"vscode:/vscode.git/clone" did not exist on "da4e8b389280009833cd0a01e8cf5ce4746f77fc"
test_heterograph.py 112 KB
Newer Older
1
2
3
4
5
6
7
8
import dgl
import dgl.function as fn
from collections import Counter
import numpy as np
import scipy.sparse as ssp
import itertools
import backend as F
import networkx as nx
9
import unittest, pytest
10
from dgl import DGLError
11
12
import test_utils
from test_utils import parametrize_dtype, get_cases
13
from utils import assert_is_identical_hetero
14
from scipy.sparse import rand
15
import multiprocessing as mp
16

17
def create_test_heterograph(idtype):
18
    # test heterograph from the docstring, plus a user -- wishes -- game relation
Minjie Wang's avatar
Minjie Wang committed
19
20
21
22
23
24
    # 3 users, 2 games, 2 developers
    # metagraph:
    #    ('user', 'follows', 'user'),
    #    ('user', 'plays', 'game'),
    #    ('user', 'wishes', 'game'),
    #    ('developer', 'develops', 'game')])
25

26
27
28
29
30
31
    g = dgl.heterograph({
        ('user', 'follows', 'user'): ([0, 1], [1, 2]),
        ('user', 'plays', 'game'): ([0, 1, 2, 1], [0, 0, 1, 1]),
        ('user', 'wishes', 'game'): ([0, 2], [1, 0]),
        ('developer', 'develops', 'game'): ([0, 1], [0, 1])
    }, idtype=idtype, device=F.ctx())
32
33
    assert g.idtype == idtype
    assert g.device == F.ctx()
34
35
    return g

36
def create_test_heterograph1(idtype):
Minjie Wang's avatar
Minjie Wang committed
37
    edges = []
38
39
40
41
42
    edges.extend([(0, 1), (1, 2)])  # follows
    edges.extend([(0, 3), (1, 3), (2, 4), (1, 4)])  # plays
    edges.extend([(0, 4), (2, 3)])  # wishes
    edges.extend([(5, 3), (6, 4)])  # develops
    edges = tuple(zip(*edges))
Minjie Wang's avatar
Minjie Wang committed
43
44
    ntypes = F.tensor([0, 0, 0, 1, 1, 2, 2])
    etypes = F.tensor([0, 0, 1, 1, 1, 1, 2, 2, 3, 3])
45
    g0 = dgl.graph(edges, idtype=idtype, device=F.ctx())
Minjie Wang's avatar
Minjie Wang committed
46
47
    g0.ndata[dgl.NTYPE] = ntypes
    g0.edata[dgl.ETYPE] = etypes
48
49
    return dgl.to_heterogeneous(g0, ['user', 'game', 'developer'],
                                ['follows', 'plays', 'wishes', 'develops'])
Minjie Wang's avatar
Minjie Wang committed
50

51
def create_test_heterograph2(idtype):
52
    g = dgl.heterograph({
53
54
        ('user', 'follows', 'user'): ([0, 1], [1, 2]),
        ('user', 'plays', 'game'): ([0, 1, 2, 1], [0, 0, 1, 1]),
55
56
        ('user', 'wishes', 'game'): ('csr', ([0, 1, 1, 2], [1, 0], [])),
        ('developer', 'develops', 'game'): ('csc', ([0, 1, 2], [0, 1], [0, 1])),
57
58
59
        }, idtype=idtype, device=F.ctx())
    assert g.idtype == idtype
    assert g.device == F.ctx()
60
61
    return g

62
63
64
65
66
67
68
def create_test_heterograph3(idtype):
    g = dgl.heterograph({
        ('user', 'plays', 'game'): (F.tensor([0, 1, 1, 2], dtype=idtype),
                                    F.tensor([0, 0, 1, 1], dtype=idtype)),
        ('developer', 'develops', 'game'): (F.tensor([0, 1], dtype=idtype),
                                            F.tensor([0, 1], dtype=idtype))},
        idtype=idtype, device=F.ctx())
69
70
71
72

    g.nodes['user'].data['h'] = F.copy_to(F.tensor([1, 1, 1], dtype=idtype), ctx=F.ctx())
    g.nodes['game'].data['h'] = F.copy_to(F.tensor([2, 2], dtype=idtype), ctx=F.ctx())
    g.nodes['developer'].data['h'] = F.copy_to(F.tensor([3, 3], dtype=idtype), ctx=F.ctx())
73
74
75
    g.edges['plays'].data['h'] = F.copy_to(F.tensor([1, 1, 1, 1], dtype=idtype), ctx=F.ctx())
    return g

76
def create_test_heterograph4(idtype):
77
78
    g = dgl.heterograph({
        ('user', 'follows', 'user'): (F.tensor([0, 1, 1, 2, 2, 2], dtype=idtype),
79
                                      F.tensor([0, 0, 1, 1, 2, 2], dtype=idtype)),
80
        ('user', 'plays', 'game'): (F.tensor([0, 1], dtype=idtype),
81
                                    F.tensor([0, 1], dtype=idtype))},
82
        idtype=idtype, device=F.ctx())
83
84
    g.nodes['user'].data['h'] = F.copy_to(F.tensor([1, 1, 1], dtype=idtype), ctx=F.ctx())
    g.nodes['game'].data['h'] = F.copy_to(F.tensor([2, 2], dtype=idtype), ctx=F.ctx())
85
86
87
88
    g.edges['follows'].data['h'] = F.copy_to(F.tensor([1, 2, 3, 4, 5, 6], dtype=idtype), ctx=F.ctx())
    g.edges['plays'].data['h'] = F.copy_to(F.tensor([1, 2], dtype=idtype), ctx=F.ctx())
    return g

89
def create_test_heterograph5(idtype):
90
91
    g = dgl.heterograph({
        ('user', 'follows', 'user'): (F.tensor([1, 2], dtype=idtype),
92
                                      F.tensor([0, 1], dtype=idtype)),
93
94
95
        ('user', 'plays', 'game'): (F.tensor([0, 1], dtype=idtype),
                                    F.tensor([0, 1], dtype=idtype))},
        idtype=idtype, device=F.ctx())
96
97
    g.nodes['user'].data['h'] = F.copy_to(F.tensor([1, 1, 1], dtype=idtype), ctx=F.ctx())
    g.nodes['game'].data['h'] = F.copy_to(F.tensor([2, 2], dtype=idtype), ctx=F.ctx())
98
99
    g.edges['follows'].data['h'] = F.copy_to(F.tensor([1, 2], dtype=idtype), ctx=F.ctx())
    g.edges['plays'].data['h'] = F.copy_to(F.tensor([1, 2], dtype=idtype), ctx=F.ctx())
100
101
    return g

Minjie Wang's avatar
Minjie Wang committed
102
103
104
def get_redfn(name):
    return getattr(F, name)

105
@parametrize_dtype
106
107
108
109
110
def test_create(idtype):
    device = F.ctx()
    g0 = create_test_heterograph(idtype)
    g1 = create_test_heterograph1(idtype)
    g2 = create_test_heterograph2(idtype)
111
112
    assert set(g0.ntypes) == set(g1.ntypes) == set(g2.ntypes)
    assert set(g0.canonical_etypes) == set(g1.canonical_etypes) == set(g2.canonical_etypes)
Minjie Wang's avatar
Minjie Wang committed
113

114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
    # Create a bipartite graph from a SciPy matrix
    src_ids = np.array([2, 3, 4])
    dst_ids = np.array([1, 2, 3])
    eweight = np.array([0.2, 0.3, 0.5])
    sp_mat = ssp.coo_matrix((eweight, (src_ids, dst_ids)))
    g = dgl.bipartite_from_scipy(sp_mat, utype='user', etype='plays',
                                 vtype='game', idtype=idtype, device=device)
    assert g.idtype == idtype
    assert g.device == device
    assert g.num_src_nodes() == 5
    assert g.num_dst_nodes() == 4
    assert g.num_edges() == 3
    src, dst = g.edges()
    assert F.allclose(src, F.tensor([2, 3, 4], dtype=idtype))
    assert F.allclose(dst, F.tensor([1, 2, 3], dtype=idtype))
    g = dgl.bipartite_from_scipy(sp_mat, utype='_U', etype='_E', vtype='_V',
                                 eweight_name='w', idtype=idtype, device=device)
    assert F.allclose(g.edata['w'], F.tensor(eweight))

    # Create a bipartite graph from a NetworkX graph
    nx_g = nx.DiGraph()
    nx_g.add_nodes_from([1, 3], bipartite=0, feat1=np.zeros((2)), feat2=np.ones((2)))
    nx_g.add_nodes_from([2, 4, 5], bipartite=1, feat3=np.zeros((3)))
    nx_g.add_edge(1, 4, weight=np.ones((1)), eid=np.array([1]))
    nx_g.add_edge(3, 5, weight=np.ones((1)), eid=np.array([0]))
    g = dgl.bipartite_from_networkx(nx_g, utype='user', etype='plays',
                                    vtype='game', idtype=idtype, device=device)
141
142
    assert g.idtype == idtype
    assert g.device == device
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
    assert g.num_src_nodes() == 2
    assert g.num_dst_nodes() == 3
    assert g.num_edges() == 2
    src, dst = g.edges()
    assert F.allclose(src, F.tensor([0, 1], dtype=idtype))
    assert F.allclose(dst, F.tensor([1, 2], dtype=idtype))
    g = dgl.bipartite_from_networkx(nx_g, utype='_U', etype='_E', vtype='V',
                                    u_attrs=['feat1', 'feat2'],
                                    e_attrs = ['weight'], v_attrs = ['feat3'])
    assert F.allclose(g.srcdata['feat1'], F.tensor(np.zeros((2, 2))))
    assert F.allclose(g.srcdata['feat2'], F.tensor(np.ones((2, 2))))
    assert F.allclose(g.dstdata['feat3'], F.tensor(np.zeros((3, 3))))
    assert F.allclose(g.edata['weight'], F.tensor(np.ones((2, 1))))
    g = dgl.bipartite_from_networkx(nx_g, utype='_U', etype='_E', vtype='V',
                                    edge_id_attr_name='eid', idtype=idtype, device=device)
    src, dst = g.edges()
    assert F.allclose(src, F.tensor([1, 0], dtype=idtype))
    assert F.allclose(dst, F.tensor([2, 1], dtype=idtype))
Minjie Wang's avatar
Minjie Wang committed
161
162
163

    # create from scipy
    spmat = ssp.coo_matrix(([1,1,1], ([0, 0, 1], [2, 3, 2])), shape=(4, 4))
164
165
166
    g = dgl.from_scipy(spmat, idtype=idtype, device=device)
    assert g.num_nodes() == 4
    assert g.num_edges() == 3
167
168
    assert g.idtype == idtype
    assert g.device == device
Minjie Wang's avatar
Minjie Wang committed
169

170
171
    # test inferring number of nodes for heterograph
    g = dgl.heterograph({
172
173
174
        ('l0', 'e0', 'l1'): ([0, 0], [1, 2]),
        ('l0', 'e1', 'l2'): ([2], [2]),
        ('l2', 'e2', 'l2'): ([1, 3], [1, 3])
175
        }, idtype=idtype, device=device)
176
177
178
    assert g.num_nodes('l0') == 3
    assert g.num_nodes('l1') == 3
    assert g.num_nodes('l2') == 4
179
180
    assert g.idtype == idtype
    assert g.device == device
181

182
183
    # test if validate flag works
    # homo graph
184
    with pytest.raises(DGLError):
185
186
        g = dgl.graph(
            ([0, 0, 0, 1, 1, 2], [0, 1, 2, 0, 1, 2]),
187
            num_nodes=2,
188
            idtype=idtype, device=device
189
190
191
        )
    # bipartite graph
    def _test_validate_bipartite(card):
192
        with pytest.raises(DGLError):
193
194
195
            g = dgl.heterograph({
                ('_U', '_E', '_V'): ([0, 0, 1, 1, 2], [1, 1, 2, 2, 3])
            }, {'_U': card[0], '_V': card[1]}, idtype=idtype, device=device)
196
197
198
199

    _test_validate_bipartite((3, 3))
    _test_validate_bipartite((2, 4))

200
201
202
203
204
205
206
207
208
209
    # test from_scipy
    num_nodes = 10
    density = 0.25
    for fmt in ['csr', 'coo', 'csc']:
        adj = rand(num_nodes, num_nodes, density=density, format=fmt)
        g = dgl.from_scipy(adj, eweight_name='w', idtype=idtype)
        assert g.idtype == idtype
        assert g.device == F.cpu()
        assert F.array_equal(g.edata['w'], F.copy_to(F.tensor(adj.data), F.cpu()))

210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
def test_create2():
    mat = ssp.random(20, 30, 0.1)

    # coo
    mat = mat.tocoo()
    row = F.tensor(mat.row, dtype=F.int64)
    col = F.tensor(mat.col, dtype=F.int64)
    g = dgl.heterograph(
        {('A', 'AB', 'B'): ('coo', (row, col))}, num_nodes_dict={'A': 20, 'B': 30})

    # csr
    mat = mat.tocsr()
    indptr = F.tensor(mat.indptr, dtype=F.int64)
    indices = F.tensor(mat.indices, dtype=F.int64)
    data = F.tensor([], dtype=F.int64)
    g = dgl.heterograph(
        {('A', 'AB', 'B'): ('csr', (indptr, indices, data))}, num_nodes_dict={'A': 20, 'B': 30})

    # csc
    mat = mat.tocsc()
    indptr = F.tensor(mat.indptr, dtype=F.int64)
    indices = F.tensor(mat.indices, dtype=F.int64)
    data = F.tensor([], dtype=F.int64)
    g = dgl.heterograph(
        {('A', 'AB', 'B'): ('csc', (indptr, indices, data))}, num_nodes_dict={'A': 20, 'B': 30})

236
@parametrize_dtype
237
238
def test_query(idtype):
    g = create_test_heterograph(idtype)
239
240

    ntypes = ['user', 'game', 'developer']
Minjie Wang's avatar
Minjie Wang committed
241
    canonical_etypes = [
242
243
244
245
        ('user', 'follows', 'user'),
        ('user', 'plays', 'game'),
        ('user', 'wishes', 'game'),
        ('developer', 'develops', 'game')]
Minjie Wang's avatar
Minjie Wang committed
246
    etypes = ['follows', 'plays', 'wishes', 'develops']
247
248

    # node & edge types
Minjie Wang's avatar
Minjie Wang committed
249
250
251
    assert set(ntypes) == set(g.ntypes)
    assert set(etypes) == set(g.etypes)
    assert set(canonical_etypes) == set(g.canonical_etypes)
252
253

    # metagraph
254
    mg = g.metagraph()
Minjie Wang's avatar
Minjie Wang committed
255
    assert set(g.ntypes) == set(mg.nodes)
256
257
258
259
260
261
    etype_triplets = [(u, v, e) for u, v, e in mg.edges(keys=True)]
    assert set([
        ('user', 'user', 'follows'),
        ('user', 'game', 'plays'),
        ('user', 'game', 'wishes'),
        ('developer', 'game', 'develops')]) == set(etype_triplets)
Minjie Wang's avatar
Minjie Wang committed
262
263
    for i in range(len(etypes)):
        assert g.to_canonical_etype(etypes[i]) == canonical_etypes[i]
264

265
266
    def _test(g):
        # number of nodes
267
        assert [g.num_nodes(ntype) for ntype in ntypes] == [3, 2, 2]
268

269
        # number of edges
270
        assert [g.num_edges(etype) for etype in etypes] == [2, 4, 2, 2]
271

272
273
274
275
276
277
278
279
        # has_node & has_nodes
        for ntype in ntypes:
            n = g.number_of_nodes(ntype)
            for i in range(n):
                assert g.has_node(i, ntype)
            assert not g.has_node(n, ntype)
            assert np.array_equal(
                F.asnumpy(g.has_nodes([0, n], ntype)).astype('int32'), [1, 0])
Minjie Wang's avatar
Minjie Wang committed
280

281
        assert not g.is_multigraph
Minjie Wang's avatar
Minjie Wang committed
282
283
284
285

        for etype in etypes:
            srcs, dsts = edges[etype]
            for src, dst in zip(srcs, dsts):
286
                assert g.has_edges_between(src, dst, etype)
Minjie Wang's avatar
Minjie Wang committed
287
288
289
290
            assert F.asnumpy(g.has_edges_between(srcs, dsts, etype)).all()

            srcs, dsts = negative_edges[etype]
            for src, dst in zip(srcs, dsts):
291
                assert not g.has_edges_between(src, dst, etype)
Minjie Wang's avatar
Minjie Wang committed
292
293
294
295
296
297
298
299
300
301
302
            assert not F.asnumpy(g.has_edges_between(srcs, dsts, etype)).any()

            srcs, dsts = edges[etype]
            n_edges = len(srcs)

            # predecessors & in_edges & in_degree
            pred = [s for s, d in zip(srcs, dsts) if d == 0]
            assert set(F.asnumpy(g.predecessors(0, etype)).tolist()) == set(pred)
            u, v = g.in_edges([0], etype=etype)
            assert F.asnumpy(v).tolist() == [0] * len(pred)
            assert set(F.asnumpy(u).tolist()) == set(pred)
303
            assert g.in_degrees(0, etype) == len(pred)
Minjie Wang's avatar
Minjie Wang committed
304
305
306
307
308
309
310

            # successors & out_edges & out_degree
            succ = [d for s, d in zip(srcs, dsts) if s == 0]
            assert set(F.asnumpy(g.successors(0, etype)).tolist()) == set(succ)
            u, v = g.out_edges([0], etype=etype)
            assert F.asnumpy(u).tolist() == [0] * len(succ)
            assert set(F.asnumpy(v).tolist()) == set(succ)
311
            assert g.out_degrees(0, etype) == len(succ)
Minjie Wang's avatar
Minjie Wang committed
312
313
314

            # edge_id & edge_ids
            for i, (src, dst) in enumerate(zip(srcs, dsts)):
315
316
317
                assert g.edge_ids(src, dst, etype=etype) == i
                _, _, eid = g.edge_ids(src, dst, etype=etype, return_uv=True)
                assert eid == i
Minjie Wang's avatar
Minjie Wang committed
318
            assert F.asnumpy(g.edge_ids(srcs, dsts, etype=etype)).tolist() == list(range(n_edges))
319
            u, v, e = g.edge_ids(srcs, dsts, etype=etype, return_uv=True)
320
321
322
            u, v, e = F.asnumpy(u), F.asnumpy(v), F.asnumpy(e)
            assert u[e].tolist() == srcs
            assert v[e].tolist() == dsts
323

Minjie Wang's avatar
Minjie Wang committed
324
            # find_edges
325
326
            for eid in [list(range(n_edges)), np.arange(n_edges), F.astype(F.arange(0, n_edges), g.idtype)]:
                u, v = g.find_edges(eid, etype)
327
328
                assert F.asnumpy(u).tolist() == srcs
                assert F.asnumpy(v).tolist() == dsts
Minjie Wang's avatar
Minjie Wang committed
329
330
331

            # all_edges.
            for order in ['eid']:
332
                u, v, e = g.edges('all', order, etype)
Minjie Wang's avatar
Minjie Wang committed
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
                assert F.asnumpy(u).tolist() == srcs
                assert F.asnumpy(v).tolist() == dsts
                assert F.asnumpy(e).tolist() == list(range(n_edges))

