204
    g = dgl.graph(([], []), num_nodes=0, idtype=idtype, device=F.ctx())
2205
2206
2207
2208
2209
    new_g = g.clone()
    assert g.number_of_nodes() == new_g.number_of_nodes()
    assert g.number_of_edges() == new_g.number_of_edges()

    # heterograph
2210
    g = create_test_heterograph3(idtype)
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
    g.edges['plays'].data['h'] = F.copy_to(F.tensor([1, 2, 3, 4], dtype=idtype), ctx=F.ctx())
    new_g = g.clone()
    assert g.number_of_nodes('user') == new_g.number_of_nodes('user')
    assert g.number_of_nodes('game') == new_g.number_of_nodes('game')
    assert g.number_of_nodes('developer') == new_g.number_of_nodes('developer')
    assert g.number_of_edges('plays') == new_g.number_of_edges('plays')
    assert g.number_of_edges('develops') == new_g.number_of_edges('develops')
    assert F.array_equal(g.nodes['user'].data['h'], new_g.nodes['user'].data['h'])
    assert F.array_equal(g.nodes['game'].data['h'], new_g.nodes['game'].data['h'])
    assert F.array_equal(g.edges['plays'].data['h'], new_g.edges['plays'].data['h'])
    assert g.device == new_g.device
    assert g.idtype == new_g.idtype
    u, v = g.edges(form='uv', order='eid', etype='plays')
    nu, nv = new_g.edges(form='uv', order='eid', etype='plays')
    assert F.array_equal(u, nu)
    assert F.array_equal(v, nv)
    # graph structure change
    u = F.tensor([0, 4], dtype=idtype)
    v = F.tensor([2, 6], dtype=idtype)
    g.add_edges(u, v, etype='plays')
    u, v = g.edges(form='uv', order='eid', etype='plays')
    assert u.shape[0] != nu.shape[0]
    assert v.shape[0] != nv.shape[0]
    assert g.nodes['user'].data['h'].shape[0] != new_g.nodes['user'].data['h'].shape[0]
    assert g.nodes['game'].data['h'].shape[0] != new_g.nodes['game'].data['h'].shape[0]
    assert g.edges['plays'].data['h'].shape[0] != new_g.edges['plays'].data['h'].shape[0]


nv-dlasalle's avatar
nv-dlasalle committed
2239
@parametrize_idtype
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
def test_add_edges(idtype):
    # homogeneous graph
    g = dgl.graph(([0, 1], [1, 2]), idtype=idtype, device=F.ctx())
    u = 0
    v = 1
    g.add_edges(u, v)
    assert g.device == F.ctx()
    assert g.number_of_nodes() == 3
    assert g.number_of_edges() == 3
    u = [0]
    v = [1]
    g.add_edges(u, v)
    assert g.device == F.ctx()
    assert g.number_of_nodes() == 3
    assert g.number_of_edges() == 4
    u = F.tensor(u, dtype=idtype)
    v = F.tensor(v, dtype=idtype)
    g.add_edges(u, v)
    assert g.device == F.ctx()
    assert g.number_of_nodes() == 3
    assert g.number_of_edges() == 5
    u, v = g.edges(form='uv', order='eid')
    assert F.array_equal(u, F.tensor([0, 1, 0, 0, 0], dtype=idtype))
    assert F.array_equal(v, F.tensor([1, 2, 1, 1, 1], dtype=idtype))

    # node id larger than current max node id
    g = dgl.graph(([0, 1], [1, 2]), idtype=idtype, device=F.ctx())
    u = F.tensor([0, 1], dtype=idtype)
    v = F.tensor([2, 3], dtype=idtype)
    g.add_edges(u, v)
    assert g.number_of_nodes() == 4
    assert g.number_of_edges() == 4
    u, v = g.edges(form='uv', order='eid')
    assert F.array_equal(u, F.tensor([0, 1, 0, 1], dtype=idtype))
    assert F.array_equal(v, F.tensor([1, 2, 2, 3], dtype=idtype))

    # has data
    g = dgl.graph(([0, 1], [1, 2]), idtype=idtype, device=F.ctx())
    g.ndata['h'] = F.copy_to(F.tensor([1, 1, 1], dtype=idtype), ctx=F.ctx())
    g.edata['h'] = F.copy_to(F.tensor([1, 1], dtype=idtype), ctx=F.ctx())
    u = F.tensor([0, 1], dtype=idtype)
    v = F.tensor([2, 3], dtype=idtype)
    e_feat = {'h' : F.copy_to(F.tensor([2, 2], dtype=idtype), ctx=F.ctx()),
              'hh' : F.copy_to(F.tensor([2, 2], dtype=idtype), ctx=F.ctx())}
    g.add_edges(u, v, e_feat)
    assert g.number_of_nodes() == 4
    assert g.number_of_edges() == 4
    u, v = g.edges(form='uv', order='eid')
    assert F.array_equal(u, F.tensor([0, 1, 0, 1], dtype=idtype))
    assert F.array_equal(v, F.tensor([1, 2, 2, 3], dtype=idtype))
    assert F.array_equal(g.ndata['h'], F.tensor([1, 1, 1, 0], dtype=idtype))
    assert F.array_equal(g.edata['h'], F.tensor([1, 1, 2, 2], dtype=idtype))
    assert F.array_equal(g.edata['hh'], F.tensor([0, 0, 2, 2], dtype=idtype))

