test_heterograph.py 77.2 KB
Newer Older
1
2
3
4
5
6
7
8
import dgl
import dgl.function as fn
from collections import Counter
import numpy as np
import scipy.sparse as ssp
import itertools
import backend as F
import networkx as nx
9
import unittest, pytest
10
from dgl import DGLError
11
from utils import parametrize_dtype
12

13
def create_test_heterograph(index_dtype):
14
    # test heterograph from the docstring, plus a user -- wishes -- game relation
Minjie Wang's avatar
Minjie Wang committed
15
16
17
18
19
20
    # 3 users, 2 games, 2 developers
    # metagraph:
    #    ('user', 'follows', 'user'),
    #    ('user', 'plays', 'game'),
    #    ('user', 'wishes', 'game'),
    #    ('developer', 'develops', 'game')])
21
22

    plays_spmat = ssp.coo_matrix(([1, 1, 1, 1], ([0, 1, 2, 1], [0, 0, 1, 1])))
Minjie Wang's avatar
Minjie Wang committed
23
24
25
26
27
    wishes_nx = nx.DiGraph()
    wishes_nx.add_nodes_from(['u0', 'u1', 'u2'], bipartite=0)
    wishes_nx.add_nodes_from(['g0', 'g1'], bipartite=1)
    wishes_nx.add_edge('u0', 'g1', id=0)
    wishes_nx.add_edge('u2', 'g0', id=1)
28

29
30
31
32
33
34
35
36
    follows_g = dgl.graph([(0, 1), (1, 2)], 'user', 'follows', index_dtype=index_dtype)
    plays_g = dgl.bipartite(plays_spmat, 'user', 'plays', 'game', index_dtype=index_dtype)
    wishes_g = dgl.bipartite(wishes_nx, 'user', 'wishes', 'game', index_dtype=index_dtype)
    develops_g = dgl.bipartite([(0, 0), (1, 1)], 'developer', 'develops', 'game', index_dtype=index_dtype)
    assert follows_g._idtype_str == index_dtype
    assert plays_g._idtype_str == index_dtype
    assert wishes_g._idtype_str == index_dtype
    assert develops_g._idtype_str == index_dtype
Minjie Wang's avatar
Minjie Wang committed
37
    g = dgl.hetero_from_relations([follows_g, plays_g, wishes_g, develops_g])
38
    assert g._idtype_str == index_dtype
39
40
    return g

41
def create_test_heterograph1(index_dtype):
Minjie Wang's avatar
Minjie Wang committed
42
43
44
45
46
47
48
49
50
51
52
53
    edges = []
    edges.extend([(0,1), (1,2)])  # follows
    edges.extend([(0,3), (1,3), (2,4), (1,4)])  # plays
    edges.extend([(0,4), (2,3)])  # wishes
    edges.extend([(5,3), (6,4)])  # develops
    ntypes = F.tensor([0, 0, 0, 1, 1, 2, 2])
    etypes = F.tensor([0, 0, 1, 1, 1, 1, 2, 2, 3, 3])
    g0 = dgl.graph(edges)
    g0.ndata[dgl.NTYPE] = ntypes
    g0.edata[dgl.ETYPE] = etypes
    return dgl.to_hetero(g0, ['user', 'game', 'developer'], ['follows', 'plays', 'wishes', 'develops'])

54
def create_test_heterograph2(index_dtype):
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
    plays_spmat = ssp.coo_matrix(([1, 1, 1, 1], ([0, 1, 2, 1], [0, 0, 1, 1])))
    wishes_nx = nx.DiGraph()
    wishes_nx.add_nodes_from(['u0', 'u1', 'u2'], bipartite=0)
    wishes_nx.add_nodes_from(['g0', 'g1'], bipartite=1)
    wishes_nx.add_edge('u0', 'g1', id=0)
    wishes_nx.add_edge('u2', 'g0', id=1)
    develops_g = dgl.bipartite([(0, 0), (1, 1)], 'developer', 'develops', 'game')

    g = dgl.heterograph({
        ('user', 'follows', 'user'): [(0, 1), (1, 2)],
        ('user', 'plays', 'game'): plays_spmat,
        ('user', 'wishes', 'game'): wishes_nx,
        ('developer', 'develops', 'game'): develops_g,
        })
    return g

71
def create_test_heterograph3(index_dtype):
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
    plays_spmat = ssp.coo_matrix(([1, 1, 1, 1], ([0, 1, 2, 1], [0, 0, 1, 1])))
    wishes_nx = nx.DiGraph()
    wishes_nx.add_nodes_from(['u0', 'u1', 'u2'], bipartite=0)
    wishes_nx.add_nodes_from(['g0', 'g1'], bipartite=1)
    wishes_nx.add_edge('u0', 'g1', id=0)
    wishes_nx.add_edge('u2', 'g0', id=1)

    follows_g = dgl.graph([(0, 1), (1, 2)], 'user', 'follows', _restrict_format='coo')
    plays_g = dgl.bipartite(
        [(0, 0), (1, 0), (2, 1), (1, 1)], 'user', 'plays', 'game', _restrict_format='coo')
    wishes_g = dgl.bipartite([(0, 1), (2, 0)], 'user', 'wishes', 'game', _restrict_format='coo')
    develops_g = dgl.bipartite(
        [(0, 0), (1, 1)], 'developer', 'develops', 'game', _restrict_format='coo')
    g = dgl.hetero_from_relations([follows_g, plays_g, wishes_g, develops_g])
    return g