            # in_degrees & out_degrees
            in_degrees = F.asnumpy(g.in_degrees(etype=etype))
            out_degrees = F.asnumpy(g.out_degrees(etype=etype))
            src_count = Counter(srcs)
            dst_count = Counter(dsts)
            utype, _, vtype = g.to_canonical_etype(etype)
            for i in range(g.number_of_nodes(utype)):
                assert out_degrees[i] == src_count[i]
            for i in range(g.number_of_nodes(vtype)):
                assert in_degrees[i] == dst_count[i]

    edges = {
        'follows': ([0, 1], [1, 2]),
        'plays': ([0, 1, 2, 1], [0, 0, 1, 1]),
        'wishes': ([0, 2], [1, 0]),
        'develops': ([0, 1], [0, 1]),
    }
    # edges that does not exist in the graph
    negative_edges = {
        'follows': ([0, 1], [0, 1]),
        'plays': ([0, 2], [1, 0]),
        'wishes': ([0, 1], [0, 1]),
        'develops': ([0, 1], [1, 0]),
    }
361
    g = create_test_heterograph(idtype)
Minjie Wang's avatar
Minjie Wang committed
362
    _test(g)
363
    g = create_test_heterograph1(idtype)
364
    _test(g)
365
366
    if F._default_context_str != 'gpu':
        # XXX: CUDA COO operators have not been live yet.
367
        g = create_test_heterograph2(idtype)
368
        _test(g)
Minjie Wang's avatar
Minjie Wang committed
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383

    etypes = canonical_etypes
    edges = {
        ('user', 'follows', 'user'): ([0, 1], [1, 2]),
        ('user', 'plays', 'game'): ([0, 1, 2, 1], [0, 0, 1, 1]),
        ('user', 'wishes', 'game'): ([0, 2], [1, 0]),
        ('developer', 'develops', 'game'): ([0, 1], [0, 1]),
    }
    # edges that does not exist in the graph
    negative_edges = {
        ('user', 'follows', 'user'): ([0, 1], [0, 1]),
        ('user', 'plays', 'game'): ([0, 2], [1, 0]),
        ('user', 'wishes', 'game'): ([0, 1], [0, 1]),
        ('developer', 'develops', 'game'): ([0, 1], [1, 0]),
        }
384
    g = create_test_heterograph(idtype)
Minjie Wang's avatar
Minjie Wang committed
385
    _test(g)
386
    g = create_test_heterograph1(idtype)
387
    _test(g)
388
389
    if F._default_context_str != 'gpu':
        # XXX: CUDA COO operators have not been live yet.
390
        g = create_test_heterograph2(idtype)
391
        _test(g)
Minjie Wang's avatar
Minjie Wang committed
392
393
394
395

    # test repr
    print(g)

396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
@parametrize_dtype
def test_empty_query(idtype):
    g = dgl.graph(([1, 2, 3], [0, 4, 5]), idtype=idtype, device=F.ctx())
    g.add_nodes(0)
    g.add_edges([], [])
    g.remove_edges([])
    g.remove_nodes([])
    assert F.shape(g.has_nodes([])) == (0,)
    assert F.shape(g.has_edges_between([], [])) == (0,)
    g.edge_ids([], [])
    g.edge_ids([], [], return_uv=True)
    g.find_edges([])

    assert F.shape(g.in_edges([], form='eid')) == (0,)
    u, v = g.in_edges([], form='uv')
    assert F.shape(u) == (0,)
    assert F.shape(v) == (0,)
    u, v, e = g.in_edges([], form='all')
    assert F.shape(u) == (0,)
    assert F.shape(v) == (0,)
    assert F.shape(e) == (0,)

    assert F.shape(g.out_edges([], form='eid')) == (0,)
    u, v = g.out_edges([], form='uv')
    assert F.shape(u) == (0,)
    assert F.shape(v) == (0,)
    u, v, e = g.out_edges([], form='all')
    assert F.shape(u) == (0,)
    assert F.shape(v) == (0,)
    assert F.shape(e) == (0,)

    assert F.shape(g.in_degrees([])) == (0,)
    assert F.shape(g.out_degrees([])) == (0,)

430
@unittest.skipIf(F._default_context_str == 'gpu', reason="GPU does not have COO impl.")
431
def _test_hypersparse():
432
433
434
435
    N1 = 1 << 50        # should crash if allocated a CSR
    N2 = 1 << 48

    g = dgl.heterograph({
436
437
        ('user', 'follows', 'user'): (F.tensor([0], F.int64), F.tensor([1], F.int64)),
        ('user', 'plays', 'game'): (F.tensor([0], F.int64), F.tensor([N2], F.int64))},
438
        {'user': N1, 'game': N1},
439
        device=F.ctx())
440
441
442
443
444
    assert g.number_of_nodes('user') == N1
    assert g.number_of_nodes('game') == N1
    assert g.number_of_edges('follows') == 1
    assert g.number_of_edges('plays') == 1

445
446
    assert g.has_edges_between(0, 1, 'follows')
    assert not g.has_edges_between(0, 0, 'follows')
447
448
449
    mask = F.asnumpy(g.has_edges_between([0, 0], [0, 1], 'follows')).tolist()
    assert mask == [0, 1]

450
451
    assert g.has_edges_between(0, N2, 'plays')
    assert not g.has_edges_between(0, 0, 'plays')
452
453
454
455
456
457
458
459
460
461
462
463
464
    mask = F.asnumpy(g.has_edges_between([0, 0], [0, N2], 'plays')).tolist()
    assert mask == [0, 1]

    assert F.asnumpy(g.predecessors(0, 'follows')).tolist() == []
    assert F.asnumpy(g.successors(0, 'follows')).tolist() == [1]
    assert F.asnumpy(g.predecessors(1, 'follows')).tolist() == [0]
    assert F.asnumpy(g.successors(1, 'follows')).tolist() == []

    assert F.asnumpy(g.predecessors(0, 'plays')).tolist() == []
    assert F.asnumpy(g.successors(0, 'plays')).tolist() == [N2]
    assert F.asnumpy(g.predecessors(N2, 'plays')).tolist() == [0]
    assert F.asnumpy(g.successors(N2, 'plays')).tolist() == []

465
466
    assert g.edge_ids(0, 1, etype='follows') == 0
    assert g.edge_ids(0, N2, etype='plays') == 0
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482

    u, v = g.find_edges([0], 'follows')
    assert F.asnumpy(u).tolist() == [0]
    assert F.asnumpy(v).tolist() == [1]
    u, v = g.find_edges([0], 'plays')
    assert F.asnumpy(u).tolist() == [0]
    assert F.asnumpy(v).tolist() == [N2]
    u, v, e = g.all_edges('all', 'eid', 'follows')
    assert F.asnumpy(u).tolist() == [0]
    assert F.asnumpy(v).tolist() == [1]
    assert F.asnumpy(e).tolist() == [0]
    u, v, e = g.all_edges('all', 'eid', 'plays')
    assert F.asnumpy(u).tolist() == [0]
    assert F.asnumpy(v).tolist() == [N2]
    assert F.asnumpy(e).tolist() == [0]

483
484
    assert g.in_degrees(0, 'follows') == 0
    assert g.in_degrees(1, 'follows') == 1
485
    assert F.asnumpy(g.in_degrees([0, 1], 'follows')).tolist() == [0, 1]
486
487
    assert g.in_degrees(0, 'plays') == 0
    assert g.in_degrees(N2, 'plays') == 1
488
    assert F.asnumpy(g.in_degrees([0, N2], 'plays')).tolist() == [0, 1]
489
490
    assert g.out_degrees(0, 'follows') == 1
    assert g.out_degrees(1, 'follows') == 0
491
    assert F.asnumpy(g.out_degrees([0, 1], 'follows')).tolist() == [1, 0]
492
493
    assert g.out_degrees(0, 'plays') == 1
    assert g.out_degrees(N2, 'plays') == 0
494
495
    assert F.asnumpy(g.out_degrees([0, N2], 'plays')).tolist() == [1, 0]

496
def _test_edge_ids():
497
498
499
500
    N1 = 1 << 50        # should crash if allocated a CSR
    N2 = 1 << 48

    g = dgl.heterograph({
501
502
        ('user', 'follows', 'user'): (F.tensor([0], F.int64), F.tensor([1], F.int64)),
        ('user', 'plays', 'game'): (F.tensor([0], F.int64), F.tensor([N2], F.int64))},
503
        {'user': N1, 'game': N1})
504
505
    with pytest.raises(DGLError):
        eid = g.edge_ids(0, 0, etype='follows')
506
507

    g2 = dgl.heterograph({
508
509
510
        ('user', 'follows', 'user'): (F.tensor([0, 0], F.int64), F.tensor([1, 1], F.int64)),
        ('user', 'plays', 'game'): (F.tensor([0], F.int64), F.tensor([N2], F.int64))},
        {'user': N1, 'game': N1}, device=F.cpu())
511

512
513
    eid = g2.edge_ids(0, 1, etype='follows')
    assert eid == 0
514

515
@parametrize_dtype
516
517
def test_adj(idtype):
    g = create_test_heterograph(idtype)
518
    adj = F.sparse_to_numpy(g.adj(transpose=True, etype='follows'))
Minjie Wang's avatar
Minjie Wang committed
519
520
521
522
523
    assert np.allclose(
            adj,
            np.array([[0., 0., 0.],
                      [1., 0., 0.],
                      [0., 1., 0.]]))
524
    adj = F.sparse_to_numpy(g.adj(transpose=False, etype='follows'))
Minjie Wang's avatar
Minjie Wang committed
525
526
527
528
529
    assert np.allclose(
            adj,
            np.array([[0., 1., 0.],
                      [0., 0., 1.],
                      [0., 0., 0.]]))
530
    adj = F.sparse_to_numpy(g.adj(transpose=True, etype='plays'))
Minjie Wang's avatar
Minjie Wang committed
531
532
533
534
    assert np.allclose(
            adj,
            np.array([[1., 1., 0.],
                      [0., 1., 1.]]))
535
    adj = F.sparse_to_numpy(g.adj(transpose=False, etype='plays'))
Minjie Wang's avatar
Minjie Wang committed
536
537
538
539
540
541
    assert np.allclose(
            adj,
            np.array([[1., 0.],
                      [1., 1.],
                      [0., 1.]]))

542
    adj = g.adj(transpose=True, scipy_fmt='csr', etype='follows')
Minjie Wang's avatar
Minjie Wang committed
543
544
545
546
547
    assert np.allclose(
            adj.todense(),
            np.array([[0., 0., 0.],
                      [1., 0., 0.],
                      [0., 1., 0.]]))
548
    adj = g.adj(transpose=True, scipy_fmt='coo', etype='follows')
Minjie Wang's avatar
Minjie Wang committed
549
550
551
552
553
    assert np.allclose(
            adj.todense(),
            np.array([[0., 0., 0.],
                      [1., 0., 0.],
                      [0., 1., 0.]]))
554
    adj = g.adj(transpose=True, scipy_fmt='csr', etype='plays')
Minjie Wang's avatar
Minjie Wang committed
555
556
557
558
    assert np.allclose(
            adj.todense(),
            np.array([[1., 1., 0.],
                      [0., 1., 1.]]))
559
    adj = g.adj(transpose=True, scipy_fmt='coo', etype='plays')
Minjie Wang's avatar
Minjie Wang committed
560
561
562
563
    assert np.allclose(
            adj.todense(),
            np.array([[1., 1., 0.],
                      [0., 1., 1.]]))
564
    adj = F.sparse_to_numpy(g['follows'].adj(transpose=True))
Minjie Wang's avatar
Minjie Wang committed
565
566
567
568
569
570
    assert np.allclose(
            adj,
            np.array([[0., 0., 0.],
                      [1., 0., 0.],
                      [0., 1., 0.]]))

571
@parametrize_dtype
572
573
def test_inc(idtype):
    g = create_test_heterograph(idtype)
Minjie Wang's avatar
Minjie Wang committed
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
    adj = F.sparse_to_numpy(g['follows'].inc('in'))
    assert np.allclose(
            adj,
            np.array([[0., 0.],
                      [1., 0.],
                      [0., 1.]]))
    adj = F.sparse_to_numpy(g['follows'].inc('out'))
    assert np.allclose(
            adj,
            np.array([[1., 0.],
                      [0., 1.],
                      [0., 0.]]))
    adj = F.sparse_to_numpy(g['follows'].inc('both'))
    assert np.allclose(
            adj,
            np.array([[-1., 0.],
                      [1., -1.],
                      [0., 1.]]))
    adj = F.sparse_to_numpy(g.inc('in', etype='plays'))
    assert np.allclose(
            adj,
            np.array([[1., 1., 0., 0.],
                      [0., 0., 1., 1.]]))
    adj = F.sparse_to_numpy(g.inc('out', etype='plays'))
    assert np.allclose(
            adj,
            np.array([[1., 0., 0., 0.],
                      [0., 1., 0., 1.],
                      [0., 0., 1., 0.]]))
    adj = F.sparse_to_numpy(g.inc('both', etype='follows'))
    assert np.allclose(
            adj,
            np.array([[-1., 0.],
                      [1., -1.],
                      [0., 1.]]))
609
610

@parametrize_dtype
611
def test_view(idtype):
612
    # test single node type
613
614
615
    g = dgl.heterograph({
        ('user', 'follows', 'user'): ([0, 1], [1, 2])
    }, idtype=idtype, device=F.ctx())
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
    f1 = F.randn((3, 6))
    g.ndata['h'] = f1
    f2 = g.nodes['user'].data['h']
    assert F.array_equal(f1, f2)
    fail = False
    try:
        g.ndata['h'] = {'user' : f1}
    except Exception:
        fail = True
    assert fail

    # test single edge type
    f3 = F.randn((2, 4))
    g.edata['h'] = f3
    f4 = g.edges['follows'].data['h']
    assert F.array_equal(f3, f4)
    fail = False
    try:
        g.edata['h'] = {'follows' : f3}
    except Exception:
        fail = True
    assert fail

Minjie Wang's avatar
Minjie Wang committed
639
    # test data view
640
    g = create_test_heterograph(idtype)
641
642

    f1 = F.randn((3, 6))
Minjie Wang's avatar
Minjie Wang committed
643
644
    g.nodes['user'].data['h'] = f1       # ok
    f2 = g.nodes['user'].data['h']
645
    assert F.array_equal(f1, f2)
646
    assert F.array_equal(g.nodes('user'), F.arange(0, 3, idtype))
647
648
649
650
651
652
653
654
655
656
657
    g.nodes['user'].data.pop('h')

    # multi type ndata
    f1 = F.randn((3, 6))
    f2 = F.randn((2, 6))
    fail = False
    try:
        g.ndata['h'] = f1
    except Exception:
        fail = True
    assert fail
658
659

    f3 = F.randn((2, 4))
Minjie Wang's avatar
Minjie Wang committed
660
661
662
    g.edges['user', 'follows', 'user'].data['h'] = f3
    f4 = g.edges['user', 'follows', 'user'].data['h']
    f5 = g.edges['follows'].data['h']
663
    assert F.array_equal(f3, f4)
Minjie Wang's avatar
Minjie Wang committed
664
    assert F.array_equal(f3, f5)
665
    assert F.array_equal(g.edges(etype='follows', form='eid'), F.arange(0, 2, idtype))
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
    g.edges['follows'].data.pop('h')

    f3 = F.randn((2, 4))
    fail = False
    try:
        g.edata['h'] = f3
    except Exception:
        fail = True
    assert fail

    # test srcdata
    f1 = F.randn((3, 6))
    g.srcnodes['user'].data['h'] = f1       # ok
    f2 = g.srcnodes['user'].data['h']
    assert F.array_equal(f1, f2)
681
    assert F.array_equal(g.srcnodes('user'), F.arange(0, 3, idtype))
682
683
684
685
686
687
688
    g.srcnodes['user'].data.pop('h')

    # test dstdata
    f1 = F.randn((3, 6))
    g.dstnodes['user'].data['h'] = f1       # ok
    f2 = g.dstnodes['user'].data['h']
    assert F.array_equal(f1, f2)
689
    assert F.array_equal(g.dstnodes('user'), F.arange(0, 3, idtype))
690
691
    g.dstnodes['user'].data.pop('h')

692
@parametrize_dtype
693
def test_view1(idtype):
Minjie Wang's avatar
Minjie Wang committed
694
    # test relation view
695
    HG = create_test_heterograph(idtype)
Minjie Wang's avatar
Minjie Wang committed
696
697
698
699
700
701
702
703
704
705
706
707
708
709
    ntypes = ['user', 'game', 'developer']
    canonical_etypes = [
        ('user', 'follows', 'user'),
        ('user', 'plays', 'game'),
        ('user', 'wishes', 'game'),
        ('developer', 'develops', 'game')]
    etypes = ['follows', 'plays', 'wishes', 'develops']

    def _test_query():
        for etype in etypes:
            utype, _, vtype = HG.to_canonical_etype(etype)
            g = HG[etype]
            srcs, dsts = edges[etype]
            for src, dst in zip(srcs, dsts):
710
                assert g.has_edges_between(src, dst)
Minjie Wang's avatar
Minjie Wang committed
711
712
713
714
            assert F.asnumpy(g.has_edges_between(srcs, dsts)).all()

            srcs, dsts = negative_edges[etype]
            for src, dst in zip(srcs, dsts):
715
                assert not g.has_edges_between(src, dst)
Minjie Wang's avatar
Minjie Wang committed
716
717
718
719
720
721
722
723
724
725
726
            assert not F.asnumpy(g.has_edges_between(srcs, dsts)).any()

            srcs, dsts = edges[etype]
            n_edges = len(srcs)

            # predecessors & in_edges & in_degree
            pred = [s for s, d in zip(srcs, dsts) if d == 0]
            assert set(F.asnumpy(g.predecessors(0)).tolist()) == set(pred)
            u, v = g.in_edges([0])
            assert F.asnumpy(v).tolist() == [0] * len(pred)
            assert set(F.asnumpy(u).tolist()) == set(pred)
727
            assert g.in_degrees(0) == len(pred)
Minjie Wang's avatar
Minjie Wang committed
728
729
730
731
732
733
734

            # successors & out_edges & out_degree
            succ = [d for s, d in zip(srcs, dsts) if s == 0]
            assert set(F.asnumpy(g.successors(0)).tolist()) == set(succ)
            u, v = g.out_edges([0])
            assert F.asnumpy(u).tolist() == [0] * len(succ)
            assert set(F.asnumpy(v).tolist()) == set(succ)
735
            assert g.out_degrees(0) == len(succ)
Minjie Wang's avatar
Minjie Wang committed
736
737
738

            # edge_id & edge_ids
            for i, (src, dst) in enumerate(zip(srcs, dsts)):
739
740
741
                assert g.edge_ids(src, dst, etype=etype) == i
                _, _, eid = g.edge_ids(src, dst, etype=etype, return_uv=True)
                assert eid == i
Minjie Wang's avatar
Minjie Wang committed
742
            assert F.asnumpy(g.edge_ids(srcs, dsts)).tolist() == list(range(n_edges))
743
            u, v, e = g.edge_ids(srcs, dsts, return_uv=True)
744
745
746
            u, v, e = F.asnumpy(u), F.asnumpy(v), F.asnumpy(e)
            assert u[e].tolist() == srcs
            assert v[e].tolist() == dsts
Minjie Wang's avatar
Minjie Wang committed
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767

            # find_edges
            u, v = g.find_edges(list(range(n_edges)))
            assert F.asnumpy(u).tolist() == srcs
            assert F.asnumpy(v).tolist() == dsts