    # zero data graph
2295
    g = dgl.graph(([], []), num_nodes=0, idtype=idtype, device=F.ctx())
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
    u = F.tensor([0, 1], dtype=idtype)
    v = F.tensor([2, 2], dtype=idtype)
    e_feat = {'h' : F.copy_to(F.tensor([2, 2], dtype=idtype), ctx=F.ctx()),
              'hh' : F.copy_to(F.tensor([2, 2], dtype=idtype), ctx=F.ctx())}
    g.add_edges(u, v, e_feat)
    assert g.number_of_nodes() == 3
    assert g.number_of_edges() == 2
    u, v = g.edges(form='uv', order='eid')
    assert F.array_equal(u, F.tensor([0, 1], dtype=idtype))
    assert F.array_equal(v, F.tensor([2, 2], dtype=idtype))
    assert F.array_equal(g.edata['h'], F.tensor([2, 2], dtype=idtype))
    assert F.array_equal(g.edata['hh'], F.tensor([2, 2], dtype=idtype))

    # bipartite graph
2310
2311
    g = dgl.heterograph({('user', 'plays', 'game'): ([0, 1], [1, 2])},
                        idtype=idtype, device=F.ctx())
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
    u = 0
    v = 1
    g.add_edges(u, v)
    assert g.device == F.ctx()
    assert g.number_of_nodes('user') == 2
    assert g.number_of_nodes('game') == 3
    assert g.number_of_edges() == 3
    u = [0]
    v = [1]
    g.add_edges(u, v)
    assert g.device == F.ctx()
    assert g.number_of_nodes('user') == 2
    assert g.number_of_nodes('game') == 3
    assert g.number_of_edges() == 4
    u = F.tensor(u, dtype=idtype)
    v = F.tensor(v, dtype=idtype)
    g.add_edges(u, v)
    assert g.device == F.ctx()
    assert g.number_of_nodes('user') == 2
    assert g.number_of_nodes('game') == 3
    assert g.number_of_edges() == 5
    u, v = g.edges(form='uv')
    assert F.array_equal(u, F.tensor([0, 1, 0, 0, 0], dtype=idtype))
    assert F.array_equal(v, F.tensor([1, 2, 1, 1, 1], dtype=idtype))

    # node id larger than current max node id
2338
2339
    g = dgl.heterograph({('user', 'plays', 'game'): ([0, 1], [1, 2])},
                        idtype=idtype, device=F.ctx())
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
    u = F.tensor([0, 2], dtype=idtype)
    v = F.tensor([2, 3], dtype=idtype)
    g.add_edges(u, v)
    assert g.device == F.ctx()
    assert g.number_of_nodes('user') == 3
    assert g.number_of_nodes('game') == 4
    assert g.number_of_edges() == 4
    u, v = g.edges(form='uv', order='eid')
    assert F.array_equal(u, F.tensor([0, 1, 0, 2], dtype=idtype))
    assert F.array_equal(v, F.tensor([1, 2, 2, 3], dtype=idtype))

    # has data
2352
2353
2354
2355
2356
    g = dgl.heterograph({
        ('user', 'plays', 'game'): ([0, 1], [1, 2])
    }, idtype=idtype, device=F.ctx())
    g.nodes['user'].data['h'] = F.copy_to(F.tensor([1, 1], dtype=idtype), ctx=F.ctx())
    g.nodes['game'].data['h'] = F.copy_to(F.tensor([2, 2, 2], dtype=idtype), ctx=F.ctx())
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
    g.edata['h'] = F.copy_to(F.tensor([1, 1], dtype=idtype), ctx=F.ctx())
    u = F.tensor([0, 2], dtype=idtype)
    v = F.tensor([2, 3], dtype=idtype)
    e_feat = {'h' : F.copy_to(F.tensor([2, 2], dtype=idtype), ctx=F.ctx()),
              'hh' : F.copy_to(F.tensor([2, 2], dtype=idtype), ctx=F.ctx())}
    g.add_edges(u, v, e_feat)
    assert g.number_of_nodes('user') == 3
    assert g.number_of_nodes('game') == 4
    assert g.number_of_edges() == 4
    u, v = g.edges(form='uv', order='eid')
    assert F.array_equal(u, F.tensor([0, 1, 0, 2], dtype=idtype))
    assert F.array_equal(v, F.tensor([1, 2, 2, 3], dtype=idtype))
    assert F.array_equal(g.nodes['user'].data['h'], F.tensor([1, 1, 0], dtype=idtype))
    assert F.array_equal(g.nodes['game'].data['h'], F.tensor([2, 2, 2, 0], dtype=idtype))
    assert F.array_equal(g.edata['h'], F.tensor([1, 1, 2, 2], dtype=idtype))
    assert F.array_equal(g.edata['hh'], F.tensor([0, 0, 2, 2], dtype=idtype))