            # all_edges.
            for order in ['eid']:
                u, v, e = g.all_edges(form='all', order=order)
                assert F.asnumpy(u).tolist() == srcs
                assert F.asnumpy(v).tolist() == dsts
                assert F.asnumpy(e).tolist() == list(range(n_edges))

            # in_degrees & out_degrees
            in_degrees = F.asnumpy(g.in_degrees())
            out_degrees = F.asnumpy(g.out_degrees())
            src_count = Counter(srcs)
            dst_count = Counter(dsts)
            for i in range(g.number_of_nodes(utype)):
                assert out_degrees[i] == src_count[i]
            for i in range(g.number_of_nodes(vtype)):
768
                assert in_degrees[i] == dst_count[i]
Minjie Wang's avatar
Minjie Wang committed
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812

    edges = {
        'follows': ([0, 1], [1, 2]),
        'plays': ([0, 1, 2, 1], [0, 0, 1, 1]),
        'wishes': ([0, 2], [1, 0]),
        'develops': ([0, 1], [0, 1]),
    }
    # edges that does not exist in the graph
    negative_edges = {
        'follows': ([0, 1], [0, 1]),
        'plays': ([0, 2], [1, 0]),
        'wishes': ([0, 1], [0, 1]),
        'develops': ([0, 1], [1, 0]),
    }
    _test_query()
    etypes = canonical_etypes
    edges = {
        ('user', 'follows', 'user'): ([0, 1], [1, 2]),
        ('user', 'plays', 'game'): ([0, 1, 2, 1], [0, 0, 1, 1]),
        ('user', 'wishes', 'game'): ([0, 2], [1, 0]),
        ('developer', 'develops', 'game'): ([0, 1], [0, 1]),
    }
    # edges that does not exist in the graph
    negative_edges = {
        ('user', 'follows', 'user'): ([0, 1], [0, 1]),
        ('user', 'plays', 'game'): ([0, 2], [1, 0]),
        ('user', 'wishes', 'game'): ([0, 1], [0, 1]),
        ('developer', 'develops', 'game'): ([0, 1], [1, 0]),
        }
    _test_query()

    # test features
    HG.nodes['user'].data['h'] = F.ones((HG.number_of_nodes('user'), 5))
    HG.nodes['game'].data['m'] = F.ones((HG.number_of_nodes('game'), 3)) * 2

    # test only one node type
    g = HG['follows']
    assert g.number_of_nodes() == 3

    # test ndata and edata
    f1 = F.randn((3, 6))
    g.ndata['h'] = f1       # ok
    f2 = HG.nodes['user'].data['h']
    assert F.array_equal(f1, f2)
813
    assert F.array_equal(g.nodes(), F.arange(0, 3, g.idtype))
Minjie Wang's avatar
Minjie Wang committed
814
815
816
817
818

    f3 = F.randn((2, 4))
    g.edata['h'] = f3
    f4 = HG.edges['follows'].data['h']
    assert F.array_equal(f3, f4)
819
    assert F.array_equal(g.edges(form='eid'), F.arange(0, 2, g.idtype))
Minjie Wang's avatar
Minjie Wang committed
820

821
@parametrize_dtype
822
def test_flatten(idtype):
Minjie Wang's avatar
Minjie Wang committed
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
    def check_mapping(g, fg):
        if len(fg.ntypes) == 1:
            SRC = DST = fg.ntypes[0]
        else:
            SRC = fg.ntypes[0]
            DST = fg.ntypes[1]

        etypes = F.asnumpy(fg.edata[dgl.ETYPE]).tolist()
        eids = F.asnumpy(fg.edata[dgl.EID]).tolist()

        for i, (etype, eid) in enumerate(zip(etypes, eids)):
            src_g, dst_g = g.find_edges([eid], g.canonical_etypes[etype])
            src_fg, dst_fg = fg.find_edges([i])
            # TODO(gq): I feel this code is quite redundant; can we just add new members (like
            # "induced_srcid") to returned heterograph object and not store them as features?
838
            assert F.asnumpy(src_g) == F.asnumpy(F.gather_row(fg.nodes[SRC].data[dgl.NID], src_fg)[0])
VoVAllen's avatar
VoVAllen committed
839
            tid = F.asnumpy(F.gather_row(fg.nodes[SRC].data[dgl.NTYPE], src_fg)).item()
Minjie Wang's avatar
Minjie Wang committed
840
            assert g.canonical_etypes[etype][0] == g.ntypes[tid]
841
            assert F.asnumpy(dst_g) == F.asnumpy(F.gather_row(fg.nodes[DST].data[dgl.NID], dst_fg)[0])
VoVAllen's avatar
VoVAllen committed
842
            tid = F.asnumpy(F.gather_row(fg.nodes[DST].data[dgl.NTYPE], dst_fg)).item()
Minjie Wang's avatar
Minjie Wang committed
843
844
845
            assert g.canonical_etypes[etype][2] == g.ntypes[tid]

    # check for wildcard slices
846
    g = create_test_heterograph(idtype)
Minjie Wang's avatar
Minjie Wang committed
847
848
849
850
851
852
853
854
855
856
    g.nodes['user'].data['h'] = F.ones((3, 5))
    g.nodes['game'].data['i'] = F.ones((2, 5))
    g.edges['plays'].data['e'] = F.ones((4, 4))
    g.edges['wishes'].data['e'] = F.ones((2, 4))
    g.edges['wishes'].data['f'] = F.ones((2, 4))

    fg = g['user', :, 'game']   # user--plays->game and user--wishes->game
    assert len(fg.ntypes) == 2
    assert fg.ntypes == ['user', 'game']
    assert fg.etypes == ['plays+wishes']
857
858
    assert fg.idtype == g.idtype
    assert fg.device == g.device
859
860
    etype = fg.etypes[0]
    assert fg[etype] is not None        # Issue #2166
Minjie Wang's avatar
Minjie Wang committed
861
862
863
864
865
866
867
868

    assert F.array_equal(fg.nodes['user'].data['h'], F.ones((3, 5)))
    assert F.array_equal(fg.nodes['game'].data['i'], F.ones((2, 5)))
    assert F.array_equal(fg.edata['e'], F.ones((6, 4)))
    assert 'f' not in fg.edata

    etypes = F.asnumpy(fg.edata[dgl.ETYPE]).tolist()
    eids = F.asnumpy(fg.edata[dgl.EID]).tolist()
869
    assert set(zip(etypes, eids)) == set([(3, 0), (3, 1), (2, 1), (2, 0), (2, 3), (2, 2)])
Minjie Wang's avatar
Minjie Wang committed
870
871
872
873

    check_mapping(g, fg)

    fg = g['user', :, 'user']
874
875
    assert fg.idtype == g.idtype
    assert fg.device == g.device
Minjie Wang's avatar
Minjie Wang committed
876
877
878
879
880
881
882
883
884
885
    # NOTE(gq): The node/edge types from the parent graph is returned if there is only one
    # node/edge type.  This differs from the behavior above.
    assert fg.ntypes == ['user']
    assert fg.etypes == ['follows']
    u1, v1 = g.edges(etype='follows', order='eid')
    u2, v2 = fg.edges(etype='follows', order='eid')
    assert F.array_equal(u1, u2)
    assert F.array_equal(v1, v2)

    fg = g['developer', :, 'game']
886
887
    assert fg.idtype == g.idtype
    assert fg.device == g.device
Minjie Wang's avatar
Minjie Wang committed
888
889
890
891
892
893
894
895
    assert fg.ntypes == ['developer', 'game']
    assert fg.etypes == ['develops']
    u1, v1 = g.edges(etype='develops', order='eid')
    u2, v2 = fg.edges(etype='develops', order='eid')
    assert F.array_equal(u1, u2)
    assert F.array_equal(v1, v2)

    fg = g[:, :, :]
896
897
    assert fg.idtype == g.idtype
    assert fg.device == g.device
Minjie Wang's avatar
Minjie Wang committed
898
899
900
901
902
    assert fg.ntypes == ['developer+user', 'game+user']
    assert fg.etypes == ['develops+follows+plays+wishes']
    check_mapping(g, fg)

    # Test another heterograph
903
904
905
906
907
908
909
910
    g = dgl.heterograph({
        ('user', 'follows', 'user'): ([0, 1, 2], [1, 2, 3]),
        ('user', 'knows', 'user'): ([0, 2], [2, 3])
    }, idtype=idtype, device=F.ctx())
    g.nodes['user'].data['h'] = F.randn((4, 3))
    g.edges['follows'].data['w'] = F.randn((3, 2))
    g.nodes['user'].data['hh'] = F.randn((4, 5))
    g.edges['knows'].data['ww'] = F.randn((2, 10))
Minjie Wang's avatar
Minjie Wang committed
911
912

    fg = g['user', :, 'user']
913
914
    assert fg.idtype == g.idtype
    assert fg.device == g.device
Minjie Wang's avatar
Minjie Wang committed
915
916
917
918
919
    assert fg.ntypes == ['user']
    assert fg.etypes == ['follows+knows']
    check_mapping(g, fg)

    fg = g['user', :, :]
920
921
    assert fg.idtype == g.idtype
    assert fg.device == g.device
Minjie Wang's avatar
Minjie Wang committed
922
923
924
925
    assert fg.ntypes == ['user']
    assert fg.etypes == ['follows+knows']
    check_mapping(g, fg)

926
@unittest.skipIf(F._default_context_str == 'cpu', reason="Need gpu for this test")
927
@parametrize_dtype
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
def test_to_device(idtype):
    # TODO: rewrite this test case to accept different graphs so we
    #  can test reverse graph and batched graph
    g = create_test_heterograph(idtype)
    g.nodes['user'].data['h'] = F.ones((3, 5))
    g.nodes['game'].data['i'] = F.ones((2, 5))
    g.edges['plays'].data['e'] = F.ones((4, 4))
    assert g.device == F.ctx()
    g = g.to(F.cpu())
    assert g.device == F.cpu()
    assert F.context(g.nodes['user'].data['h']) == F.cpu()
    assert F.context(g.nodes['game'].data['i']) == F.cpu()
    assert F.context(g.edges['plays'].data['e']) == F.cpu()
    for ntype in g.ntypes:
        assert F.context(g.batch_num_nodes(ntype)) == F.cpu()
    for etype in g.canonical_etypes:
        assert F.context(g.batch_num_edges(etype)) == F.cpu()

946
    if F.is_cuda_available():
947
        g1 = g.to(F.cuda())
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
        assert g1.device == F.cuda()
        assert F.context(g1.nodes['user'].data['h']) == F.cuda()
        assert F.context(g1.nodes['game'].data['i']) == F.cuda()
        assert F.context(g1.edges['plays'].data['e']) == F.cuda()
        for ntype in g1.ntypes:
            assert F.context(g1.batch_num_nodes(ntype)) == F.cuda()
        for etype in g1.canonical_etypes:
            assert F.context(g1.batch_num_edges(etype)) == F.cuda()
        assert F.context(g.nodes['user'].data['h']) == F.cpu()
        assert F.context(g.nodes['game'].data['i']) == F.cpu()
        assert F.context(g.edges['plays'].data['e']) == F.cpu()
        for ntype in g.ntypes:
            assert F.context(g.batch_num_nodes(ntype)) == F.cpu()
        for etype in g.canonical_etypes:
            assert F.context(g.batch_num_edges(etype)) == F.cpu()
        with pytest.raises(DGLError):
            g1.nodes['user'].data['h'] = F.copy_to(F.ones((3, 5)), F.cpu())
        with pytest.raises(DGLError):
            g1.edges['plays'].data['e'] = F.copy_to(F.ones((4, 4)), F.cpu())
967

968
969
970
971
972
973
974
@unittest.skipIf(F._default_context_str == 'cpu', reason="Need gpu for this test")
@parametrize_dtype
@pytest.mark.parametrize('g', get_cases(['block']))
def test_to_device2(g, idtype):
    g = g.astype(idtype)
    g = g.to(F.cpu())
    assert g.device == F.cpu()
975
976
    if F.is_cuda_available():
        g1 = g.to(F.cuda())
977
978
979
980
        assert g1.device == F.cuda()
        assert g1.ntypes == g.ntypes
        assert g1.etypes == g.etypes
        assert g1.canonical_etypes == g.canonical_etypes
981

982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
@unittest.skipIf(F._default_context_str == 'cpu', reason="Need gpu for this test")
@parametrize_dtype
def test_pin_memory_(idtype):
    # TODO: rewrite this test case to accept different graphs so we
    #  can test reverse graph and batched graph
    g = create_test_heterograph(idtype)
    g.nodes['user'].data['h'] = F.ones((3, 5))
    g.nodes['game'].data['i'] = F.ones((2, 5))
    g.edges['plays'].data['e'] = F.ones((4, 4))
    g = g.to(F.cpu())
    assert not g.is_pinned()

    if F.is_cuda_available():
        # unpin an unpinned CPU graph, directly return
        g.unpin_memory_()
        assert not g.is_pinned()
        assert g.device == F.cpu()

        # pin a CPU graph
        g.pin_memory_()
        assert g.is_pinned()
        assert g.device == F.cpu()
        assert F.context(g.nodes['user'].data['h']) == F.cpu()
        assert F.context(g.nodes['game'].data['i']) == F.cpu()
        assert F.context(g.edges['plays'].data['e']) == F.cpu()
        for ntype in g.ntypes:
            assert F.context(g.batch_num_nodes(ntype)) == F.cpu()
        for etype in g.canonical_etypes:
            assert F.context(g.batch_num_edges(etype)) == F.cpu()

        # it's fine to clone with new formats, but new graphs are not pinned
        # >>> g.formats()
        # {'created': ['coo'], 'not created': ['csr', 'csc']}
        assert not g.formats('csc').is_pinned()
        assert not g.formats('csr').is_pinned()
        # 'coo' formats is already created and thus not cloned
        assert g.formats('coo').is_pinned()

1020
        # pin a pinned graph, directly return
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
        g.pin_memory_()
        assert g.is_pinned()
        assert g.device == F.cpu()

        # unpin a pinned graph
        g.unpin_memory_()
        assert not g.is_pinned()
        assert g.device == F.cpu()

        g1 = g.to(F.cuda())

        # unpin an unpinned GPU graph, directly return
        g1.unpin_memory_()
        assert not g1.is_pinned()
        assert g1.device == F.cuda()

        # error pinning a GPU graph
        with pytest.raises(DGLError):
            g1.pin_memory_()

1041
@parametrize_dtype
1042
def test_convert_bound(idtype):
1043
    def _test_bipartite_bound(data, card):
1044
        with pytest.raises(DGLError):
1045
1046
1047
            dgl.heterograph({
                ('_U', '_E', '_V'): data
            }, {'_U': card[0], '_V': card[1]}, idtype=idtype, device=F.ctx())
1048
1049

    def _test_graph_bound(data, card):
1050
1051
        with pytest.raises(DGLError):
            dgl.graph(data, num_nodes=card, idtype=idtype, device=F.ctx())
1052

1053
1054
1055
1056
    _test_bipartite_bound(([1, 2], [1, 2]), (2, 3))
    _test_bipartite_bound(([0, 1], [1, 4]), (2, 3))
    _test_graph_bound(([1, 3], [1, 2]), 3)
    _test_graph_bound(([0, 1], [1, 3]), 3)
1057
1058


1059
@parametrize_dtype
1060
1061
def test_convert(idtype):
    hg = create_test_heterograph(idtype)
Minjie Wang's avatar
Minjie Wang committed
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
    hs = []
    for ntype in hg.ntypes:
        h = F.randn((hg.number_of_nodes(ntype), 5))
        hg.nodes[ntype].data['h'] = h
        hs.append(h)
    hg.nodes['user'].data['x'] = F.randn((3, 3))
    ws = []
    for etype in hg.canonical_etypes:
        w = F.randn((hg.number_of_edges(etype), 5))
        hg.edges[etype].data['w'] = w
        ws.append(w)
    hg.edges['plays'].data['x'] = F.randn((4, 3))

1075
    g = dgl.to_homogeneous(hg, ndata=['h'], edata=['w'])
1076
1077
    assert g.idtype == idtype
    assert g.device == hg.device
Minjie Wang's avatar
Minjie Wang committed
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
    assert F.array_equal(F.cat(hs, dim=0), g.ndata['h'])
    assert 'x' not in g.ndata
    assert F.array_equal(F.cat(ws, dim=0), g.edata['w'])
    assert 'x' not in g.edata

    src, dst = g.all_edges(order='eid')
    src = F.asnumpy(src)
    dst = F.asnumpy(dst)
    etype_id, eid = F.asnumpy(g.edata[dgl.ETYPE]), F.asnumpy(g.edata[dgl.EID])
    ntype_id, nid = F.asnumpy(g.ndata[dgl.NTYPE]), F.asnumpy(g.ndata[dgl.NID])
    for i in range(g.number_of_edges()):
        srctype = hg.ntypes[ntype_id[src[i]]]
        dsttype = hg.ntypes[ntype_id[dst[i]]]
        etype = hg.etypes[etype_id[i]]
        src_i, dst_i = hg.find_edges([eid[i]], (srctype, etype, dsttype))
        assert np.asscalar(F.asnumpy(src_i)) == nid[src[i]]
        assert np.asscalar(F.asnumpy(dst_i)) == nid[dst[i]]

    mg = nx.MultiDiGraph([
        ('user', 'user', 'follows'),
        ('user', 'game', 'plays'),
        ('user', 'game', 'wishes'),
        ('developer', 'game', 'develops')])

    for _mg in [None, mg]:
1103
        hg2 = dgl.to_heterogeneous(
1104
                g, hg.ntypes, hg.etypes,
Minjie Wang's avatar
Minjie Wang committed
1105
                ntype_field=dgl.NTYPE, etype_field=dgl.ETYPE, metagraph=_mg)
1106
1107
        assert hg2.idtype == hg.idtype
        assert hg2.device == hg.device
Minjie Wang's avatar
Minjie Wang committed
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
        assert set(hg.ntypes) == set(hg2.ntypes)
        assert set(hg.canonical_etypes) == set(hg2.canonical_etypes)
        for ntype in hg.ntypes:
            assert hg.number_of_nodes(ntype) == hg2.number_of_nodes(ntype)
            assert F.array_equal(hg.nodes[ntype].data['h'], hg2.nodes[ntype].data['h'])
        for canonical_etype in hg.canonical_etypes:
            src, dst = hg.all_edges(etype=canonical_etype, order='eid')
            src2, dst2 = hg2.all_edges(etype=canonical_etype, order='eid')
            assert F.array_equal(src, src2)
            assert F.array_equal(dst, dst2)
            assert F.array_equal(hg.edges[canonical_etype].data['w'], hg2.edges[canonical_etype].data['w'])

    # hetero_from_homo test case 2
1121
    g = dgl.graph(([0, 1, 2, 0], [2, 2, 3, 3]), idtype=idtype, device=F.ctx())
Minjie Wang's avatar
Minjie Wang committed
1122
1123
    g.ndata[dgl.NTYPE] = F.tensor([0, 0, 1, 2])
    g.edata[dgl.ETYPE] = F.tensor([0, 0, 1, 2])
1124
    hg = dgl.to_heterogeneous(g, ['l0', 'l1', 'l2'], ['e0', 'e1', 'e2'])
1125
1126
    assert hg.idtype == idtype
    assert hg.device == g.device
Minjie Wang's avatar
Minjie Wang committed
1127
1128
1129
1130
1131
1132
1133
1134
    assert set(hg.canonical_etypes) == set(
        [('l0', 'e0', 'l1'), ('l1', 'e1', 'l2'), ('l0', 'e2', 'l2')])
    assert hg.number_of_nodes('l0') == 2
    assert hg.number_of_nodes('l1') == 1
    assert hg.number_of_nodes('l2') == 1
    assert hg.number_of_edges('e0') == 2
    assert hg.number_of_edges('e1') == 1
    assert hg.number_of_edges('e2') == 1
1135
1136
1137
1138
1139
1140
    assert F.array_equal(hg.ndata[dgl.NID]['l0'], F.tensor([0, 1], F.int64))
    assert F.array_equal(hg.ndata[dgl.NID]['l1'], F.tensor([2], F.int64))
    assert F.array_equal(hg.ndata[dgl.NID]['l2'], F.tensor([3], F.int64))
    assert F.array_equal(hg.edata[dgl.EID][('l0', 'e0', 'l1')], F.tensor([0, 1], F.int64))
    assert F.array_equal(hg.edata[dgl.EID][('l0', 'e2', 'l2')], F.tensor([3], F.int64))
    assert F.array_equal(hg.edata[dgl.EID][('l1', 'e1', 'l2')], F.tensor([2], F.int64))
Minjie Wang's avatar
Minjie Wang committed
1141
1142
1143
1144
1145

    # hetero_from_homo test case 3
    mg = nx.MultiDiGraph([
        ('user', 'movie', 'watches'),
        ('user', 'TV', 'watches')])
1146
    g = dgl.graph(((0, 0), (1, 2)), idtype=idtype, device=F.ctx())
Minjie Wang's avatar
Minjie Wang committed
1147
1148
1149
    g.ndata[dgl.NTYPE] = F.tensor([0, 1, 2])
    g.edata[dgl.ETYPE] = F.tensor([0, 0])
    for _mg in [None, mg]:
1150
        hg = dgl.to_heterogeneous(g, ['user', 'TV', 'movie'], ['watches'], metagraph=_mg)
1151
1152
        assert hg.idtype == g.idtype
        assert hg.device == g.device
Minjie Wang's avatar
Minjie Wang committed
1153
1154
1155
1156
1157
1158
1159
1160
1161
        assert set(hg.canonical_etypes) == set(
            [('user', 'watches', 'movie'), ('user', 'watches', 'TV')])
        assert hg.number_of_nodes('user') == 1
        assert hg.number_of_nodes('TV') == 1
        assert hg.number_of_nodes('movie') == 1
        assert hg.number_of_edges(('user', 'watches', 'TV')) == 1
        assert hg.number_of_edges(('user', 'watches', 'movie')) == 1
        assert len(hg.etypes) == 2

1162
    # hetero_to_homo test case 2
1163
1164
1165
1166
    hg = dgl.heterograph({
        ('_U', '_E', '_V'): ([0, 1], [0, 1])
    }, {'_U': 2, '_V': 3}, idtype=idtype, device=F.ctx())
    g = dgl.to_homogeneous(hg)
1167
1168
    assert hg.idtype == g.idtype
    assert hg.device == g.device
1169
1170
    assert g.number_of_nodes() == 5

1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
    # hetero_to_subgraph_to_homo
    hg = dgl.heterograph({
        ('user', 'plays', 'game'): ([0, 1, 1, 2], [0, 0, 2, 1]),
        ('user', 'follows', 'user'): ([0, 1, 1], [1, 2, 2])
    }, idtype=idtype, device=F.ctx())
    hg.nodes['user'].data['h'] = F.copy_to(
        F.tensor([[1, 0], [0, 1], [1, 1]], dtype=idtype), ctx=F.ctx())
    sg = dgl.node_subgraph(hg, {'user': [1, 2]})
    assert len(sg.ntypes) == 2
    assert len(sg.etypes) == 2
    assert sg.num_nodes('user') == 2
    assert sg.num_nodes('game') == 0
    g = dgl.to_homogeneous(sg, ndata=['h'])
    assert 'h' in g.ndata.keys()
    assert g.num_nodes() == 2

1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
@unittest.skipIf(F._default_context_str == 'gpu', reason="Test on cpu is enough")
@parametrize_dtype
def test_to_homo_zero_nodes(idtype):
    # Fix gihub issue #2870
    g = dgl.heterograph({
        ('A', 'AB', 'B'): (np.random.randint(0, 200, (1000,)), np.random.randint(0, 200, (1000,))),
        ('B', 'BA', 'A'): (np.random.randint(0, 200, (1000,)), np.random.randint(0, 200, (1000,))),
    }, num_nodes_dict={'A': 200, 'B': 200, 'C': 0}, idtype=idtype)
    g.nodes['A'].data['x'] = F.randn((200, 3))
    g.nodes['B'].data['x'] = F.randn((200, 3))
    gg = dgl.to_homogeneous(g, ['x'])
    assert 'x' in gg.ndata

1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
@parametrize_dtype
def test_to_homo2(idtype):
    # test the result homogeneous graph has nodes and edges sorted by their types
    hg = create_test_heterograph(idtype)
    g = dgl.to_homogeneous(hg)
    ntypes = F.asnumpy(g.ndata[dgl.NTYPE])
    etypes = F.asnumpy(g.edata[dgl.ETYPE])
    p = 0
    for tid, ntype in enumerate(hg.ntypes):
        num_nodes = hg.num_nodes(ntype)
        for i in range(p, p + num_nodes):
            assert ntypes[i] == tid
        p += num_nodes
    p = 0
    for tid, etype in enumerate(hg.canonical_etypes):
        num_edges = hg.num_edges(etype)
        for i in range(p, p + num_edges):
            assert etypes[i] == tid
        p += num_edges
    # test store_type=False
    g = dgl.to_homogeneous(hg, store_type=False)
    assert dgl.NTYPE not in g.ndata
    assert dgl.ETYPE not in g.edata
    # test return_count=True
    g, ntype_count, etype_count = dgl.to_homogeneous(hg, return_count=True)
    for i, count in enumerate(ntype_count):
        assert count == hg.num_nodes(hg.ntypes[i])
    for i, count in enumerate(etype_count):
        assert count == hg.num_edges(hg.canonical_etypes[i])

1230
1231
1232
1233
1234
1235
1236
1237
@parametrize_dtype
def test_invertible_conversion(idtype):
    # Test whether to_homogeneous and to_heterogeneous are invertible
    hg = create_test_heterograph(idtype)
    g = dgl.to_homogeneous(hg)
    hg2 = dgl.to_heterogeneous(g, hg.ntypes, hg.etypes)
    assert_is_identical_hetero(hg, hg2, True)

1238
@parametrize_dtype
1239
1240
def test_metagraph_reachable(idtype):
    g = create_test_heterograph(idtype)
Mufei Li's avatar
Mufei Li committed
1241
1242
1243
1244
    x = F.randn((3, 5))
    g.nodes['user'].data['h'] = x

    new_g = dgl.metapath_reachable_graph(g, ['follows', 'plays'])
1245
    assert new_g.idtype == idtype
1246
    assert new_g.ntypes == ['game', 'user']
Mufei Li's avatar
Mufei Li committed
1247
1248
1249
1250
    assert new_g.number_of_edges() == 3
    assert F.asnumpy(new_g.has_edges_between([0, 0, 1], [0, 1, 1])).all()

    new_g = dgl.metapath_reachable_graph(g, ['follows'])
1251
    assert new_g.idtype == idtype
Mufei Li's avatar
Mufei Li committed
1252
1253
1254
1255
    assert new_g.ntypes == ['user']
    assert new_g.number_of_edges() == 2
    assert F.asnumpy(new_g.has_edges_between([0, 1], [1, 2])).all()

1256
1257
@unittest.skipIf(dgl.backend.backend_name == "mxnet", reason="MXNet doesn't support bool tensor")
@parametrize_dtype
1258
1259
def test_subgraph_mask(idtype):
    g = create_test_heterograph(idtype)
1260
1261
1262
1263
1264
1265
1266
1267
1268
    g_graph = g['follows']
    g_bipartite = g['plays']

    x = F.randn((3, 5))
    y = F.randn((2, 4))
    g.nodes['user'].data['h'] = x
    g.edges['follows'].data['h'] = y

    def _check_subgraph(g, sg):
1269
1270
        assert sg.idtype == g.idtype
        assert sg.device == g.device
1271
1272
1273
1274
        assert sg.ntypes == g.ntypes
        assert sg.etypes == g.etypes
        assert sg.canonical_etypes == g.canonical_etypes
        assert F.array_equal(F.tensor(sg.nodes['user'].data[dgl.NID]),
1275
                             F.tensor([1, 2], idtype))
1276
        assert F.array_equal(F.tensor(sg.nodes['game'].data[dgl.NID]),
1277
                             F.tensor([0], idtype))
1278
        assert F.array_equal(F.tensor(sg.edges['follows'].data[dgl.EID]),
1279
                             F.tensor([1], idtype))
1280
        assert F.array_equal(F.tensor(sg.edges['plays'].data[dgl.EID]),
1281
                             F.tensor([1], idtype))
1282
        assert F.array_equal(F.tensor(sg.edges['wishes'].data[dgl.EID]),
1283
                             F.tensor([1], idtype))
1284
1285
1286
1287
1288
        assert sg.number_of_nodes('developer') == 0
        assert sg.number_of_edges('develops') == 0
        assert F.array_equal(sg.nodes['user'].data['h'], g.nodes['user'].data['h'][1:3])
        assert F.array_equal(sg.edges['follows'].data['h'], g.edges['follows'].data['h'][1:2])

1289
1290
    sg1 = g.subgraph({'user': F.tensor([False, True, True], dtype=F.bool),
                      'game': F.tensor([True, False, False, False], dtype=F.bool)})
1291
    _check_subgraph(g, sg1)
1292
1293
1294
1295
1296
1297
    if F._default_context_str != 'gpu':
        # TODO(minjie): enable this later
        sg2 = g.edge_subgraph({'follows': F.tensor([False, True], dtype=F.bool),
                               'plays': F.tensor([False, True, False, False], dtype=F.bool),
                               'wishes': F.tensor([False, True], dtype=F.bool)})
        _check_subgraph(g, sg2)
1298

1299
@parametrize_dtype
1300
1301
def test_subgraph(idtype):
    g = create_test_heterograph(idtype)
Quan (Andy) Gan's avatar
Quan (Andy) Gan committed
1302
1303
1304
    g_graph = g['follows']
    g_bipartite = g['plays']

Minjie Wang's avatar
Minjie Wang committed
1305
1306
1307
1308
1309
1310
    x = F.randn((3, 5))
    y = F.randn((2, 4))
    g.nodes['user'].data['h'] = x
    g.edges['follows'].data['h'] = y

    def _check_subgraph(g, sg):
1311
1312
        assert sg.idtype == g.idtype
        assert sg.device == g.device
1313
1314
1315
        assert sg.ntypes == g.ntypes
        assert sg.etypes == g.etypes
        assert sg.canonical_etypes == g.canonical_etypes
Minjie Wang's avatar
Minjie Wang committed
1316
        assert F.array_equal(F.tensor(sg.nodes['user'].data[dgl.NID]),
1317
                             F.tensor([1, 2], g.idtype))
Minjie Wang's avatar
Minjie Wang committed
1318
        assert F.array_equal(F.tensor(sg.nodes['game'].data[dgl.NID]),
1319
                             F.tensor([0], g.idtype))
Minjie Wang's avatar
Minjie Wang committed
1320
        assert F.array_equal(F.tensor(sg.edges['follows'].data[dgl.EID]),
1321
                             F.tensor([1], g.idtype))
Minjie Wang's avatar
Minjie Wang committed
1322
        assert F.array_equal(F.tensor(sg.edges['plays'].data[dgl.EID]),
1323
                             F.tensor([1], g.idtype))
Minjie Wang's avatar
Minjie Wang committed
1324
        assert F.array_equal(F.tensor(sg.edges['wishes'].data[dgl.EID]),
1325
                             F.tensor([1], g.idtype))
Minjie Wang's avatar
Minjie Wang committed
1326
1327
1328
1329
1330
1331
1332
        assert sg.number_of_nodes('developer') == 0
        assert sg.number_of_edges('develops') == 0
        assert F.array_equal(sg.nodes['user'].data['h'], g.nodes['user'].data['h'][1:3])
        assert F.array_equal(sg.edges['follows'].data['h'], g.edges['follows'].data['h'][1:2])

    sg1 = g.subgraph({'user': [1, 2], 'game': [0]})
    _check_subgraph(g, sg1)
1333
1334
1335
1336
    if F._default_context_str != 'gpu':
        # TODO(minjie): enable this later
        sg2 = g.edge_subgraph({'follows': [1], 'plays': [1], 'wishes': [1]})
        _check_subgraph(g, sg2)
Minjie Wang's avatar
Minjie Wang committed
1337

1338
    # backend tensor input
1339
1340
    sg1 = g.subgraph({'user': F.tensor([1, 2], dtype=idtype),
                      'game': F.tensor([0], dtype=idtype)})
1341
    _check_subgraph(g, sg1)
1342
1343
1344
1345
1346
1347
    if F._default_context_str != 'gpu':
        # TODO(minjie): enable this later
        sg2 = g.edge_subgraph({'follows': F.tensor([1], dtype=idtype),
                               'plays': F.tensor([1], dtype=idtype),
                               'wishes': F.tensor([1], dtype=idtype)})
        _check_subgraph(g, sg2)
1348
1349
1350
1351
1352

    # numpy input
    sg1 = g.subgraph({'user': np.array([1, 2]),
                      'game': np.array([0])})
    _check_subgraph(g, sg1)
1353
1354
1355
1356
1357
1358
    if F._default_context_str != 'gpu':
        # TODO(minjie): enable this later
        sg2 = g.edge_subgraph({'follows': np.array([1]),
                               'plays': np.array([1]),
                               'wishes': np.array([1])})
        _check_subgraph(g, sg2)
1359

Quan (Andy) Gan's avatar
Quan (Andy) Gan committed
1360
    def _check_subgraph_single_ntype(g, sg, preserve_nodes=False):
1361
1362
        assert sg.idtype == g.idtype
        assert sg.device == g.device
Quan (Andy) Gan's avatar
Quan (Andy) Gan committed
1363
1364
1365
        assert sg.ntypes == g.ntypes
        assert sg.etypes == g.etypes
        assert sg.canonical_etypes == g.canonical_etypes
Quan (Andy) Gan's avatar
Quan (Andy) Gan committed
1366
1367
1368

        if not preserve_nodes:
            assert F.array_equal(F.tensor(sg.nodes['user'].data[dgl.NID]),
1369
                                 F.tensor([1, 2], g.idtype))
Quan (Andy) Gan's avatar
Quan (Andy) Gan committed
1370
1371
1372
1373
        else:
            for ntype in sg.ntypes:
                assert g.number_of_nodes(ntype) == sg.number_of_nodes(ntype)

Quan (Andy) Gan's avatar
Quan (Andy) Gan committed
1374
        assert F.array_equal(F.tensor(sg.edges['follows'].data[dgl.EID]),
1375
                             F.tensor([1], g.idtype))
Quan (Andy) Gan's avatar
Quan (Andy) Gan committed
1376
1377
1378

        if not preserve_nodes:
            assert F.array_equal(sg.nodes['user'].data['h'], g.nodes['user'].data['h'][1:3])
Quan (Andy) Gan's avatar
Quan (Andy) Gan committed
1379
1380
        assert F.array_equal(sg.edges['follows'].data['h'], g.edges['follows'].data['h'][1:2])

Quan (Andy) Gan's avatar
Quan (Andy) Gan committed
1381
    def _check_subgraph_single_etype(g, sg, preserve_nodes=False):
Quan (Andy) Gan's avatar
Quan (Andy) Gan committed
1382
1383
1384
        assert sg.ntypes == g.ntypes
        assert sg.etypes == g.etypes
        assert sg.canonical_etypes == g.canonical_etypes
Quan (Andy) Gan's avatar
Quan (Andy) Gan committed
1385
1386
1387

        if not preserve_nodes:
            assert F.array_equal(F.tensor(sg.nodes['user'].data[dgl.NID]),
1388
                                 F.tensor([0, 1], g.idtype))
Quan (Andy) Gan's avatar
Quan (Andy) Gan committed
1389
            assert F.array_equal(F.tensor(sg.nodes['game'].data[dgl.NID]),
1390
                                 F.tensor([0], g.idtype))
Quan (Andy) Gan's avatar
Quan (Andy) Gan committed
1391
1392
1393
1394
        else:
            for ntype in sg.ntypes:
                assert g.number_of_nodes(ntype) == sg.number_of_nodes(ntype)

Quan (Andy) Gan's avatar
Quan (Andy) Gan committed
1395
        assert F.array_equal(F.tensor(sg.edges['plays'].data[dgl.EID]),
1396
                             F.tensor([0, 1], g.idtype))
Quan (Andy) Gan's avatar
Quan (Andy) Gan committed
1397
1398
1399

    sg1_graph = g_graph.subgraph([1, 2])
    _check_subgraph_single_ntype(g_graph, sg1_graph)
1400
1401
1402
1403
    if F._default_context_str != 'gpu':
        # TODO(minjie): enable this later
        sg1_graph = g_graph.edge_subgraph([1])
        _check_subgraph_single_ntype(g_graph, sg1_graph)
1404
        sg1_graph = g_graph.edge_subgraph([1], relabel_nodes=False)
1405
1406
1407
        _check_subgraph_single_ntype(g_graph, sg1_graph, True)
        sg2_bipartite = g_bipartite.edge_subgraph([0, 1])
        _check_subgraph_single_etype(g_bipartite, sg2_bipartite)
1408
        sg2_bipartite = g_bipartite.edge_subgraph([0, 1], relabel_nodes=False)
1409
        _check_subgraph_single_etype(g_bipartite, sg2_bipartite, True)
Quan (Andy) Gan's avatar
Quan (Andy) Gan committed
1410

1411
    def _check_typed_subgraph1(g, sg):
1412
1413
        assert g.idtype == sg.idtype
        assert g.device == sg.device
Minjie Wang's avatar
Minjie Wang committed
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
        assert set(sg.ntypes) == {'user', 'game'}
        assert set(sg.etypes) == {'follows', 'plays', 'wishes'}
        for ntype in sg.ntypes:
            assert sg.number_of_nodes(ntype) == g.number_of_nodes(ntype)
        for etype in sg.etypes:
            src_sg, dst_sg = sg.all_edges(etype=etype, order='eid')
            src_g, dst_g = g.all_edges(etype=etype, order='eid')
            assert F.array_equal(src_sg, src_g)
            assert F.array_equal(dst_sg, dst_g)
        assert F.array_equal(sg.nodes['user'].data['h'], g.nodes['user'].data['h'])
        assert F.array_equal(sg.edges['follows'].data['h'], g.edges['follows'].data['h'])
VoVAllen's avatar
VoVAllen committed
1425
1426
        g.nodes['user'].data['h'] = F.scatter_row(g.nodes['user'].data['h'], F.tensor([2]), F.randn((1, 5)))
        g.edges['follows'].data['h'] = F.scatter_row(g.edges['follows'].data['h'], F.tensor([1]), F.randn((1, 4)))
Minjie Wang's avatar
Minjie Wang committed
1427
1428
1429
        assert F.array_equal(sg.nodes['user'].data['h'], g.nodes['user'].data['h'])
        assert F.array_equal(sg.edges['follows'].data['h'], g.edges['follows'].data['h'])