    # heterogeneous graph
2375
    g = create_test_heterograph3(idtype)
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
    u = F.tensor([0, 2], dtype=idtype)
    v = F.tensor([2, 3], dtype=idtype)
    g.add_edges(u, v, etype='plays')
    assert g.number_of_nodes('user') == 3
    assert g.number_of_nodes('game') == 4
    assert g.number_of_nodes('developer') == 2
    assert g.number_of_edges('plays') == 6
    assert g.number_of_edges('develops') == 2
    u, v = g.edges(form='uv', order='eid', etype='plays')
    assert F.array_equal(u, F.tensor([0, 1, 1, 2, 0, 2], dtype=idtype))
    assert F.array_equal(v, F.tensor([0, 0, 1, 1, 2, 3], dtype=idtype))
    assert F.array_equal(g.nodes['user'].data['h'], F.tensor([1, 1, 1], dtype=idtype))
    assert F.array_equal(g.nodes['game'].data['h'], F.tensor([2, 2, 0, 0], dtype=idtype))
    assert F.array_equal(g.edges['plays'].data['h'], F.tensor([1, 1, 1, 1, 0, 0], dtype=idtype))

    # add with feature
    e_feat = {'h': F.copy_to(F.tensor([2, 2], dtype=idtype), ctx=F.ctx())}
    u = F.tensor([0, 2], dtype=idtype)
    v = F.tensor([2, 3], dtype=idtype)
    g.nodes['game'].data['h'] =  F.copy_to(F.tensor([2, 2, 1, 1], dtype=idtype), ctx=F.ctx())
    g.add_edges(u, v, data=e_feat, etype='develops')
    assert g.number_of_nodes('user') == 3
    assert g.number_of_nodes('game') == 4
    assert g.number_of_nodes('developer') == 3
    assert g.number_of_edges('plays') == 6
    assert g.number_of_edges('develops') == 4
    u, v = g.edges(form='uv', order='eid', etype='develops')
    assert F.array_equal(u, F.tensor([0, 1, 0, 2], dtype=idtype))
    assert F.array_equal(v, F.tensor([0, 1, 2, 3], dtype=idtype))
    assert F.array_equal(g.nodes['developer'].data['h'], F.tensor([3, 3, 0], dtype=idtype))
    assert F.array_equal(g.nodes['game'].data['h'], F.tensor([2, 2, 1, 1], dtype=idtype))
    assert F.array_equal(g.edges['develops'].data['h'], F.tensor([0, 0, 2, 2], dtype=idtype))

nv-dlasalle's avatar
nv-dlasalle committed
2409
@parametrize_idtype
2410
2411
2412
2413
2414
2415
2416
2417
2418
def test_add_nodes(idtype):
    # homogeneous Graphs
    g = dgl.graph(([0, 1], [1, 2]), idtype=idtype, device=F.ctx())
    g.ndata['h'] = F.copy_to(F.tensor([1,1,1], dtype=idtype), ctx=F.ctx())
    g.add_nodes(1)
    assert g.number_of_nodes() == 4
    assert F.array_equal(g.ndata['h'], F.tensor([1, 1, 1, 0], dtype=idtype))

    # zero node graph
2419
    g = dgl.graph(([], []), num_nodes=3, idtype=idtype, device=F.ctx())
2420
2421
2422
2423
2424
2425
    g.ndata['h'] = F.copy_to(F.tensor([1,1,1], dtype=idtype), ctx=F.ctx())
    g.add_nodes(1, data={'h' : F.copy_to(F.tensor([2],  dtype=idtype), ctx=F.ctx())})
    assert g.number_of_nodes() == 4
    assert F.array_equal(g.ndata['h'], F.tensor([1, 1, 1, 2], dtype=idtype))

    # bipartite graph
2426
2427
    g = dgl.heterograph({('user', 'plays', 'game'): ([0, 1], [1, 2])},
                        idtype=idtype, device=F.ctx())
2428
2429
2430
2431
2432
2433
2434
    g.add_nodes(2, data={'h' : F.copy_to(F.tensor([2, 2],  dtype=idtype), ctx=F.ctx())}, ntype='user')
    assert g.number_of_nodes('user') == 4
    assert F.array_equal(g.nodes['user'].data['h'], F.tensor([0, 0, 2, 2], dtype=idtype))
    g.add_nodes(2, ntype='game')
    assert g.number_of_nodes('game') == 5

    # heterogeneous graph
2435
    g = create_test_heterograph3(idtype)
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
    g.add_nodes(1, ntype='user')
    g.add_nodes(2, data={'h' : F.copy_to(F.tensor([2, 2],  dtype=idtype), ctx=F.ctx())}, ntype='game')
    g.add_nodes(0, ntype='developer')
    assert g.number_of_nodes('user') == 4
    assert g.number_of_nodes('game') == 4
    assert g.number_of_nodes('developer') == 2
    assert F.array_equal(g.nodes['user'].data['h'], F.tensor([1, 1, 1, 0], dtype=idtype))
    assert F.array_equal(g.nodes['game'].data['h'], F.tensor([2, 2, 2, 2], dtype=idtype))

@unittest.skipIf(dgl.backend.backend_name == "mxnet", reason="MXNet has error with (0,) shape tensor.")
nv-dlasalle's avatar
nv-dlasalle committed
2446
@parametrize_idtype
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
def test_remove_edges(idtype):
    # homogeneous Graphs
    g = dgl.graph(([0, 1], [1, 2]), idtype=idtype, device=F.ctx())
    e = 0
    g.remove_edges(e)
    assert g.number_of_edges() == 1
    u, v = g.edges(form='uv', order='eid')
    assert F.array_equal(u, F.tensor([1], dtype=idtype))
    assert F.array_equal(v, F.tensor([2], dtype=idtype))
    g = dgl.graph(([0, 1], [1, 2]), idtype=idtype, device=F.ctx())
    e = [0]
    g.remove_edges(e)
    assert g.number_of_edges() == 1
    u, v = g.edges(form='uv', order='eid')
    assert F.array_equal(u, F.tensor([1], dtype=idtype))
    assert F.array_equal(v, F.tensor([2], dtype=idtype))
    e = F.tensor([0], dtype=idtype)
    g.remove_edges(e)
    assert g.number_of_edges() == 0

    # has node data
    g = dgl.graph(([0, 1], [1, 2]), idtype=idtype, device=F.ctx())
    g.ndata['h'] = F.copy_to(F.tensor([1, 2, 3], dtype=idtype), ctx=F.ctx())
    g.remove_edges(1)
    assert g.number_of_edges() == 1
    assert F.array_equal(g.ndata['h'], F.tensor([1, 2, 3], dtype=idtype))

    # has edge data
    g = dgl.graph(([0, 1], [1, 2]), idtype=idtype, device=F.ctx())
    g.edata['h'] = F.copy_to(F.tensor([1, 2], dtype=idtype), ctx=F.ctx())
    g.remove_edges(0)
    assert g.number_of_edges() == 1
    assert F.array_equal(g.edata['h'], F.tensor([2], dtype=idtype))

    # invalid eid
    assert_fail = False
    try:
        g.remove_edges(1)
    except:
        assert_fail = True
    assert assert_fail

    # bipartite graph
2490
2491
2492
    g = dgl.heterograph({
        ('user', 'plays', 'game'): ([0, 1], [1, 2])
    }, idtype=idtype, device=F.ctx())
2493
2494
2495
2496
2497
2498
    e = 0
    g.remove_edges(e)
    assert g.number_of_edges() == 1
    u, v = g.edges(form='uv', order='eid')
    assert F.array_equal(u, F.tensor([1], dtype=idtype))
    assert F.array_equal(v, F.tensor([2], dtype=idtype))
2499
2500
    g = dgl.heterograph(
        {('user', 'plays', 'game'): ([0, 1], [1, 2])}, idtype=idtype, device=F.ctx())
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
    e = [0]
    g.remove_edges(e)
    assert g.number_of_edges() == 1
    u, v = g.edges(form='uv', order='eid')
    assert F.array_equal(u, F.tensor([1], dtype=idtype))
    assert F.array_equal(v, F.tensor([2], dtype=idtype))
    e = F.tensor([0], dtype=idtype)
    g.remove_edges(e)
    assert g.number_of_edges() == 0

    # has data
2512
2513
2514
2515
    g = dgl.heterograph(
        {('user', 'plays', 'game'): ([0, 1], [1, 2])}, idtype=idtype, device=F.ctx())
    g.nodes['user'].data['h'] = F.copy_to(F.tensor([1, 1], dtype=idtype), ctx=F.ctx())
    g.nodes['game'].data['h'] = F.copy_to(F.tensor([2, 2, 2], dtype=idtype), ctx=F.ctx())
2516
2517
2518
2519
2520
2521
2522
2523
    g.edata['h'] = F.copy_to(F.tensor([1, 2], dtype=idtype), ctx=F.ctx())
    g.remove_edges(1)
    assert g.number_of_edges() == 1
    assert F.array_equal(g.nodes['user'].data['h'], F.tensor([1, 1], dtype=idtype))
    assert F.array_equal(g.nodes['game'].data['h'], F.tensor([2, 2, 2], dtype=idtype))
    assert F.array_equal(g.edata['h'], F.tensor([1], dtype=idtype))

    # heterogeneous graph
2524
    g = create_test_heterograph3(idtype)
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
    g.edges['plays'].data['h'] = F.copy_to(F.tensor([1, 2, 3, 4], dtype=idtype), ctx=F.ctx())
    g.remove_edges(1, etype='plays')
    assert g.number_of_edges('plays') == 3
    u, v = g.edges(form='uv', order='eid', etype='plays')
    assert F.array_equal(u, F.tensor([0, 1, 2], dtype=idtype))
    assert F.array_equal(v, F.tensor([0, 1, 1], dtype=idtype))
    assert F.array_equal(g.edges['plays'].data['h'], F.tensor([1, 3, 4], dtype=idtype))
    # remove all edges of 'develops'
    g.remove_edges([0, 1], etype='develops')
    assert g.number_of_edges('develops') == 0
    assert F.array_equal(g.nodes['user'].data['h'], F.tensor([1, 1, 1], dtype=idtype))
    assert F.array_equal(g.nodes['game'].data['h'], F.tensor([2, 2], dtype=idtype))
    assert F.array_equal(g.nodes['developer'].data['h'], F.tensor([3, 3], dtype=idtype))

nv-dlasalle's avatar
nv-dlasalle committed
2539
@parametrize_idtype
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
def test_remove_nodes(idtype):
    # homogeneous Graphs
    g = dgl.graph(([0, 1], [1, 2]), idtype=idtype, device=F.ctx())
    n = 0
    g.remove_nodes(n)
    assert g.number_of_nodes() == 2
    assert g.number_of_edges() == 1
    u, v = g.edges(form='uv', order='eid')
    assert F.array_equal(u, F.tensor([0], dtype=idtype))
    assert F.array_equal(v, F.tensor([1], dtype=idtype))
    g = dgl.graph(([0, 1], [1, 2]), idtype=idtype, device=F.ctx())
    n = [1]
    g.remove_nodes(n)
    assert g.number_of_nodes() == 2
    assert g.number_of_edges() == 0
    g = dgl.graph(([0, 1], [1, 2]), idtype=idtype, device=F.ctx())
    n = F.tensor([2], dtype=idtype)
    g.remove_nodes(n)
    assert g.number_of_nodes() == 2
    assert g.number_of_edges() == 1
    u, v = g.edges(form='uv', order='eid')
    assert F.array_equal(u, F.tensor([0], dtype=idtype))
    assert F.array_equal(v, F.tensor([1], dtype=idtype))