1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
    def _check_typed_subgraph2(g, sg):
        assert set(sg.ntypes) == {'developer', 'game'}
        assert set(sg.etypes) == {'develops'}
        for ntype in sg.ntypes:
            assert sg.number_of_nodes(ntype) == g.number_of_nodes(ntype)
        for etype in sg.etypes:
            src_sg, dst_sg = sg.all_edges(etype=etype, order='eid')
            src_g, dst_g = g.all_edges(etype=etype, order='eid')
            assert F.array_equal(src_sg, src_g)
            assert F.array_equal(dst_sg, dst_g)

Minjie Wang's avatar
Minjie Wang committed
1441
    sg3 = g.node_type_subgraph(['user', 'game'])
1442
1443
1444
1445
1446
    _check_typed_subgraph1(g, sg3)
    sg4 = g.edge_type_subgraph(['develops'])
    _check_typed_subgraph2(g, sg4)
    sg5 = g.edge_type_subgraph(['follows', 'plays', 'wishes'])
    _check_typed_subgraph1(g, sg5)
1447

1448
@parametrize_dtype
1449
def test_apply(idtype):
1450
1451
    def node_udf(nodes):
        return {'h': nodes.data['h'] * 2}
1452
1453
    def node_udf2(nodes):
        return {'h': F.sum(nodes.data['h'], dim=1, keepdims=True)}
1454
1455
1456
    def edge_udf(edges):
        return {'h': edges.data['h'] * 2 + edges.src['h']}

1457
    g = create_test_heterograph(idtype)
Minjie Wang's avatar
Minjie Wang committed
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
    g.nodes['user'].data['h'] = F.ones((3, 5))
    g.apply_nodes(node_udf, ntype='user')
    assert F.array_equal(g.nodes['user'].data['h'], F.ones((3, 5)) * 2)

    g['plays'].edata['h'] = F.ones((4, 5))
    g.apply_edges(edge_udf, etype=('user', 'plays', 'game'))
    assert F.array_equal(g['plays'].edata['h'], F.ones((4, 5)) * 4)

    # test apply on graph with only one type
    g['follows'].apply_nodes(node_udf)
    assert F.array_equal(g.nodes['user'].data['h'], F.ones((3, 5)) * 4)
1469

Minjie Wang's avatar
Minjie Wang committed
1470
1471
1472
    g['plays'].apply_edges(edge_udf)
    assert F.array_equal(g['plays'].edata['h'], F.ones((4, 5)) * 12)

1473
1474
1475
1476
1477
    # Test the case that feature size changes
    g.nodes['user'].data['h'] = F.ones((3, 5))
    g.apply_nodes(node_udf2, ntype='user')
    assert F.array_equal(g.nodes['user'].data['h'], F.ones((3, 1)) * 5)

Minjie Wang's avatar
Minjie Wang committed
1478
1479
    # test fail case
    # fail due to multiple types
1480
    with pytest.raises(DGLError):
Minjie Wang's avatar
Minjie Wang committed
1481
1482
        g.apply_nodes(node_udf)

1483
    with pytest.raises(DGLError):
Minjie Wang's avatar
Minjie Wang committed
1484
1485
        g.apply_edges(edge_udf)

1486
@parametrize_dtype
1487
def test_level2(idtype):
Minjie Wang's avatar
Minjie Wang committed
1488
1489
1490
1491
1492
1493
    #edges = {
    #    'follows': ([0, 1], [1, 2]),
    #    'plays': ([0, 1, 2, 1], [0, 0, 1, 1]),
    #    'wishes': ([0, 2], [1, 0]),
    #    'develops': ([0, 1], [0, 1]),
    #}
1494
    g = create_test_heterograph(idtype)
Minjie Wang's avatar
Minjie Wang committed
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
    def rfunc(nodes):
        return {'y': F.sum(nodes.mailbox['m'], 1)}
    def rfunc2(nodes):
        return {'y': F.max(nodes.mailbox['m'], 1)}
    def mfunc(edges):
        return {'m': edges.src['h']}
    def afunc(nodes):
        return {'y' : nodes.data['y'] + 1}

    #############################################################
    #  send_and_recv
    #############################################################

    g.nodes['user'].data['h'] = F.ones((3, 2))
    g.send_and_recv([2, 3], mfunc, rfunc, etype='plays')
    y = g.nodes['game'].data['y']
    assert F.array_equal(y, F.tensor([[0., 0.], [2., 2.]]))

    # only one type
    g['plays'].send_and_recv([2, 3], mfunc, rfunc)
    y = g.nodes['game'].data['y']
    assert F.array_equal(y, F.tensor([[0., 0.], [2., 2.]]))
1517

Minjie Wang's avatar
Minjie Wang committed
1518
1519
    # test fail case
    # fail due to multiple types
1520
    with pytest.raises(DGLError):
Minjie Wang's avatar
Minjie Wang committed
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
        g.send_and_recv([2, 3], mfunc, rfunc)

    g.nodes['game'].data.clear()

    #############################################################
    #  pull
    #############################################################

    g.nodes['user'].data['h'] = F.ones((3, 2))
    g.pull(1, mfunc, rfunc, etype='plays')
    y = g.nodes['game'].data['y']
    assert F.array_equal(y, F.tensor([[0., 0.], [2., 2.]]))

    # only one type
    g['plays'].pull(1, mfunc, rfunc)
    y = g.nodes['game'].data['y']
    assert F.array_equal(y, F.tensor([[0., 0.], [2., 2.]]))

    # test fail case
1540
    with pytest.raises(DGLError):
Minjie Wang's avatar
Minjie Wang committed
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
        g.pull(1, mfunc, rfunc)

    g.nodes['game'].data.clear()

    #############################################################
    #  update_all
    #############################################################

    g.nodes['user'].data['h'] = F.ones((3, 2))
    g.update_all(mfunc, rfunc, etype='plays')
    y = g.nodes['game'].data['y']
    assert F.array_equal(y, F.tensor([[2., 2.], [2., 2.]]))

    # only one type
    g['plays'].update_all(mfunc, rfunc)
    y = g.nodes['game'].data['y']
    assert F.array_equal(y, F.tensor([[2., 2.], [2., 2.]]))

    # test fail case
    # fail due to multiple types
1561
    with pytest.raises(DGLError):
Minjie Wang's avatar
Minjie Wang committed
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
        g.update_all(mfunc, rfunc)

    # test multi
    g.multi_update_all(
        {'plays' : (mfunc, rfunc),
         ('user', 'wishes', 'game'): (mfunc, rfunc2)},
        'sum')
    assert F.array_equal(g.nodes['game'].data['y'], F.tensor([[3., 3.], [3., 3.]]))

    # test multi
    g.multi_update_all(
        {'plays' : (mfunc, rfunc, afunc),
         ('user', 'wishes', 'game'): (mfunc, rfunc2)},
        'sum', afunc)
    assert F.array_equal(g.nodes['game'].data['y'], F.tensor([[5., 5.], [5., 5.]]))

    # test cross reducer
    g.nodes['user'].data['h'] = F.randn((3, 2))
    for cred in ['sum', 'max', 'min', 'mean', 'stack']:
        g.multi_update_all(
            {'plays' : (mfunc, rfunc, afunc),
             'wishes': (mfunc, rfunc2)},
            cred, afunc)
        y = g.nodes['game'].data['y']
        g['plays'].update_all(mfunc, rfunc, afunc)
        y1 = g.nodes['game'].data['y']
        g['wishes'].update_all(mfunc, rfunc2)
        y2 = g.nodes['game'].data['y']
        if cred == 'stack':
1591
1592
1593
1594
            # stack has an internal order by edge type id
            yy = F.stack([y1, y2], 1)
            yy = yy + 1  # final afunc
            assert F.array_equal(y, yy)
Minjie Wang's avatar
Minjie Wang committed
1595
1596
1597
1598
1599
1600
1601
        else:
            yy = get_redfn(cred)(F.stack([y1, y2], 0), 0)
            yy = yy + 1  # final afunc
            assert F.array_equal(y, yy)

    # test fail case
    # fail because cannot infer ntype
1602
    with pytest.raises(DGLError):
Minjie Wang's avatar
Minjie Wang committed
1603
1604
1605
1606
1607
1608
        g.update_all(
            {'plays' : (mfunc, rfunc),
             'follows': (mfunc, rfunc2)},
            'sum')

    g.nodes['game'].data.clear()
1609

1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
@parametrize_dtype
@unittest.skipIf(F._default_context_str == 'cpu', reason="Need gpu for this test")
def test_more_nnz(idtype):
    g = dgl.graph(([0, 0, 0, 0, 0], [1, 1, 1, 1, 1]), idtype=idtype, device=F.ctx())
    g.ndata['x'] = F.copy_to(F.ones((2, 5)), ctx=F.ctx())
    g.update_all(fn.copy_u('x', 'm'), fn.sum('m', 'y'))
    y = g.ndata['y']
    ans = np.zeros((2, 5))
    ans[1] = 5
    ans = F.copy_to(F.tensor(ans, dtype=F.dtype(y)), ctx=F.ctx())
    assert F.array_equal(y, ans)

1622
@parametrize_dtype
1623
def test_updates(idtype):
1624
1625
1626
1627
1628
1629
    def msg_func(edges):
        return {'m': edges.src['h']}
    def reduce_func(nodes):
        return {'y': F.sum(nodes.mailbox['m'], 1)}
    def apply_func(nodes):
        return {'y': nodes.data['y'] * 2}
1630
    g = create_test_heterograph(idtype)
1631
    x = F.randn((3, 5))
Minjie Wang's avatar
Minjie Wang committed
1632
    g.nodes['user'].data['h'] = x
1633
1634
1635
1636
1637
1638
1639

    for msg, red, apply in itertools.product(
            [fn.copy_u('h', 'm'), msg_func], [fn.sum('m', 'y'), reduce_func],
            [None, apply_func]):
        multiplier = 1 if apply is None else 2

        g['user', 'plays', 'game'].update_all(msg, red, apply)
Minjie Wang's avatar
Minjie Wang committed
1640
        y = g.nodes['game'].data['y']
1641
1642
        assert F.array_equal(y[0], (x[0] + x[1]) * multiplier)
        assert F.array_equal(y[1], (x[1] + x[2]) * multiplier)
Minjie Wang's avatar
Minjie Wang committed
1643
        del g.nodes['game'].data['y']
1644
1645

        g['user', 'plays', 'game'].send_and_recv(([0, 1, 2], [0, 1, 1]), msg, red, apply)
Minjie Wang's avatar
Minjie Wang committed
1646
        y = g.nodes['game'].data['y']
1647
1648
        assert F.array_equal(y[0], x[0] * multiplier)
        assert F.array_equal(y[1], (x[1] + x[2]) * multiplier)
Minjie Wang's avatar
Minjie Wang committed
1649
        del g.nodes['game'].data['y']
1650
1651
1652

        # pulls from destination (game) node 0
        g['user', 'plays', 'game'].pull(0, msg, red, apply)
Minjie Wang's avatar
Minjie Wang committed
1653
        y = g.nodes['game'].data['y']
1654
        assert F.array_equal(y[0], (x[0] + x[1]) * multiplier)
Minjie Wang's avatar
Minjie Wang committed
1655
        del g.nodes['game'].data['y']
1656
1657
1658

        # pushes from source (user) node 0
        g['user', 'plays', 'game'].push(0, msg, red, apply)
Minjie Wang's avatar
Minjie Wang committed
1659
        y = g.nodes['game'].data['y']
1660
        assert F.array_equal(y[0], x[0] * multiplier)
Minjie Wang's avatar
Minjie Wang committed
1661
1662
        del g.nodes['game'].data['y']

1663
1664

@parametrize_dtype
1665
1666
def test_backward(idtype):
    g = create_test_heterograph(idtype)
Minjie Wang's avatar
Minjie Wang committed
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
    x = F.randn((3, 5))
    F.attach_grad(x)
    g.nodes['user'].data['h'] = x
    with F.record_grad():
        g.multi_update_all(
            {'plays' : (fn.copy_u('h', 'm'), fn.sum('m', 'y')),
             'wishes': (fn.copy_u('h', 'm'), fn.sum('m', 'y'))},
            'sum')
        y = g.nodes['game'].data['y']
        F.backward(y, F.ones(y.shape))
    print(F.grad(x))
    assert F.array_equal(F.grad(x), F.tensor([[2., 2., 2., 2., 2.],
                                              [2., 2., 2., 2., 2.],
                                              [2., 2., 2., 2., 2.]]))
1681

1682
1683

@parametrize_dtype
1684
def test_empty_heterograph(idtype):
1685
1686
1687
1688
1689
1690
1691
1692
    def assert_empty(g):
        assert g.number_of_nodes('user') == 0
        assert g.number_of_edges('plays') == 0
        assert g.number_of_nodes('game') == 0

    # empty src-dst pair
    assert_empty(dgl.heterograph({('user', 'plays', 'game'): ([], [])}))

1693
    g = dgl.heterograph({('user', 'follows', 'user'): ([], [])}, idtype=idtype, device=F.ctx())
1694
1695
    assert g.idtype == idtype
    assert g.device == F.ctx()
1696
1697
1698
1699
    assert g.number_of_nodes('user') == 0
    assert g.number_of_edges('follows') == 0

    # empty relation graph with others
1700
1701
    g = dgl.heterograph({('user', 'plays', 'game'): ([], []), ('developer', 'develops', 'game'):
        ([0, 1], [0, 1])}, idtype=idtype, device=F.ctx())
1702
1703
    assert g.idtype == idtype
    assert g.device == F.ctx()
1704
1705
1706
1707
1708
1709
    assert g.number_of_nodes('user') == 0
    assert g.number_of_edges('plays') == 0
    assert g.number_of_nodes('game') == 2
    assert g.number_of_edges('develops') == 2
    assert g.number_of_nodes('developer') == 2

1710
1711
@parametrize_dtype
def test_types_in_function(idtype):
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
    def mfunc1(edges):
        assert edges.canonical_etype == ('user', 'follow', 'user')
        return {}

    def rfunc1(nodes):
        assert nodes.ntype == 'user'
        return {}

    def filter_nodes1(nodes):
        assert nodes.ntype == 'user'
        return F.zeros((3,))

    def filter_edges1(edges):
        assert edges.canonical_etype == ('user', 'follow', 'user')
        return F.zeros((2,))

    def mfunc2(edges):
        assert edges.canonical_etype == ('user', 'plays', 'game')
        return {}

    def rfunc2(nodes):
        assert nodes.ntype == 'game'
        return {}

    def filter_nodes2(nodes):
        assert nodes.ntype == 'game'
        return F.zeros((3,))

    def filter_edges2(edges):
        assert edges.canonical_etype == ('user', 'plays', 'game')
        return F.zeros((2,))

1744
1745
    g = dgl.heterograph({('user', 'follow', 'user'): ((0, 1), (1, 2))},
                        idtype=idtype, device=F.ctx())
1746
1747
1748
1749
1750
1751
1752
1753
1754
    g.apply_nodes(rfunc1)
    g.apply_edges(mfunc1)
    g.update_all(mfunc1, rfunc1)
    g.send_and_recv([0, 1], mfunc1, rfunc1)
    g.push([0], mfunc1, rfunc1)
    g.pull([1], mfunc1, rfunc1)
    g.filter_nodes(filter_nodes1)
    g.filter_edges(filter_edges1)

1755
    g = dgl.heterograph({('user', 'plays', 'game'): ([0, 1], [1, 2])}, idtype=idtype, device=F.ctx())
1756
1757
1758
1759
1760
1761
1762
1763
1764
    g.apply_nodes(rfunc2, ntype='game')
    g.apply_edges(mfunc2)
    g.update_all(mfunc2, rfunc2)
    g.send_and_recv([0, 1], mfunc2, rfunc2)
    g.push([0], mfunc2, rfunc2)
    g.pull([1], mfunc2, rfunc2)
    g.filter_nodes(filter_nodes2, ntype='game')
    g.filter_edges(filter_edges2)

1765
@parametrize_dtype
1766
def test_stack_reduce(idtype):
1767
1768
1769
1770
1771
1772
    #edges = {
    #    'follows': ([0, 1], [1, 2]),
    #    'plays': ([0, 1, 2, 1], [0, 0, 1, 1]),
    #    'wishes': ([0, 2], [1, 0]),
    #    'develops': ([0, 1], [0, 1]),
    #}
1773
    g = create_test_heterograph(idtype)
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
    g.nodes['user'].data['h'] = F.randn((3, 200))
    def rfunc(nodes):
        return {'y': F.sum(nodes.mailbox['m'], 1)}
    def rfunc2(nodes):
        return {'y': F.max(nodes.mailbox['m'], 1)}
    def mfunc(edges):
        return {'m': edges.src['h']}
    g.multi_update_all(
            {'plays' : (mfunc, rfunc),
             'wishes': (mfunc, rfunc2)},
            'stack')
    assert g.nodes['game'].data['y'].shape == (g.number_of_nodes('game'), 2, 200)
    # only one type-wise update_all, stack still adds one dimension
    g.multi_update_all(
            {'plays' : (mfunc, rfunc)},
            'stack')
    assert g.nodes['game'].data['y'].shape == (g.number_of_nodes('game'), 1, 200)

1792
@parametrize_dtype
1793
def test_isolated_ntype(idtype):
1794
    g = dgl.heterograph({
1795
        ('A', 'AB', 'B'): ([0, 1, 2], [1, 2, 3])},
1796
1797
        num_nodes_dict={'A': 3, 'B': 4, 'C': 4},
        idtype=idtype, device=F.ctx())
1798
1799
1800
1801
1802
    assert g.number_of_nodes('A') == 3
    assert g.number_of_nodes('B') == 4
    assert g.number_of_nodes('C') == 4

    g = dgl.heterograph({
1803
        ('A', 'AC', 'C'): ([0, 1, 2], [1, 2, 3])},
1804
1805
        num_nodes_dict={'A': 3, 'B': 4, 'C': 4},
        idtype=idtype, device=F.ctx())
1806
1807
1808
1809
    assert g.number_of_nodes('A') == 3
    assert g.number_of_nodes('B') == 4
    assert g.number_of_nodes('C') == 4

1810
    G = dgl.graph(([0, 1, 2], [4, 5, 6]), num_nodes=11, idtype=idtype, device=F.ctx())
1811
1812
    G.ndata[dgl.NTYPE] = F.tensor([0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2], dtype=F.int64)
    G.edata[dgl.ETYPE] = F.tensor([0, 0, 0], dtype=F.int64)
1813
    g = dgl.to_heterogeneous(G, ['A', 'B', 'C'], ['AB'])
1814
1815
1816
1817
    assert g.number_of_nodes('A') == 3
    assert g.number_of_nodes('B') == 4
    assert g.number_of_nodes('C') == 4