    # invalid nid
    assert_fail = False
    try:
        g.remove_nodes(3)
    except:
        assert_fail = True
    assert assert_fail

    # has node and edge data
    g = dgl.graph(([0, 0, 2], [0, 1, 2]), idtype=idtype, device=F.ctx())
    g.ndata['hv'] = F.copy_to(F.tensor([1, 2, 3], dtype=idtype), ctx=F.ctx())
    g.edata['he'] = F.copy_to(F.tensor([1, 2, 3], dtype=idtype), ctx=F.ctx())
    g.remove_nodes(F.tensor([0], dtype=idtype))
    assert g.number_of_nodes() == 2
    assert g.number_of_edges() == 1
    u, v = g.edges(form='uv', order='eid')
    assert F.array_equal(u, F.tensor([1], dtype=idtype))
    assert F.array_equal(v, F.tensor([1], dtype=idtype))
    assert F.array_equal(g.ndata['hv'], F.tensor([2, 3], dtype=idtype))
    assert F.array_equal(g.edata['he'], F.tensor([3], dtype=idtype))

    # node id larger than current max node id
2586
2587
    g = dgl.heterograph(
        {('user', 'plays', 'game'): ([0, 1], [1, 2])}, idtype=idtype, device=F.ctx())
2588
2589
2590
2591
2592
2593
2594
2595
    n = 0
    g.remove_nodes(n, ntype='user')
    assert g.number_of_nodes('user') == 1
    assert g.number_of_nodes('game') == 3
    assert g.number_of_edges() == 1
    u, v = g.edges(form='uv', order='eid')
    assert F.array_equal(u, F.tensor([0], dtype=idtype))
    assert F.array_equal(v, F.tensor([2], dtype=idtype))
2596
2597
    g = dgl.heterograph(
        {('user', 'plays', 'game'): ([0, 1], [1, 2])}, idtype=idtype, device=F.ctx())
2598
2599
2600
2601
2602
2603
2604
2605
    n = [1]
    g.remove_nodes(n, ntype='user')
    assert g.number_of_nodes('user') == 1
    assert g.number_of_nodes('game') == 3
    assert g.number_of_edges() == 1
    u, v = g.edges(form='uv', order='eid')
    assert F.array_equal(u, F.tensor([0], dtype=idtype))
    assert F.array_equal(v, F.tensor([1], dtype=idtype))
2606
2607
    g = dgl.heterograph(
        {('user', 'plays', 'game'): ([0, 1], [1, 2])}, idtype=idtype, device=F.ctx())
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
    n = F.tensor([0], dtype=idtype)
    g.remove_nodes(n, ntype='game')
    assert g.number_of_nodes('user') == 2
    assert g.number_of_nodes('game') == 2
    assert g.number_of_edges() == 2
    u, v = g.edges(form='uv', order='eid')
    assert F.array_equal(u, F.tensor([0, 1], dtype=idtype))
    assert F.array_equal(v, F.tensor([0 ,1], dtype=idtype))

    # heterogeneous graph
2618
    g = create_test_heterograph3(idtype)
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
    g.edges['plays'].data['h'] = F.copy_to(F.tensor([1, 2, 3, 4], dtype=idtype), ctx=F.ctx())
    g.remove_nodes(0, ntype='game')
    assert g.number_of_nodes('user') == 3
    assert g.number_of_nodes('game') == 1
    assert g.number_of_nodes('developer') == 2
    assert g.number_of_edges('plays') == 2
    assert g.number_of_edges('develops') == 1
    assert F.array_equal(g.nodes['user'].data['h'], F.tensor([1, 1, 1], dtype=idtype))
    assert F.array_equal(g.nodes['game'].data['h'], F.tensor([2], dtype=idtype))
    assert F.array_equal(g.nodes['developer'].data['h'], F.tensor([3, 3], dtype=idtype))
    u, v = g.edges(form='uv', order='eid', etype='plays')
    assert F.array_equal(u, F.tensor([1, 2], dtype=idtype))
    assert F.array_equal(v, F.tensor([0, 0], dtype=idtype))
    assert F.array_equal(g.edges['plays'].data['h'], F.tensor([3, 4], dtype=idtype))
    u, v = g.edges(form='uv', order='eid', etype='develops')
    assert F.array_equal(u, F.tensor([1], dtype=idtype))
    assert F.array_equal(v, F.tensor([0], dtype=idtype))
2636

nv-dlasalle's avatar
nv-dlasalle committed
2637
@parametrize_idtype
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
def test_frame(idtype):
    g = dgl.graph(([0, 1, 2], [1, 2, 3]), idtype=idtype, device=F.ctx())
    g.ndata['h'] = F.copy_to(F.tensor([0, 1, 2, 3], dtype=idtype), ctx=F.ctx())
    g.edata['h'] = F.copy_to(F.tensor([0, 1, 2], dtype=idtype), ctx=F.ctx())