1818
1819

@parametrize_dtype
1820
def test_ismultigraph(idtype):
1821
1822
    g1 = dgl.heterograph({('A', 'AB', 'B'): ([0, 0, 1, 2], [1, 2, 5, 5])},
                         {'A': 6, 'B': 6}, idtype=idtype, device=F.ctx())
1823
    assert g1.is_multigraph == False
1824
1825
    g2 = dgl.heterograph({('A', 'AC', 'C'): ([0, 0, 0, 1], [1, 1, 2, 5])},
                         {'A': 6, 'C': 6}, idtype=idtype, device=F.ctx())
1826
    assert g2.is_multigraph == True
1827
    g3 = dgl.graph(((0, 1), (1, 2)), num_nodes=6, idtype=idtype, device=F.ctx())
1828
    assert g3.is_multigraph == False
1829
    g4 = dgl.graph(([0, 0, 1], [1, 1, 2]), num_nodes=6, idtype=idtype, device=F.ctx())
1830
    assert g4.is_multigraph == True
1831
1832
1833
1834
    g = dgl.heterograph({
        ('A', 'AB', 'B'): ([0, 0, 1, 2], [1, 2, 5, 5]),
        ('A', 'AA', 'A'): ([0, 1], [1, 2])},
        {'A': 6, 'B': 6}, idtype=idtype, device=F.ctx())
1835
    assert g.is_multigraph == False
1836
1837
1838
1839
    g = dgl.heterograph({
        ('A', 'AB', 'B'): ([0, 0, 1, 2], [1, 2, 5, 5]),
        ('A', 'AC', 'C'): ([0, 0, 0, 1], [1, 1, 2, 5])},
        {'A': 6, 'B': 6, 'C': 6}, idtype=idtype, device=F.ctx())
1840
    assert g.is_multigraph == True
1841
1842
1843
1844
    g = dgl.heterograph({
        ('A', 'AB', 'B'): ([0, 0, 1, 2], [1, 2, 5, 5]),
        ('A', 'AA', 'A'): ([0, 0, 1], [1, 1, 2])},
        {'A': 6, 'B': 6}, idtype=idtype, device=F.ctx())
1845
    assert g.is_multigraph == True
1846
1847
1848
1849
    g = dgl.heterograph({
        ('A', 'AC', 'C'): ([0, 0, 0, 1], [1, 1, 2, 5]),
        ('A', 'AA', 'A'): ([0, 1], [1, 2])},
        {'A': 6, 'C': 6}, idtype=idtype, device=F.ctx())
1850
1851
    assert g.is_multigraph == True

1852
@parametrize_dtype
1853
def test_bipartite(idtype):
1854
1855
    g1 = dgl.heterograph({('A', 'AB', 'B'): ([0, 0, 1], [1, 2, 5])},
                         idtype=idtype, device=F.ctx())
1856
1857
1858
1859
1860
1861
1862
    assert g1.is_unibipartite
    assert len(g1.ntypes) == 2
    assert g1.etypes == ['AB']
    assert g1.srctypes == ['A']
    assert g1.dsttypes == ['B']
    assert g1.number_of_nodes('A') == 2
    assert g1.number_of_nodes('B') == 6
1863
1864
1865
1866
    assert g1.number_of_src_nodes('A') == 2
    assert g1.number_of_src_nodes() == 2
    assert g1.number_of_dst_nodes('B') == 6
    assert g1.number_of_dst_nodes() == 6
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
    assert g1.number_of_edges() == 3
    g1.srcdata['h'] = F.randn((2, 5))
    assert F.array_equal(g1.srcnodes['A'].data['h'], g1.srcdata['h'])
    assert F.array_equal(g1.nodes['A'].data['h'], g1.srcdata['h'])
    assert F.array_equal(g1.nodes['SRC/A'].data['h'], g1.srcdata['h'])
    g1.dstdata['h'] = F.randn((6, 3))
    assert F.array_equal(g1.dstnodes['B'].data['h'], g1.dstdata['h'])
    assert F.array_equal(g1.nodes['B'].data['h'], g1.dstdata['h'])
    assert F.array_equal(g1.nodes['DST/B'].data['h'], g1.dstdata['h'])

    # more complicated bipartite
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
    g2 = dgl.heterograph({
        ('A', 'AB', 'B'): ([0, 0, 1], [1, 2, 5]),
        ('A', 'AC', 'C'): ([1, 0], [0, 0])
    }, idtype=idtype, device=F.ctx())

    assert g2.is_unibipartite
    assert g2.srctypes == ['A']
    assert set(g2.dsttypes) == {'B', 'C'}
    assert g2.number_of_nodes('A') == 2
    assert g2.number_of_nodes('B') == 6
    assert g2.number_of_nodes('C') == 1
    assert g2.number_of_src_nodes('A') == 2
    assert g2.number_of_src_nodes() == 2
    assert g2.number_of_dst_nodes('B') == 6
    assert g2.number_of_dst_nodes('C') == 1
    g2.srcdata['h'] = F.randn((2, 5))
    assert F.array_equal(g2.srcnodes['A'].data['h'], g2.srcdata['h'])
    assert F.array_equal(g2.nodes['A'].data['h'], g2.srcdata['h'])
    assert F.array_equal(g2.nodes['SRC/A'].data['h'], g2.srcdata['h'])

    g3 = dgl.heterograph({
        ('A', 'AB', 'B'): ([0, 0, 1], [1, 2, 5]),
        ('A', 'AC', 'C'): ([1, 0], [0, 0]),
        ('A', 'AA', 'A'): ([0, 1], [0, 1])
    }, idtype=idtype, device=F.ctx())
    assert not g3.is_unibipartite
1904

1905
1906
1907
1908
1909
1910
1911
    g4 = dgl.heterograph({
        ('A', 'AB', 'B'): ([0, 0, 1], [1, 2, 5]),
        ('C', 'CA', 'A'): ([1, 0], [0, 0])
    }, idtype=idtype, device=F.ctx())

    assert not g4.is_unibipartite

1912
@parametrize_dtype
1913
def test_dtype_cast(idtype):
1914
    g = dgl.graph(([0, 1, 0, 2], [0, 1, 1, 0]), idtype=idtype, device=F.ctx())
1915
    assert g.idtype == idtype
1916
1917
    g.ndata["feat"] = F.tensor([3, 4, 5])
    g.edata["h"] = F.tensor([3, 4, 5, 6])
1918
    if idtype == "int32":
1919
        g_cast = g.long()
1920
        assert g_cast.idtype == F.int64
1921
1922
    else:
        g_cast = g.int()
1923
1924
        assert g_cast.idtype == F.int32
    test_utils.check_graph_equal(g, g_cast, check_idtype=False)
1925

1926
1927
@parametrize_dtype
def test_format(idtype):
1928
    # single relation
1929
    g = dgl.graph(([0, 1, 0, 2], [0, 1, 1, 0]), idtype=idtype, device=F.ctx())
1930
1931
1932
    assert g.formats()['created'] == ['coo']
    g1 = g.formats(['coo', 'csr', 'csc'])
    assert len(g1.formats()['created']) + len(g1.formats()['not created']) == 3
1933
    g1.create_formats_()
1934
1935
    assert len(g1.formats()['created']) == 3
    assert g.formats()['created'] == ['coo']
1936
1937
1938

    # multiple relation
    g = dgl.heterograph({
1939
1940
1941
1942
        ('user', 'follows', 'user'): ([0, 1], [1, 2]),
        ('user', 'plays', 'game'): ([0, 1, 1, 2], [0, 0, 1, 1]),
        ('developer', 'develops', 'game'): ([0, 1], [0, 1])
        }, idtype=idtype, device=F.ctx())
1943
1944
    user_feat = F.randn((g['follows'].number_of_src_nodes(), 5))
    g['follows'].srcdata['h'] = user_feat
1945
    g1 = g.formats('csc')
1946
1947
1948
    # test frame
    assert F.array_equal(g1['follows'].srcdata['h'], user_feat)
    # test each relation graph
1949
1950
    assert g1.formats()['created'] == ['csc']
    assert len(g1.formats()['not created']) == 0
1951

1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
    # in_degrees
    g = dgl.rand_graph(100, 2340).to(F.ctx())
    ind_arr = []
    for vid in range(0, 100):
        ind_arr.append(g.in_degrees(vid))
    in_degrees = g.in_degrees()
    g = g.formats('coo')
    for vid in range(0, 100):
        assert g.in_degrees(vid) == ind_arr[vid]
    assert F.array_equal(in_degrees, g.in_degrees())

1963
1964
@parametrize_dtype
def test_edges_order(idtype):
1965
1966
1967
1968
    # (0, 2), (1, 2), (0, 1), (0, 1), (2, 1)
    g = dgl.graph((
        np.array([0, 1, 0, 0, 2]),
        np.array([2, 2, 1, 1, 1])
1969
    ), idtype=idtype, device=F.ctx())
1970

1971
    print(g.formats())
1972
    src, dst = g.all_edges(order='srcdst')
1973
1974
    assert F.array_equal(src, F.tensor([0, 0, 0, 1, 2], dtype=idtype))
    assert F.array_equal(dst, F.tensor([1, 1, 2, 2, 1], dtype=idtype))
1975

1976
@parametrize_dtype
1977
def test_reverse(idtype):
1978
1979
    g = dgl.heterograph({
        ('user', 'follows', 'user'): ([0, 1, 2, 4, 3 ,1, 3], [1, 2, 3, 2, 0, 0, 1]),
1980
    }, idtype=idtype, device=F.ctx())
1981
    gidx = g._graph
1982
    r_gidx = gidx.reverse()
1983
1984
1985
1986
1987

    assert gidx.number_of_nodes(0) == r_gidx.number_of_nodes(0)
    assert gidx.number_of_edges(0) == r_gidx.number_of_edges(0)
    g_s, g_d, _ = gidx.edges(0)
    rg_s, rg_d, _ = r_gidx.edges(0)
1988
1989
    assert F.array_equal(g_s, rg_d)
    assert F.array_equal(g_d, rg_s)
1990
1991

    # force to start with 'csr'
1992
1993
    gidx = gidx.formats('csr')
    gidx = gidx.formats(['coo', 'csr', 'csc'])
1994
    r_gidx = gidx.reverse()
1995
1996
    assert 'csr' in gidx.formats()['created']
    assert 'csc' in r_gidx.formats()['created']
1997
1998
1999
2000
    assert gidx.number_of_nodes(0) == r_gidx.number_of_nodes(0)
    assert gidx.number_of_edges(0) == r_gidx.number_of_edges(0)
    g_s, g_d, _ = gidx.edges(0)
    rg_s, rg_d, _ = r_gidx.edges(0)
2001
2002
    assert F.array_equal(g_s, rg_d)
    assert F.array_equal(g_d, rg_s)
2003
2004

    # force to start with 'csc'
2005
2006
    gidx = gidx.formats('csc')
    gidx = gidx.formats(['coo', 'csr', 'csc'])
2007
    r_gidx = gidx.reverse()
2008
2009
    assert 'csc' in gidx.formats()['created']
    assert 'csr' in r_gidx.formats()['created']
2010
2011
2012
2013
    assert gidx.number_of_nodes(0) == r_gidx.number_of_nodes(0)
    assert gidx.number_of_edges(0) == r_gidx.number_of_edges(0)
    g_s, g_d, _ = gidx.edges(0)
    rg_s, rg_d, _ = r_gidx.edges(0)
2014
2015
    assert F.array_equal(g_s, rg_d)
    assert F.array_equal(g_d, rg_s)
2016
2017
2018
2019
2020

    g = dgl.heterograph({
        ('user', 'follows', 'user'): ([0, 1, 2, 4, 3 ,1, 3], [1, 2, 3, 2, 0, 0, 1]),
        ('user', 'plays', 'game'): ([0, 0, 2, 3, 3, 4, 1], [1, 0, 1, 0, 1, 0, 0]),
        ('developer', 'develops', 'game'): ([0, 1, 1, 2], [0, 0, 1, 1]),
2021
        }, idtype=idtype, device=F.ctx())
2022
    gidx = g._graph
2023
2024
2025
2026
2027
2028
2029
2030
    r_gidx = gidx.reverse()

    # metagraph
    mg = gidx.metagraph
    r_mg = r_gidx.metagraph
    for etype in range(3):
        assert mg.find_edge(etype) == r_mg.find_edge(etype)[::-1]

2031
2032
2033
2034
2035
2036
2037
2038
2039
    # three node types and three edge types
    assert gidx.number_of_nodes(0) == r_gidx.number_of_nodes(0)
    assert gidx.number_of_nodes(1) == r_gidx.number_of_nodes(1)
    assert gidx.number_of_nodes(2) == r_gidx.number_of_nodes(2)
    assert gidx.number_of_edges(0) == r_gidx.number_of_edges(0)
    assert gidx.number_of_edges(1) == r_gidx.number_of_edges(1)
    assert gidx.number_of_edges(2) == r_gidx.number_of_edges(2)
    g_s, g_d, _ = gidx.edges(0)
    rg_s, rg_d, _ = r_gidx.edges(0)
2040
2041
    assert F.array_equal(g_s, rg_d)
    assert F.array_equal(g_d, rg_s)
2042
2043
    g_s, g_d, _ = gidx.edges(1)
    rg_s, rg_d, _ = r_gidx.edges(1)
2044
2045
    assert F.array_equal(g_s, rg_d)
    assert F.array_equal(g_d, rg_s)
2046
2047
    g_s, g_d, _ = gidx.edges(2)
    rg_s, rg_d, _ = r_gidx.edges(2)
2048
2049
    assert F.array_equal(g_s, rg_d)
    assert F.array_equal(g_d, rg_s)
2050
2051

    # force to start with 'csr'
2052
2053
    gidx = gidx.formats('csr')
    gidx = gidx.formats(['coo', 'csr', 'csc'])
2054
    r_gidx = gidx.reverse()
2055
    # three node types and three edge types
2056
2057
    assert 'csr' in gidx.formats()['created']
    assert 'csc' in r_gidx.formats()['created']
2058
2059
2060
2061
2062
2063
2064
2065
    assert gidx.number_of_nodes(0) == r_gidx.number_of_nodes(0)
    assert gidx.number_of_nodes(1) == r_gidx.number_of_nodes(1)
    assert gidx.number_of_nodes(2) == r_gidx.number_of_nodes(2)
    assert gidx.number_of_edges(0) == r_gidx.number_of_edges(0)
    assert gidx.number_of_edges(1) == r_gidx.number_of_edges(1)
    assert gidx.number_of_edges(2) == r_gidx.number_of_edges(2)
    g_s, g_d, _ = gidx.edges(0)
    rg_s, rg_d, _ = r_gidx.edges(0)
2066
2067
    assert F.array_equal(g_s, rg_d)
    assert F.array_equal(g_d, rg_s)
2068
2069
    g_s, g_d, _ = gidx.edges(1)
    rg_s, rg_d, _ = r_gidx.edges(1)
2070
2071
    assert F.array_equal(g_s, rg_d)
    assert F.array_equal(g_d, rg_s)
2072
2073
    g_s, g_d, _ = gidx.edges(2)
    rg_s, rg_d, _ = r_gidx.edges(2)
2074
2075
    assert F.array_equal(g_s, rg_d)
    assert F.array_equal(g_d, rg_s)
2076
2077

    # force to start with 'csc'
2078
2079
    gidx = gidx.formats('csc')
    gidx = gidx.formats(['coo', 'csr', 'csc'])
2080
    r_gidx = gidx.reverse()
2081
    # three node types and three edge types
2082
2083
    assert 'csc' in gidx.formats()['created']
    assert 'csr' in r_gidx.formats()['created']
2084
2085
2086
2087
2088
2089
2090
2091
    assert gidx.number_of_nodes(0) == r_gidx.number_of_nodes(0)
    assert gidx.number_of_nodes(1) == r_gidx.number_of_nodes(1)
    assert gidx.number_of_nodes(2) == r_gidx.number_of_nodes(2)
    assert gidx.number_of_edges(0) == r_gidx.number_of_edges(0)
    assert gidx.number_of_edges(1) == r_gidx.number_of_edges(1)
    assert gidx.number_of_edges(2) == r_gidx.number_of_edges(2)
    g_s, g_d, _ = gidx.edges(0)
    rg_s, rg_d, _ = r_gidx.edges(0)
2092
2093
    assert F.array_equal(g_s, rg_d)
    assert F.array_equal(g_d, rg_s)
2094
2095
    g_s, g_d, _ = gidx.edges(1)
    rg_s, rg_d, _ = r_gidx.edges(1)
2096
2097
    assert F.array_equal(g_s, rg_d)
    assert F.array_equal(g_d, rg_s)
2098
2099
    g_s, g_d, _ = gidx.edges(2)
    rg_s, rg_d, _ = r_gidx.edges(2)
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
    assert F.array_equal(g_s, rg_d)
    assert F.array_equal(g_d, rg_s)

@parametrize_dtype
def test_clone(idtype):
    g = dgl.graph(([0, 1], [1, 2]), idtype=idtype, device=F.ctx())
    g.ndata['h'] = F.copy_to(F.tensor([1, 1, 1], dtype=idtype), ctx=F.ctx())
    g.edata['h'] = F.copy_to(F.tensor([1, 1], dtype=idtype), ctx=F.ctx())

    new_g = g.clone()
    assert g.number_of_nodes() == new_g.number_of_nodes()
    assert g.number_of_edges() == new_g.number_of_edges()
    assert g.device == new_g.device
    assert g.idtype == new_g.idtype
    assert F.array_equal(g.ndata['h'], new_g.ndata['h'])
    assert F.array_equal(g.edata['h'], new_g.edata['h'])
    # data change
    new_g.ndata['h'] = F.copy_to(F.tensor([2, 2, 2], dtype=idtype), ctx=F.ctx())
    assert (F.array_equal(g.ndata['h'], new_g.ndata['h']) == False)
    g.edata['h'] = F.copy_to(F.tensor([2, 2], dtype=idtype), ctx=F.ctx())
    assert (F.array_equal(g.edata['h'], new_g.edata['h']) == False)
    # graph structure change
    g.add_nodes(1)
    assert g.number_of_nodes() != new_g.number_of_nodes()
    new_g.add_edges(1, 1)
    assert g.number_of_edges() != new_g.number_of_edges()

    # zero data graph
2128
    g = dgl.graph(([], []), num_nodes=0, idtype=idtype, device=F.ctx())
2129
2130
2131
2132
2133
    new_g = g.clone()
    assert g.number_of_nodes() == new_g.number_of_nodes()
    assert g.number_of_edges() == new_g.number_of_edges()

    # heterograph
2134
    g = create_test_heterograph3(idtype)
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
    g.edges['plays'].data['h'] = F.copy_to(F.tensor([1, 2, 3, 4], dtype=idtype), ctx=F.ctx())
    new_g = g.clone()
    assert g.number_of_nodes('user') == new_g.number_of_nodes('user')
    assert g.number_of_nodes('game') == new_g.number_of_nodes('game')
    assert g.number_of_nodes('developer') == new_g.number_of_nodes('developer')
    assert g.number_of_edges('plays') == new_g.number_of_edges('plays')
    assert g.number_of_edges('develops') == new_g.number_of_edges('develops')
    assert F.array_equal(g.nodes['user'].data['h'], new_g.nodes['user'].data['h'])
    assert F.array_equal(g.nodes['game'].data['h'], new_g.nodes['game'].data['h'])
    assert F.array_equal(g.edges['plays'].data['h'], new_g.edges['plays'].data['h'])
    assert g.device == new_g.device
    assert g.idtype == new_g.idtype
    u, v = g.edges(form='uv', order='eid', etype='plays')
    nu, nv = new_g.edges(form='uv', order='eid', etype='plays')
    assert F.array_equal(u, nu)
    assert F.array_equal(v, nv)
    # graph structure change
    u = F.tensor([0, 4], dtype=idtype)
    v = F.tensor([2, 6], dtype=idtype)
    g.add_edges(u, v, etype='plays')
    u, v = g.edges(form='uv', order='eid', etype='plays')
    assert u.shape[0] != nu.shape[0]
    assert v.shape[0] != nv.shape[0]
    assert g.nodes['user'].data['h'].shape[0] != new_g.nodes['user'].data['h'].shape[0]
    assert g.nodes['game'].data['h'].shape[0] != new_g.nodes['game'].data['h'].shape[0]
    assert g.edges['plays'].data['h'].shape[0] != new_g.edges['plays'].data['h'].shape[0]