    # remove nodes
    sg = dgl.remove_nodes(g, [3])
    # check for lazy update
    assert F.array_equal(sg._node_frames[0]._columns['h'].storage, g.ndata['h'])
    assert F.array_equal(sg._edge_frames[0]._columns['h'].storage, g.edata['h'])
    assert sg.ndata['h'].shape[0] == 3
    assert sg.edata['h'].shape[0] == 2
    # update after read
    assert F.array_equal(sg._node_frames[0]._columns['h'].storage, F.tensor([0, 1, 2], dtype=idtype))
    assert F.array_equal(sg._edge_frames[0]._columns['h'].storage, F.tensor([0, 1], dtype=idtype))

    ng = dgl.add_nodes(sg, 1)
    assert ng.ndata['h'].shape[0] == 4
    assert F.array_equal(ng._node_frames[0]._columns['h'].storage, F.tensor([0, 1, 2, 0], dtype=idtype))
    ng = dgl.add_edges(ng, [3], [1])
    assert ng.edata['h'].shape[0] == 3
    assert F.array_equal(ng._edge_frames[0]._columns['h'].storage, F.tensor([0, 1, 0], dtype=idtype))

    # multi level lazy update
    sg = dgl.remove_nodes(g, [3])
    assert F.array_equal(sg._node_frames[0]._columns['h'].storage, g.ndata['h'])
    assert F.array_equal(sg._edge_frames[0]._columns['h'].storage, g.edata['h'])
    ssg = dgl.remove_nodes(sg, [1])
    assert F.array_equal(ssg._node_frames[0]._columns['h'].storage, g.ndata['h'])
    assert F.array_equal(ssg._edge_frames[0]._columns['h'].storage, g.edata['h'])
    # ssg is changed
    assert ssg.ndata['h'].shape[0] == 2
    assert ssg.edata['h'].shape[0] == 0
    assert F.array_equal(ssg._node_frames[0]._columns['h'].storage, F.tensor([0, 2], dtype=idtype))
    # sg still in lazy model
    assert F.array_equal(sg._node_frames[0]._columns['h'].storage, g.ndata['h'])
    assert F.array_equal(sg._edge_frames[0]._columns['h'].storage, g.edata['h'])

@unittest.skipIf(dgl.backend.backend_name == "tensorflow", reason="TensorFlow always create a new tensor")
@unittest.skipIf(F._default_context_str == 'cpu', reason="cpu do not have context change problem")
nv-dlasalle's avatar
nv-dlasalle committed
2678
@parametrize_idtype
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
def test_frame_device(idtype):
    g = dgl.graph(([0,1,2], [2,3,1]))
    g.ndata['h'] = F.copy_to(F.tensor([1,1,1,2], dtype=idtype), ctx=F.cpu())
    g.ndata['hh'] = F.copy_to(F.ones((4,3), dtype=idtype), ctx=F.cpu())
    g.edata['h'] = F.copy_to(F.tensor([1,2,3], dtype=idtype), ctx=F.cpu())

    g = g.to(F.ctx())
    # lazy device copy
    assert F.context(g._node_frames[0]._columns['h'].storage) == F.cpu()
    assert F.context(g._node_frames[0]._columns['hh'].storage) == F.cpu()
    print(g.ndata['h'])
    assert F.context(g._node_frames[0]._columns['h'].storage) == F.ctx()
    assert F.context(g._node_frames[0]._columns['hh'].storage) == F.cpu()
    assert F.context(g._edge_frames[0]._columns['h'].storage) == F.cpu()

    # lazy device copy in subgraph
    sg = dgl.node_subgraph(g, [0,1,2])
    assert F.context(sg._node_frames[0]._columns['h'].storage) == F.ctx()
    assert F.context(sg._node_frames[0]._columns['hh'].storage) == F.cpu()
    assert F.context(sg._edge_frames[0]._columns['h'].storage) == F.cpu()
    print(sg.ndata['hh'])
    assert F.context(sg._node_frames[0]._columns['hh'].storage) == F.ctx()
    assert F.context(sg._edge_frames[0]._columns['h'].storage) == F.cpu()

    # back to cpu
    sg = sg.to(F.cpu())
    assert F.context(sg._node_frames[0]._columns['h'].storage) == F.ctx()
    assert F.context(sg._node_frames[0]._columns['hh'].storage) == F.ctx()
    assert F.context(sg._edge_frames[0]._columns['h'].storage) == F.cpu()
    print(sg.ndata['h'])
    print(sg.ndata['hh'])
    print(sg.edata['h'])
    assert F.context(sg._node_frames[0]._columns['h'].storage) == F.cpu()
    assert F.context(sg._node_frames[0]._columns['hh'].storage) == F.cpu()
    assert F.context(sg._edge_frames[0]._columns['h'].storage) == F.cpu()

    # set some field
    sg = sg.to(F.ctx())
    assert F.context(sg._node_frames[0]._columns['h'].storage) == F.cpu()
    sg.ndata['h'][0] = 5
    assert F.context(sg._node_frames[0]._columns['h'].storage) == F.ctx()
    assert F.context(sg._node_frames[0]._columns['hh'].storage) == F.cpu()
    assert F.context(sg._edge_frames[0]._columns['h'].storage) == F.cpu()

    # add nodes
    ng = dgl.add_nodes(sg, 3)
    assert F.context(ng._node_frames[0]._columns['h'].storage) == F.ctx()
    assert F.context(ng._node_frames[0]._columns['hh'].storage) == F.ctx()
    assert F.context(ng._edge_frames[0]._columns['h'].storage) == F.cpu()

nv-dlasalle's avatar
nv-dlasalle committed
2729
@parametrize_idtype
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
def test_create_block(idtype):
    block = dgl.create_block(([0, 1, 2], [1, 2, 3]), idtype=idtype, device=F.ctx())
    assert block.num_src_nodes() == 3
    assert block.num_dst_nodes() == 4
    assert block.num_edges() == 3

    block = dgl.create_block(([], []), idtype=idtype, device=F.ctx())
    assert block.num_src_nodes() == 0
    assert block.num_dst_nodes() == 0
    assert block.num_edges() == 0

    block = dgl.create_block(([], []), 3, 4, idtype=idtype, device=F.ctx())
    assert block.num_src_nodes() == 3
    assert block.num_dst_nodes() == 4
    assert block.num_edges() == 0

    block = dgl.create_block(([0, 1, 2], [1, 2, 3]), 4, 5, idtype=idtype, device=F.ctx())
    assert block.num_src_nodes() == 4
    assert block.num_dst_nodes() == 5
    assert block.num_edges() == 3

    sx = F.randn((4, 5))
    dx = F.randn((5, 6))
    ex = F.randn((3, 4))
    block.srcdata['x'] = sx
    block.dstdata['x'] = dx
    block.edata['x'] = ex

    g = dgl.block_to_graph(block)
    assert g.num_src_nodes() == 4
    assert g.num_dst_nodes() == 5
    assert g.num_edges() == 3
    assert g.srcdata['x'] is sx
    assert g.dstdata['x'] is dx
    assert g.edata['x'] is ex

    block = dgl.create_block({
        ('A', 'AB', 'B'): ([1, 2, 3], [2, 1, 0]),
        ('B', 'BA', 'A'): ([2, 3], [3, 4])},
        idtype=idtype, device=F.ctx())
    assert block.num_src_nodes('A') == 4
    assert block.num_src_nodes('B') == 4
    assert block.num_dst_nodes('B') == 3
    assert block.num_dst_nodes('A') == 5
    assert block.num_edges('AB') == 3
    assert block.num_edges('BA') == 2

    block = dgl.create_block({
        ('A', 'AB', 'B'): ([], []),
        ('B', 'BA', 'A'): ([], [])},
        idtype=idtype, device=F.ctx())
    assert block.num_src_nodes('A') == 0
    assert block.num_src_nodes('B') == 0
    assert block.num_dst_nodes('B') == 0
    assert block.num_dst_nodes('A') == 0
    assert block.num_edges('AB') == 0
    assert block.num_edges('BA') == 0

    block = dgl.create_block({
        ('A', 'AB', 'B'): ([], []),
        ('B', 'BA', 'A'): ([], [])},
        num_src_nodes={'A': 5, 'B': 5},
        num_dst_nodes={'A': 6, 'B': 4},
        idtype=idtype, device=F.ctx())
    assert block.num_src_nodes('A') == 5
    assert block.num_src_nodes('B') == 5
    assert block.num_dst_nodes('B') == 4
    assert block.num_dst_nodes('A') == 6
    assert block.num_edges('AB') == 0
    assert block.num_edges('BA') == 0

    block = dgl.create_block({
        ('A', 'AB', 'B'): ([1, 2, 3], [2, 1, 0]),
        ('B', 'BA', 'A'): ([2, 3], [3, 4])},
        num_src_nodes={'A': 5, 'B': 5},
        num_dst_nodes={'A': 6, 'B': 4},
        idtype=idtype, device=F.ctx())
    assert block.num_src_nodes('A') == 5
    assert block.num_src_nodes('B') == 5
    assert block.num_dst_nodes('B') == 4
    assert block.num_dst_nodes('A') == 6
    assert block.num_edges(('A', 'AB', 'B')) == 3
    assert block.num_edges(('B', 'BA', 'A')) == 2

    sax = F.randn((5, 3))
    sbx = F.randn((5, 4))
    dax = F.randn((6, 5))
    dbx = F.randn((4, 6))
    eabx = F.randn((3, 7))
    ebax = F.randn((2, 8))
    block.srcnodes['A'].data['x'] = sax
    block.srcnodes['B'].data['x'] = sbx
    block.dstnodes['A'].data['x'] = dax
    block.dstnodes['B'].data['x'] = dbx
    block.edges['AB'].data['x'] = eabx
    block.edges['BA'].data['x'] = ebax

    hg = dgl.block_to_graph(block)
    assert hg.num_nodes('A_src') == 5
    assert hg.num_nodes('B_src') == 5
    assert hg.num_nodes('A_dst') == 6
    assert hg.num_nodes('B_dst') == 4
    assert hg.num_edges(('A_src', 'AB', 'B_dst')) == 3
    assert hg.num_edges(('B_src', 'BA', 'A_dst')) == 2
    assert hg.nodes['A_src'].data['x'] is sax
    assert hg.nodes['B_src'].data['x'] is sbx
    assert hg.nodes['A_dst'].data['x'] is dax
    assert hg.nodes['B_dst'].data['x'] is dbx
    assert hg.edges['AB'].data['x'] is eabx
    assert hg.edges['BA'].data['x'] is ebax
2840