@parametrize_dtype
def test_add_edges(idtype):
    # homogeneous graph
    g = dgl.graph(([0, 1], [1, 2]), idtype=idtype, device=F.ctx())
    u = 0
    v = 1
    g.add_edges(u, v)
    assert g.device == F.ctx()
    assert g.number_of_nodes() == 3
    assert g.number_of_edges() == 3
    u = [0]
    v = [1]
    g.add_edges(u, v)
    assert g.device == F.ctx()
    assert g.number_of_nodes() == 3
    assert g.number_of_edges() == 4
    u = F.tensor(u, dtype=idtype)
    v = F.tensor(v, dtype=idtype)
    g.add_edges(u, v)
    assert g.device == F.ctx()
    assert g.number_of_nodes() == 3
    assert g.number_of_edges() == 5
    u, v = g.edges(form='uv', order='eid')
    assert F.array_equal(u, F.tensor([0, 1, 0, 0, 0], dtype=idtype))
    assert F.array_equal(v, F.tensor([1, 2, 1, 1, 1], dtype=idtype))

    # node id larger than current max node id
    g = dgl.graph(([0, 1], [1, 2]), idtype=idtype, device=F.ctx())
    u = F.tensor([0, 1], dtype=idtype)
    v = F.tensor([2, 3], dtype=idtype)
    g.add_edges(u, v)
    assert g.number_of_nodes() == 4
    assert g.number_of_edges() == 4
    u, v = g.edges(form='uv', order='eid')
    assert F.array_equal(u, F.tensor([0, 1, 0, 1], dtype=idtype))
    assert F.array_equal(v, F.tensor([1, 2, 2, 3], dtype=idtype))

    # has data
    g = dgl.graph(([0, 1], [1, 2]), idtype=idtype, device=F.ctx())
    g.ndata['h'] = F.copy_to(F.tensor([1, 1, 1], dtype=idtype), ctx=F.ctx())
    g.edata['h'] = F.copy_to(F.tensor([1, 1], dtype=idtype), ctx=F.ctx())
    u = F.tensor([0, 1], dtype=idtype)
    v = F.tensor([2, 3], dtype=idtype)
    e_feat = {'h' : F.copy_to(F.tensor([2, 2], dtype=idtype), ctx=F.ctx()),
              'hh' : F.copy_to(F.tensor([2, 2], dtype=idtype), ctx=F.ctx())}
    g.add_edges(u, v, e_feat)
    assert g.number_of_nodes() == 4
    assert g.number_of_edges() == 4
    u, v = g.edges(form='uv', order='eid')
    assert F.array_equal(u, F.tensor([0, 1, 0, 1], dtype=idtype))
    assert F.array_equal(v, F.tensor([1, 2, 2, 3], dtype=idtype))
    assert F.array_equal(g.ndata['h'], F.tensor([1, 1, 1, 0], dtype=idtype))
    assert F.array_equal(g.edata['h'], F.tensor([1, 1, 2, 2], dtype=idtype))
    assert F.array_equal(g.edata['hh'], F.tensor([0, 0, 2, 2], dtype=idtype))

    # zero data graph
2219
    g = dgl.graph(([], []), num_nodes=0, idtype=idtype, device=F.ctx())
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
    u = F.tensor([0, 1], dtype=idtype)
    v = F.tensor([2, 2], dtype=idtype)
    e_feat = {'h' : F.copy_to(F.tensor([2, 2], dtype=idtype), ctx=F.ctx()),
              'hh' : F.copy_to(F.tensor([2, 2], dtype=idtype), ctx=F.ctx())}
    g.add_edges(u, v, e_feat)
    assert g.number_of_nodes() == 3
    assert g.number_of_edges() == 2
    u, v = g.edges(form='uv', order='eid')
    assert F.array_equal(u, F.tensor([0, 1], dtype=idtype))
    assert F.array_equal(v, F.tensor([2, 2], dtype=idtype))
    assert F.array_equal(g.edata['h'], F.tensor([2, 2], dtype=idtype))
    assert F.array_equal(g.edata['hh'], F.tensor([2, 2], dtype=idtype))

    # bipartite graph
2234
2235
    g = dgl.heterograph({('user', 'plays', 'game'): ([0, 1], [1, 2])},
                        idtype=idtype, device=F.ctx())
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
    u = 0
    v = 1
    g.add_edges(u, v)
    assert g.device == F.ctx()
    assert g.number_of_nodes('user') == 2
    assert g.number_of_nodes('game') == 3
    assert g.number_of_edges() == 3
    u = [0]
    v = [1]
    g.add_edges(u, v)
    assert g.device == F.ctx()
    assert g.number_of_nodes('user') == 2
    assert g.number_of_nodes('game') == 3
    assert g.number_of_edges() == 4
    u = F.tensor(u, dtype=idtype)
    v = F.tensor(v, dtype=idtype)
    g.add_edges(u, v)
    assert g.device == F.ctx()
    assert g.number_of_nodes('user') == 2
    assert g.number_of_nodes('game') == 3
    assert g.number_of_edges() == 5
    u, v = g.edges(form='uv')
    assert F.array_equal(u, F.tensor([0, 1, 0, 0, 0], dtype=idtype))
    assert F.array_equal(v, F.tensor([1, 2, 1, 1, 1], dtype=idtype))

    # node id larger than current max node id
2262
2263
    g = dgl.heterograph({('user', 'plays', 'game'): ([0, 1], [1, 2])},
                        idtype=idtype, device=F.ctx())
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
    u = F.tensor([0, 2], dtype=idtype)
    v = F.tensor([2, 3], dtype=idtype)
    g.add_edges(u, v)
    assert g.device == F.ctx()
    assert g.number_of_nodes('user') == 3
    assert g.number_of_nodes('game') == 4
    assert g.number_of_edges() == 4
    u, v = g.edges(form='uv', order='eid')
    assert F.array_equal(u, F.tensor([0, 1, 0, 2], dtype=idtype))
    assert F.array_equal(v, F.tensor([1, 2, 2, 3], dtype=idtype))

    # has data
2276
2277
2278
2279
2280
    g = dgl.heterograph({
        ('user', 'plays', 'game'): ([0, 1], [1, 2])
    }, idtype=idtype, device=F.ctx())
    g.nodes['user'].data['h'] = F.copy_to(F.tensor([1, 1], dtype=idtype), ctx=F.ctx())
    g.nodes['game'].data['h'] = F.copy_to(F.tensor([2, 2, 2], dtype=idtype), ctx=F.ctx())
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
    g.edata['h'] = F.copy_to(F.tensor([1, 1], dtype=idtype), ctx=F.ctx())
    u = F.tensor([0, 2], dtype=idtype)
    v = F.tensor([2, 3], dtype=idtype)
    e_feat = {'h' : F.copy_to(F.tensor([2, 2], dtype=idtype), ctx=F.ctx()),
              'hh' : F.copy_to(F.tensor([2, 2], dtype=idtype), ctx=F.ctx())}
    g.add_edges(u, v, e_feat)
    assert g.number_of_nodes('user') == 3
    assert g.number_of_nodes('game') == 4
    assert g.number_of_edges() == 4
    u, v = g.edges(form='uv', order='eid')
    assert F.array_equal(u, F.tensor([0, 1, 0, 2], dtype=idtype))
    assert F.array_equal(v, F.tensor([1, 2, 2, 3], dtype=idtype))
    assert F.array_equal(g.nodes['user'].data['h'], F.tensor([1, 1, 0], dtype=idtype))
    assert F.array_equal(g.nodes['game'].data['h'], F.tensor([2, 2, 2, 0], dtype=idtype))
    assert F.array_equal(g.edata['h'], F.tensor([1, 1, 2, 2], dtype=idtype))
    assert F.array_equal(g.edata['hh'], F.tensor([0, 0, 2, 2], dtype=idtype))

    # heterogeneous graph
2299
    g = create_test_heterograph3(idtype)
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
    u = F.tensor([0, 2], dtype=idtype)
    v = F.tensor([2, 3], dtype=idtype)
    g.add_edges(u, v, etype='plays')
    assert g.number_of_nodes('user') == 3
    assert g.number_of_nodes('game') == 4
    assert g.number_of_nodes('developer') == 2
    assert g.number_of_edges('plays') == 6
    assert g.number_of_edges('develops') == 2
    u, v = g.edges(form='uv', order='eid', etype='plays')
    assert F.array_equal(u, F.tensor([0, 1, 1, 2, 0, 2], dtype=idtype))
    assert F.array_equal(v, F.tensor([0, 0, 1, 1, 2, 3], dtype=idtype))
    assert F.array_equal(g.nodes['user'].data['h'], F.tensor([1, 1, 1], dtype=idtype))
    assert F.array_equal(g.nodes['game'].data['h'], F.tensor([2, 2, 0, 0], dtype=idtype))
    assert F.array_equal(g.edges['plays'].data['h'], F.tensor([1, 1, 1, 1, 0, 0], dtype=idtype))

    # add with feature
    e_feat = {'h': F.copy_to(F.tensor([2, 2], dtype=idtype), ctx=F.ctx())}
    u = F.tensor([0, 2], dtype=idtype)
    v = F.tensor([2, 3], dtype=idtype)
    g.nodes['game'].data['h'] =  F.copy_to(F.tensor([2, 2, 1, 1], dtype=idtype), ctx=F.ctx())
    g.add_edges(u, v, data=e_feat, etype='develops')
    assert g.number_of_nodes('user') == 3
    assert g.number_of_nodes('game') == 4
    assert g.number_of_nodes('developer') == 3
    assert g.number_of_edges('plays') == 6
    assert g.number_of_edges('develops') == 4
    u, v = g.edges(form='uv', order='eid', etype='develops')
    assert F.array_equal(u, F.tensor([0, 1, 0, 2], dtype=idtype))
    assert F.array_equal(v, F.tensor([0, 1, 2, 3], dtype=idtype))
    assert F.array_equal(g.nodes['developer'].data['h'], F.tensor([3, 3, 0], dtype=idtype))
    assert F.array_equal(g.nodes['game'].data['h'], F.tensor([2, 2, 1, 1], dtype=idtype))
    assert F.array_equal(g.edges['develops'].data['h'], F.tensor([0, 0, 2, 2], dtype=idtype))

@parametrize_dtype
def test_add_nodes(idtype):
    # homogeneous Graphs
    g = dgl.graph(([0, 1], [1, 2]), idtype=idtype, device=F.ctx())
    g.ndata['h'] = F.copy_to(F.tensor([1,1,1], dtype=idtype), ctx=F.ctx())
    g.add_nodes(1)
    assert g.number_of_nodes() == 4
    assert F.array_equal(g.ndata['h'], F.tensor([1, 1, 1, 0], dtype=idtype))

    # zero node graph
2343
    g = dgl.graph(([], []), num_nodes=3, idtype=idtype, device=F.ctx())
2344
2345
2346
2347
2348
2349
    g.ndata['h'] = F.copy_to(F.tensor([1,1,1], dtype=idtype), ctx=F.ctx())
    g.add_nodes(1, data={'h' : F.copy_to(F.tensor([2],  dtype=idtype), ctx=F.ctx())})
    assert g.number_of_nodes() == 4
    assert F.array_equal(g.ndata['h'], F.tensor([1, 1, 1, 2], dtype=idtype))

    # bipartite graph
2350
2351
    g = dgl.heterograph({('user', 'plays', 'game'): ([0, 1], [1, 2])},
                        idtype=idtype, device=F.ctx())
2352
2353
2354
2355
2356
2357
2358
    g.add_nodes(2, data={'h' : F.copy_to(F.tensor([2, 2],  dtype=idtype), ctx=F.ctx())}, ntype='user')
    assert g.number_of_nodes('user') == 4
    assert F.array_equal(g.nodes['user'].data['h'], F.tensor([0, 0, 2, 2], dtype=idtype))
    g.add_nodes(2, ntype='game')
    assert g.number_of_nodes('game') == 5

    # heterogeneous graph
2359
    g = create_test_heterograph3(idtype)
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
    g.add_nodes(1, ntype='user')
    g.add_nodes(2, data={'h' : F.copy_to(F.tensor([2, 2],  dtype=idtype), ctx=F.ctx())}, ntype='game')
    g.add_nodes(0, ntype='developer')
    assert g.number_of_nodes('user') == 4
    assert g.number_of_nodes('game') == 4
    assert g.number_of_nodes('developer') == 2
    assert F.array_equal(g.nodes['user'].data['h'], F.tensor([1, 1, 1, 0], dtype=idtype))
    assert F.array_equal(g.nodes['game'].data['h'], F.tensor([2, 2, 2, 2], dtype=idtype))

@unittest.skipIf(dgl.backend.backend_name == "mxnet", reason="MXNet has error with (0,) shape tensor.")
@parametrize_dtype
def test_remove_edges(idtype):
    # homogeneous Graphs
    g = dgl.graph(([0, 1], [1, 2]), idtype=idtype, device=F.ctx())
    e = 0
    g.remove_edges(e)
    assert g.number_of_edges() == 1
    u, v = g.edges(form='uv', order='eid')
    assert F.array_equal(u, F.tensor([1], dtype=idtype))
    assert F.array_equal(v, F.tensor([2], dtype=idtype))
    g = dgl.graph(([0, 1], [1, 2]), idtype=idtype, device=F.ctx())
    e = [0]
    g.remove_edges(e)
    assert g.number_of_edges() == 1
    u, v = g.edges(form='uv', order='eid')
    assert F.array_equal(u, F.tensor([1], dtype=idtype))
    assert F.array_equal(v, F.tensor([2], dtype=idtype))
    e = F.tensor([0], dtype=idtype)
    g.remove_edges(e)
    assert g.number_of_edges() == 0

    # has node data
    g = dgl.graph(([0, 1], [1, 2]), idtype=idtype, device=F.ctx())
    g.ndata['h'] = F.copy_to(F.tensor([1, 2, 3], dtype=idtype), ctx=F.ctx())
    g.remove_edges(1)
    assert g.number_of_edges() == 1
    assert F.array_equal(g.ndata['h'], F.tensor([1, 2, 3], dtype=idtype))

    # has edge data
    g = dgl.graph(([0, 1], [1, 2]), idtype=idtype, device=F.ctx())
    g.edata['h'] = F.copy_to(F.tensor([1, 2], dtype=idtype), ctx=F.ctx())
    g.remove_edges(0)
    assert g.number_of_edges() == 1
    assert F.array_equal(g.edata['h'], F.tensor([2], dtype=idtype))

    # invalid eid
    assert_fail = False
    try:
        g.remove_edges(1)
    except:
        assert_fail = True
    assert assert_fail

    # bipartite graph
2414
2415
2416
    g = dgl.heterograph({
        ('user', 'plays', 'game'): ([0, 1], [1, 2])
    }, idtype=idtype, device=F.ctx())
2417
2418
2419
2420
2421
2422
    e = 0
    g.remove_edges(e)
    assert g.number_of_edges() == 1
    u, v = g.edges(form='uv', order='eid')
    assert F.array_equal(u, F.tensor([1], dtype=idtype))
    assert F.array_equal(v, F.tensor([2], dtype=idtype))
2423
2424
    g = dgl.heterograph(
        {('user', 'plays', 'game'): ([0, 1], [1, 2])}, idtype=idtype, device=F.ctx())
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
    e = [0]
    g.remove_edges(e)
    assert g.number_of_edges() == 1
    u, v = g.edges(form='uv', order='eid')
    assert F.array_equal(u, F.tensor([1], dtype=idtype))
    assert F.array_equal(v, F.tensor([2], dtype=idtype))
    e = F.tensor([0], dtype=idtype)
    g.remove_edges(e)
    assert g.number_of_edges() == 0

    # has data
2436
2437
2438
2439
    g = dgl.heterograph(
        {('user', 'plays', 'game'): ([0, 1], [1, 2])}, idtype=idtype, device=F.ctx())
    g.nodes['user'].data['h'] = F.copy_to(F.tensor([1, 1], dtype=idtype), ctx=F.ctx())
    g.nodes['game'].data['h'] = F.copy_to(F.tensor([2, 2, 2], dtype=idtype), ctx=F.ctx())
2440
2441
2442
2443
2444
2445
2446
2447
    g.edata['h'] = F.copy_to(F.tensor([1, 2], dtype=idtype), ctx=F.ctx())
    g.remove_edges(1)
    assert g.number_of_edges() == 1
    assert F.array_equal(g.nodes['user'].data['h'], F.tensor([1, 1], dtype=idtype))
    assert F.array_equal(g.nodes['game'].data['h'], F.tensor([2, 2, 2], dtype=idtype))
    assert F.array_equal(g.edata['h'], F.tensor([1], dtype=idtype))

    # heterogeneous graph
2448
    g = create_test_heterograph3(idtype)
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
    g.edges['plays'].data['h'] = F.copy_to(F.tensor([1, 2, 3, 4], dtype=idtype), ctx=F.ctx())
    g.remove_edges(1, etype='plays')
    assert g.number_of_edges('plays') == 3
    u, v = g.edges(form='uv', order='eid', etype='plays')
    assert F.array_equal(u, F.tensor([0, 1, 2], dtype=idtype))
    assert F.array_equal(v, F.tensor([0, 1, 1], dtype=idtype))
    assert F.array_equal(g.edges['plays'].data['h'], F.tensor([1, 3, 4], dtype=idtype))
    # remove all edges of 'develops'
    g.remove_edges([0, 1], etype='develops')
    assert g.number_of_edges('develops') == 0
    assert F.array_equal(g.nodes['user'].data['h'], F.tensor([1, 1, 1], dtype=idtype))
    assert F.array_equal(g.nodes['game'].data['h'], F.tensor([2, 2], dtype=idtype))
    assert F.array_equal(g.nodes['developer'].data['h'], F.tensor([3, 3], dtype=idtype))

@parametrize_dtype
def test_remove_nodes(idtype):
    # homogeneous Graphs
    g = dgl.graph(([0, 1], [1, 2]), idtype=idtype, device=F.ctx())
    n = 0
    g.remove_nodes(n)
    assert g.number_of_nodes() == 2
    assert g.number_of_edges() == 1
    u, v = g.edges(form='uv', order='eid')
    assert F.array_equal(u, F.tensor([0], dtype=idtype))
    assert F.array_equal(v, F.tensor([1], dtype=idtype))
    g = dgl.graph(([0, 1], [1, 2]), idtype=idtype, device=F.ctx())
    n = [1]
    g.remove_nodes(n)
    assert g.number_of_nodes() == 2
    assert g.number_of_edges() == 0
    g = dgl.graph(([0, 1], [1, 2]), idtype=idtype, device=F.ctx())
    n = F.tensor([2], dtype=idtype)
    g.remove_nodes(n)
    assert g.number_of_nodes() == 2
    assert g.number_of_edges() == 1
    u, v = g.edges(form='uv', order='eid')
    assert F.array_equal(u, F.tensor([0], dtype=idtype))
    assert F.array_equal(v, F.tensor([1], dtype=idtype))

    # invalid nid
    assert_fail = False
    try:
        g.remove_nodes(3)
    except:
        assert_fail = True
    assert assert_fail