nv-dlasalle's avatar
nv-dlasalle committed
2841
@parametrize_idtype
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
@pytest.mark.parametrize('fmt', ['coo', 'csr', 'csc'])
def test_adj_sparse(idtype, fmt):
    if fmt == 'coo':
        A = ssp.random(10, 10, 0.2).tocoo()
        A.data = np.arange(20)
        row = F.tensor(A.row, idtype)
        col = F.tensor(A.col, idtype)
        g = dgl.graph((row, col))
    elif fmt == 'csr':
        A = ssp.random(10, 10, 0.2).tocsr()
        A.data = np.arange(20)
        indptr = F.tensor(A.indptr, idtype)
        indices = F.tensor(A.indices, idtype)
        g = dgl.graph(('csr', (indptr, indices, [])))
        with pytest.raises(DGLError):
            g2 = dgl.graph(('csr', (indptr[:-1], indices, [])), num_nodes=10)
    elif fmt == 'csc':
        A = ssp.random(10, 10, 0.2).tocsc()
        A.data = np.arange(20)
        indptr = F.tensor(A.indptr, idtype)
        indices = F.tensor(A.indices, idtype)
        g = dgl.graph(('csc', (indptr, indices, [])))
        with pytest.raises(DGLError):
            g2 = dgl.graph(('csr', (indptr[:-1], indices, [])), num_nodes=10)

    A_coo = A.tocoo()
    A_csr = A.tocsr()
    A_csc = A.tocsc()
    row, col = g.adj_sparse('coo')
    assert np.array_equal(F.asnumpy(row), A_coo.row)
    assert np.array_equal(F.asnumpy(col), A_coo.col)

    indptr, indices, eids = g.adj_sparse('csr')
    assert np.array_equal(F.asnumpy(indptr), A_csr.indptr)
    if fmt == 'csr':
        assert len(eids) == 0
        assert np.array_equal(F.asnumpy(indices), A_csr.indices)
    else:
        indices_sorted = F.zeros(len(indices), idtype)
        indices_sorted = F.scatter_row(indices_sorted, eids, indices)
        indices_sorted_np = np.zeros(len(indices), dtype=A_csr.indices.dtype)
        indices_sorted_np[A_csr.data] = A_csr.indices
        assert np.array_equal(F.asnumpy(indices_sorted), indices_sorted_np)

    indptr, indices, eids = g.adj_sparse('csc')
    assert np.array_equal(F.asnumpy(indptr), A_csc.indptr)
    if fmt == 'csc':
        assert len(eids) == 0
        assert np.array_equal(F.asnumpy(indices), A_csc.indices)
    else:
        indices_sorted = F.zeros(len(indices), idtype)
        indices_sorted = F.scatter_row(indices_sorted, eids, indices)
        indices_sorted_np = np.zeros(len(indices), dtype=A_csc.indices.dtype)
        indices_sorted_np[A_csc.data] = A_csc.indices
        assert np.array_equal(F.asnumpy(indices_sorted), indices_sorted_np)

2898

2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
def _test_forking_pickler_entry(g, q):
    q.put(g.formats())

@unittest.skipIf(dgl.backend.backend_name == "mxnet", reason="MXNet doesn't support spawning")
def test_forking_pickler():
    ctx = mp.get_context('spawn')
    g = dgl.graph(([0,1,2],[1,2,3]))
    g.create_formats_()
    q = ctx.Queue(1)
    proc = ctx.Process(target=_test_forking_pickler_entry, args=(g, q))
    proc.start()
    fmt = q.get()['created']
    proc.join()
    assert 'coo' in fmt
    assert 'csr' in fmt
    assert 'csc' in fmt


2917
if __name__ == '__main__':
2918
2919
2920
2921
2922
    # test_create()
    # test_query()
    # test_hypersparse()
    # test_adj("int32")
    # test_inc()
2923
    # test_view("int32")
2924
    # test_view1("int32")
2925
    # test_flatten(F.int32)
2926
2927
    # test_convert_bound()
    # test_convert()
2928
    # test_to_device("int32")
2929
    # test_transform("int32")
2930
2931
    # test_subgraph("int32")
    # test_subgraph_mask("int32")
2932
2933
2934
2935
2936
    # test_apply()
    # test_level1()
    # test_level2()
    # test_updates()
    # test_backward()
2937
    # test_empty_heterograph('int32')
2938
2939
2940
2941
    # test_types_in_function()
    # test_stack_reduce()
    # test_isolated_ntype()
    # test_bipartite()
2942
    # test_dtype_cast()
2943
    # test_float_cast()
2944
    # test_reverse("int32")
2945
    # test_format()
2946
2947
2948
2949
2950
    #test_add_edges(F.int32)
    #test_add_nodes(F.int32)
    #test_remove_edges(F.int32)
    #test_remove_nodes(F.int32)
    #test_clone(F.int32)
2951
2952
2953
    #test_frame(F.int32)
    #test_frame_device(F.int32)
    #test_empty_query(F.int32)
2954
    #test_create_block(F.int32)
2955
    pass