    # has node and edge data
    g = dgl.graph(([0, 0, 2], [0, 1, 2]), idtype=idtype, device=F.ctx())
    g.ndata['hv'] = F.copy_to(F.tensor([1, 2, 3], dtype=idtype), ctx=F.ctx())
    g.edata['he'] = F.copy_to(F.tensor([1, 2, 3], dtype=idtype), ctx=F.ctx())
    g.remove_nodes(F.tensor([0], dtype=idtype))
    assert g.number_of_nodes() == 2
    assert g.number_of_edges() == 1
    u, v = g.edges(form='uv', order='eid')
    assert F.array_equal(u, F.tensor([1], dtype=idtype))
    assert F.array_equal(v, F.tensor([1], dtype=idtype))
    assert F.array_equal(g.ndata['hv'], F.tensor([2, 3], dtype=idtype))
    assert F.array_equal(g.edata['he'], F.tensor([3], dtype=idtype))

    # node id larger than current max node id
2510
2511
    g = dgl.heterograph(
        {('user', 'plays', 'game'): ([0, 1], [1, 2])}, idtype=idtype, device=F.ctx())
2512
2513
2514
2515
2516
2517
2518
2519
    n = 0
    g.remove_nodes(n, ntype='user')
    assert g.number_of_nodes('user') == 1
    assert g.number_of_nodes('game') == 3
    assert g.number_of_edges() == 1
    u, v = g.edges(form='uv', order='eid')
    assert F.array_equal(u, F.tensor([0], dtype=idtype))
    assert F.array_equal(v, F.tensor([2], dtype=idtype))
2520
2521
    g = dgl.heterograph(
        {('user', 'plays', 'game'): ([0, 1], [1, 2])}, idtype=idtype, device=F.ctx())
2522
2523
2524
2525
2526
2527
2528
2529
    n = [1]
    g.remove_nodes(n, ntype='user')
    assert g.number_of_nodes('user') == 1
    assert g.number_of_nodes('game') == 3
    assert g.number_of_edges() == 1
    u, v = g.edges(form='uv', order='eid')
    assert F.array_equal(u, F.tensor([0], dtype=idtype))
    assert F.array_equal(v, F.tensor([1], dtype=idtype))
2530
2531
    g = dgl.heterograph(
        {('user', 'plays', 'game'): ([0, 1], [1, 2])}, idtype=idtype, device=F.ctx())
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
    n = F.tensor([0], dtype=idtype)
    g.remove_nodes(n, ntype='game')
    assert g.number_of_nodes('user') == 2
    assert g.number_of_nodes('game') == 2
    assert g.number_of_edges() == 2
    u, v = g.edges(form='uv', order='eid')
    assert F.array_equal(u, F.tensor([0, 1], dtype=idtype))
    assert F.array_equal(v, F.tensor([0 ,1], dtype=idtype))

    # heterogeneous graph
2542
    g = create_test_heterograph3(idtype)
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
    g.edges['plays'].data['h'] = F.copy_to(F.tensor([1, 2, 3, 4], dtype=idtype), ctx=F.ctx())
    g.remove_nodes(0, ntype='game')
    assert g.number_of_nodes('user') == 3
    assert g.number_of_nodes('game') == 1
    assert g.number_of_nodes('developer') == 2
    assert g.number_of_edges('plays') == 2
    assert g.number_of_edges('develops') == 1
    assert F.array_equal(g.nodes['user'].data['h'], F.tensor([1, 1, 1], dtype=idtype))
    assert F.array_equal(g.nodes['game'].data['h'], F.tensor([2], dtype=idtype))
    assert F.array_equal(g.nodes['developer'].data['h'], F.tensor([3, 3], dtype=idtype))
    u, v = g.edges(form='uv', order='eid', etype='plays')
    assert F.array_equal(u, F.tensor([1, 2], dtype=idtype))
    assert F.array_equal(v, F.tensor([0, 0], dtype=idtype))
    assert F.array_equal(g.edges['plays'].data['h'], F.tensor([3, 4], dtype=idtype))
    u, v = g.edges(form='uv', order='eid', etype='develops')
    assert F.array_equal(u, F.tensor([1], dtype=idtype))
    assert F.array_equal(v, F.tensor([0], dtype=idtype))
2560

2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
@parametrize_dtype
def test_frame(idtype):
    g = dgl.graph(([0, 1, 2], [1, 2, 3]), idtype=idtype, device=F.ctx())
    g.ndata['h'] = F.copy_to(F.tensor([0, 1, 2, 3], dtype=idtype), ctx=F.ctx())
    g.edata['h'] = F.copy_to(F.tensor([0, 1, 2], dtype=idtype), ctx=F.ctx())

    # remove nodes
    sg = dgl.remove_nodes(g, [3])
    # check for lazy update
    assert F.array_equal(sg._node_frames[0]._columns['h'].storage, g.ndata['h'])
    assert F.array_equal(sg._edge_frames[0]._columns['h'].storage, g.edata['h'])
    assert sg.ndata['h'].shape[0] == 3
    assert sg.edata['h'].shape[0] == 2
    # update after read
    assert F.array_equal(sg._node_frames[0]._columns['h'].storage, F.tensor([0, 1, 2], dtype=idtype))
    assert F.array_equal(sg._edge_frames[0]._columns['h'].storage, F.tensor([0, 1], dtype=idtype))

    ng = dgl.add_nodes(sg, 1)
    assert ng.ndata['h'].shape[0] == 4
    assert F.array_equal(ng._node_frames[0]._columns['h'].storage, F.tensor([0, 1, 2, 0], dtype=idtype))
    ng = dgl.add_edges(ng, [3], [1])
    assert ng.edata['h'].shape[0] == 3
    assert F.array_equal(ng._edge_frames[0]._columns['h'].storage, F.tensor([0, 1, 0], dtype=idtype))

    # multi level lazy update
    sg = dgl.remove_nodes(g, [3])
    assert F.array_equal(sg._node_frames[0]._columns['h'].storage, g.ndata['h'])
    assert F.array_equal(sg._edge_frames[0]._columns['h'].storage, g.edata['h'])
    ssg = dgl.remove_nodes(sg, [1])
    assert F.array_equal(ssg._node_frames[0]._columns['h'].storage, g.ndata['h'])
    assert F.array_equal(ssg._edge_frames[0]._columns['h'].storage, g.edata['h'])
    # ssg is changed
    assert ssg.ndata['h'].shape[0] == 2
    assert ssg.edata['h'].shape[0] == 0
    assert F.array_equal(ssg._node_frames[0]._columns['h'].storage, F.tensor([0, 2], dtype=idtype))
    # sg still in lazy model
    assert F.array_equal(sg._node_frames[0]._columns['h'].storage, g.ndata['h'])
    assert F.array_equal(sg._edge_frames[0]._columns['h'].storage, g.edata['h'])

@unittest.skipIf(dgl.backend.backend_name == "tensorflow", reason="TensorFlow always create a new tensor")
@unittest.skipIf(F._default_context_str == 'cpu', reason="cpu do not have context change problem")
@parametrize_dtype
def test_frame_device(idtype):
    g = dgl.graph(([0,1,2], [2,3,1]))
    g.ndata['h'] = F.copy_to(F.tensor([1,1,1,2], dtype=idtype), ctx=F.cpu())
    g.ndata['hh'] = F.copy_to(F.ones((4,3), dtype=idtype), ctx=F.cpu())
    g.edata['h'] = F.copy_to(F.tensor([1,2,3], dtype=idtype), ctx=F.cpu())

    g = g.to(F.ctx())
    # lazy device copy
    assert F.context(g._node_frames[0]._columns['h'].storage) == F.cpu()
    assert F.context(g._node_frames[0]._columns['hh'].storage) == F.cpu()
    print(g.ndata['h'])
    assert F.context(g._node_frames[0]._columns['h'].storage) == F.ctx()
    assert F.context(g._node_frames[0]._columns['hh'].storage) == F.cpu()
    assert F.context(g._edge_frames[0]._columns['h'].storage) == F.cpu()

    # lazy device copy in subgraph
    sg = dgl.node_subgraph(g, [0,1,2])
    assert F.context(sg._node_frames[0]._columns['h'].storage) == F.ctx()
    assert F.context(sg._node_frames[0]._columns['hh'].storage) == F.cpu()
    assert F.context(sg._edge_frames[0]._columns['h'].storage) == F.cpu()
    print(sg.ndata['hh'])
    assert F.context(sg._node_frames[0]._columns['hh'].storage) == F.ctx()
    assert F.context(sg._edge_frames[0]._columns['h'].storage) == F.cpu()

    # back to cpu
    sg = sg.to(F.cpu())
    assert F.context(sg._node_frames[0]._columns['h'].storage) == F.ctx()
    assert F.context(sg._node_frames[0]._columns['hh'].storage) == F.ctx()
    assert F.context(sg._edge_frames[0]._columns['h'].storage) == F.cpu()
    print(sg.ndata['h'])
    print(sg.ndata['hh'])
    print(sg.edata['h'])
    assert F.context(sg._node_frames[0]._columns['h'].storage) == F.cpu()
    assert F.context(sg._node_frames[0]._columns['hh'].storage) == F.cpu()
    assert F.context(sg._edge_frames[0]._columns['h'].storage) == F.cpu()

    # set some field
    sg = sg.to(F.ctx())
    assert F.context(sg._node_frames[0]._columns['h'].storage) == F.cpu()
    sg.ndata['h'][0] = 5
    assert F.context(sg._node_frames[0]._columns['h'].storage) == F.ctx()
    assert F.context(sg._node_frames[0]._columns['hh'].storage) == F.cpu()
    assert F.context(sg._edge_frames[0]._columns['h'].storage) == F.cpu()

    # add nodes
    ng = dgl.add_nodes(sg, 3)
    assert F.context(ng._node_frames[0]._columns['h'].storage) == F.ctx()
    assert F.context(ng._node_frames[0]._columns['hh'].storage) == F.ctx()
    assert F.context(ng._edge_frames[0]._columns['h'].storage) == F.cpu()

2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
@parametrize_dtype
def test_create_block(idtype):
    block = dgl.create_block(([0, 1, 2], [1, 2, 3]), idtype=idtype, device=F.ctx())
    assert block.num_src_nodes() == 3
    assert block.num_dst_nodes() == 4
    assert block.num_edges() == 3

    block = dgl.create_block(([], []), idtype=idtype, device=F.ctx())
    assert block.num_src_nodes() == 0
    assert block.num_dst_nodes() == 0
    assert block.num_edges() == 0

    block = dgl.create_block(([], []), 3, 4, idtype=idtype, device=F.ctx())
    assert block.num_src_nodes() == 3
    assert block.num_dst_nodes() == 4
    assert block.num_edges() == 0

    block = dgl.create_block(([0, 1, 2], [1, 2, 3]), 4, 5, idtype=idtype, device=F.ctx())
    assert block.num_src_nodes() == 4
    assert block.num_dst_nodes() == 5
    assert block.num_edges() == 3

    sx = F.randn((4, 5))
    dx = F.randn((5, 6))
    ex = F.randn((3, 4))
    block.srcdata['x'] = sx
    block.dstdata['x'] = dx
    block.edata['x'] = ex

    g = dgl.block_to_graph(block)
    assert g.num_src_nodes() == 4
    assert g.num_dst_nodes() == 5
    assert g.num_edges() == 3
    assert g.srcdata['x'] is sx
    assert g.dstdata['x'] is dx
    assert g.edata['x'] is ex

    block = dgl.create_block({
        ('A', 'AB', 'B'): ([1, 2, 3], [2, 1, 0]),
        ('B', 'BA', 'A'): ([2, 3], [3, 4])},
        idtype=idtype, device=F.ctx())
    assert block.num_src_nodes('A') == 4
    assert block.num_src_nodes('B') == 4
    assert block.num_dst_nodes('B') == 3
    assert block.num_dst_nodes('A') == 5
    assert block.num_edges('AB') == 3
    assert block.num_edges('BA') == 2

    block = dgl.create_block({
        ('A', 'AB', 'B'): ([], []),
        ('B', 'BA', 'A'): ([], [])},
        idtype=idtype, device=F.ctx())
    assert block.num_src_nodes('A') == 0
    assert block.num_src_nodes('B') == 0
    assert block.num_dst_nodes('B') == 0
    assert block.num_dst_nodes('A') == 0
    assert block.num_edges('AB') == 0
    assert block.num_edges('BA') == 0

    block = dgl.create_block({
        ('A', 'AB', 'B'): ([], []),
        ('B', 'BA', 'A'): ([], [])},
        num_src_nodes={'A': 5, 'B': 5},
        num_dst_nodes={'A': 6, 'B': 4},
        idtype=idtype, device=F.ctx())
    assert block.num_src_nodes('A') == 5
    assert block.num_src_nodes('B') == 5
    assert block.num_dst_nodes('B') == 4
    assert block.num_dst_nodes('A') == 6
    assert block.num_edges('AB') == 0
    assert block.num_edges('BA') == 0

    block = dgl.create_block({
        ('A', 'AB', 'B'): ([1, 2, 3], [2, 1, 0]),
        ('B', 'BA', 'A'): ([2, 3], [3, 4])},
        num_src_nodes={'A': 5, 'B': 5},
        num_dst_nodes={'A': 6, 'B': 4},
        idtype=idtype, device=F.ctx())
    assert block.num_src_nodes('A') == 5
    assert block.num_src_nodes('B') == 5
    assert block.num_dst_nodes('B') == 4
    assert block.num_dst_nodes('A') == 6
    assert block.num_edges(('A', 'AB', 'B')) == 3
    assert block.num_edges(('B', 'BA', 'A')) == 2

    sax = F.randn((5, 3))
    sbx = F.randn((5, 4))
    dax = F.randn((6, 5))
    dbx = F.randn((4, 6))
    eabx = F.randn((3, 7))
    ebax = F.randn((2, 8))
    block.srcnodes['A'].data['x'] = sax
    block.srcnodes['B'].data['x'] = sbx
    block.dstnodes['A'].data['x'] = dax
    block.dstnodes['B'].data['x'] = dbx
    block.edges['AB'].data['x'] = eabx
    block.edges['BA'].data['x'] = ebax

    hg = dgl.block_to_graph(block)
    assert hg.num_nodes('A_src') == 5
    assert hg.num_nodes('B_src') == 5
    assert hg.num_nodes('A_dst') == 6
    assert hg.num_nodes('B_dst') == 4
    assert hg.num_edges(('A_src', 'AB', 'B_dst')) == 3
    assert hg.num_edges(('B_src', 'BA', 'A_dst')) == 2
    assert hg.nodes['A_src'].data['x'] is sax
    assert hg.nodes['B_src'].data['x'] is sbx
    assert hg.nodes['A_dst'].data['x'] is dax
    assert hg.nodes['B_dst'].data['x'] is dbx
    assert hg.edges['AB'].data['x'] is eabx
    assert hg.edges['BA'].data['x'] is ebax
2764

2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
@parametrize_dtype
@pytest.mark.parametrize('fmt', ['coo', 'csr', 'csc'])
def test_adj_sparse(idtype, fmt):
    if fmt == 'coo':
        A = ssp.random(10, 10, 0.2).tocoo()
        A.data = np.arange(20)
        row = F.tensor(A.row, idtype)
        col = F.tensor(A.col, idtype)
        g = dgl.graph((row, col))
    elif fmt == 'csr':
        A = ssp.random(10, 10, 0.2).tocsr()
        A.data = np.arange(20)
        indptr = F.tensor(A.indptr, idtype)
        indices = F.tensor(A.indices, idtype)
        g = dgl.graph(('csr', (indptr, indices, [])))
        with pytest.raises(DGLError):
            g2 = dgl.graph(('csr', (indptr[:-1], indices, [])), num_nodes=10)
    elif fmt == 'csc':
        A = ssp.random(10, 10, 0.2).tocsc()
        A.data = np.arange(20)
        indptr = F.tensor(A.indptr, idtype)
        indices = F.tensor(A.indices, idtype)
        g = dgl.graph(('csc', (indptr, indices, [])))
        with pytest.raises(DGLError):
            g2 = dgl.graph(('csr', (indptr[:-1], indices, [])), num_nodes=10)

    A_coo = A.tocoo()
    A_csr = A.tocsr()
    A_csc = A.tocsc()
    row, col = g.adj_sparse('coo')
    assert np.array_equal(F.asnumpy(row), A_coo.row)
    assert np.array_equal(F.asnumpy(col), A_coo.col)

    indptr, indices, eids = g.adj_sparse('csr')
    assert np.array_equal(F.asnumpy(indptr), A_csr.indptr)
    if fmt == 'csr':
        assert len(eids) == 0
        assert np.array_equal(F.asnumpy(indices), A_csr.indices)
    else:
        indices_sorted = F.zeros(len(indices), idtype)
        indices_sorted = F.scatter_row(indices_sorted, eids, indices)
        indices_sorted_np = np.zeros(len(indices), dtype=A_csr.indices.dtype)
        indices_sorted_np[A_csr.data] = A_csr.indices
        assert np.array_equal(F.asnumpy(indices_sorted), indices_sorted_np)

    indptr, indices, eids = g.adj_sparse('csc')
    assert np.array_equal(F.asnumpy(indptr), A_csc.indptr)
    if fmt == 'csc':
        assert len(eids) == 0
        assert np.array_equal(F.asnumpy(indices), A_csc.indices)
    else:
        indices_sorted = F.zeros(len(indices), idtype)
        indices_sorted = F.scatter_row(indices_sorted, eids, indices)
        indices_sorted_np = np.zeros(len(indices), dtype=A_csc.indices.dtype)
        indices_sorted_np[A_csc.data] = A_csc.indices
        assert np.array_equal(F.asnumpy(indices_sorted), indices_sorted_np)

2822

2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
def _test_forking_pickler_entry(g, q):
    q.put(g.formats())

@unittest.skipIf(dgl.backend.backend_name == "mxnet", reason="MXNet doesn't support spawning")
def test_forking_pickler():
    ctx = mp.get_context('spawn')
    g = dgl.graph(([0,1,2],[1,2,3]))
    g.create_formats_()
    q = ctx.Queue(1)
    proc = ctx.Process(target=_test_forking_pickler_entry, args=(g, q))
    proc.start()
    fmt = q.get()['created']
    proc.join()
    assert 'coo' in fmt
    assert 'csr' in fmt
    assert 'csc' in fmt


2841
if __name__ == '__main__':
2842
2843
2844
2845
2846
    # test_create()
    # test_query()
    # test_hypersparse()
    # test_adj("int32")
    # test_inc()
2847
    # test_view("int32")
2848
    # test_view1("int32")
2849
    # test_flatten(F.int32)
2850
2851
    # test_convert_bound()
    # test_convert()
2852
    # test_to_device("int32")
2853
    # test_transform("int32")
2854
2855
    # test_subgraph("int32")
    # test_subgraph_mask("int32")
2856
2857
2858
2859
2860
    # test_apply()
    # test_level1()
    # test_level2()
    # test_updates()
    # test_backward()
2861
    # test_empty_heterograph('int32')
2862
2863
2864
2865
    # test_types_in_function()
    # test_stack_reduce()
    # test_isolated_ntype()
    # test_bipartite()
2866
    # test_dtype_cast()
2867
    # test_reverse("int32")
2868
    # test_format()
2869
2870
2871
2872
2873
    #test_add_edges(F.int32)
    #test_add_nodes(F.int32)
    #test_remove_edges(F.int32)
    #test_remove_nodes(F.int32)
    #test_clone(F.int32)
2874
2875
2876
    #test_frame(F.int32)
    #test_frame_device(F.int32)
    #test_empty_query(F.int32)
2877
    #test_create_block(F.int32)
2878
    pass