Minjie Wang's avatar
Minjie Wang committed
88
89
90
def get_redfn(name):
    return getattr(F, name)

91
92
93
94
95
@parametrize_dtype
def test_create(index_dtype):
    g0 = create_test_heterograph(index_dtype)
    g1 = create_test_heterograph1(index_dtype)
    g2 = create_test_heterograph2(index_dtype)
96
97
    assert set(g0.ntypes) == set(g1.ntypes) == set(g2.ntypes)
    assert set(g0.canonical_etypes) == set(g1.canonical_etypes) == set(g2.canonical_etypes)
Minjie Wang's avatar
Minjie Wang committed
98
99
100
101
102
103
104
105
106
107
108
109
110
111

    # create from nx complete bipartite graph
    nxg = nx.complete_bipartite_graph(3, 4)
    g = dgl.bipartite(nxg, 'user', 'plays', 'game')
    assert g.ntypes == ['user', 'game']
    assert g.etypes == ['plays']
    assert g.number_of_edges() == 12

    # create from scipy
    spmat = ssp.coo_matrix(([1,1,1], ([0, 0, 1], [2, 3, 2])), shape=(4, 4))
    g = dgl.graph(spmat)
    assert g.number_of_nodes() == 4
    assert g.number_of_edges() == 3

112
113
114
115
116
117
118
119
120
121
    # test inferring number of nodes for heterograph
    g = dgl.heterograph({
        ('l0', 'e0', 'l1'): [(0, 1), (0, 2)],
        ('l0', 'e1', 'l2'): [(2, 2)],
        ('l2', 'e2', 'l2'): [(1, 1), (3, 3)],
        })
    assert g.number_of_nodes('l0') == 3
    assert g.number_of_nodes('l1') == 3
    assert g.number_of_nodes('l2') == 4

122
123
124
125
126
127
    # test if validate flag works
    # homo graph
    fail = False
    try:
        g = dgl.graph(
            ([0, 0, 0, 1, 1, 2], [0, 1, 2, 0, 1, 2]),
128
            num_nodes=2,
129
130
131
132
133
134
135
136
137
138
139
140
            validate=True
        )
    except DGLError:
        fail = True
    finally:
        assert fail, "should catch a DGLError because node ID is out of bound."
    # bipartite graph
    def _test_validate_bipartite(card):
        fail = False
        try:
            g = dgl.bipartite(
                ([0, 0, 1, 1, 2], [1, 1, 2, 2, 3]),
141
                num_nodes=card,
142
143
144
145
146
147
148
149
150
151
                validate=True
            )
        except DGLError:
            fail = True
        finally:
            assert fail, "should catch a DGLError because node ID is out of bound."

    _test_validate_bipartite((3, 3))
    _test_validate_bipartite((2, 4))

152
153
154
@parametrize_dtype
def test_query(index_dtype):
    g = create_test_heterograph(index_dtype)
155
156

    ntypes = ['user', 'game', 'developer']
Minjie Wang's avatar
Minjie Wang committed
157
    canonical_etypes = [
158
159
160
161
        ('user', 'follows', 'user'),
        ('user', 'plays', 'game'),
        ('user', 'wishes', 'game'),
        ('developer', 'develops', 'game')]
Minjie Wang's avatar
Minjie Wang committed
162
    etypes = ['follows', 'plays', 'wishes', 'develops']
163
164

    # node & edge types
Minjie Wang's avatar
Minjie Wang committed
165
166
167
    assert set(ntypes) == set(g.ntypes)
    assert set(etypes) == set(g.etypes)
    assert set(canonical_etypes) == set(g.canonical_etypes)
168
169
170

    # metagraph
    mg = g.metagraph
Minjie Wang's avatar
Minjie Wang committed
171
    assert set(g.ntypes) == set(mg.nodes)
172
173
174
175
176
177
    etype_triplets = [(u, v, e) for u, v, e in mg.edges(keys=True)]
    assert set([
        ('user', 'user', 'follows'),
        ('user', 'game', 'plays'),
        ('user', 'game', 'wishes'),
        ('developer', 'game', 'develops')]) == set(etype_triplets)
Minjie Wang's avatar
Minjie Wang committed
178
179
    for i in range(len(etypes)):
        assert g.to_canonical_etype(etypes[i]) == canonical_etypes[i]
180

181
182
183
    def _test(g):
        # number of nodes
        assert [g.number_of_nodes(ntype) for ntype in ntypes] == [3, 2, 2]
184

185
186
        # number of edges
        assert [g.number_of_edges(etype) for etype in etypes] == [2, 4, 2, 2]
187

188
189
190
191
192
193
194
195
        # has_node & has_nodes
        for ntype in ntypes:
            n = g.number_of_nodes(ntype)
            for i in range(n):
                assert g.has_node(i, ntype)
            assert not g.has_node(n, ntype)
            assert np.array_equal(
                F.asnumpy(g.has_nodes([0, n], ntype)).astype('int32'), [1, 0])
Minjie Wang's avatar
Minjie Wang committed
196

197
198
        assert not g.is_multigraph
        assert g.is_readonly
Minjie Wang's avatar
Minjie Wang committed
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232

        for etype in etypes:
            srcs, dsts = edges[etype]
            for src, dst in zip(srcs, dsts):
                assert g.has_edge_between(src, dst, etype)
            assert F.asnumpy(g.has_edges_between(srcs, dsts, etype)).all()

            srcs, dsts = negative_edges[etype]
            for src, dst in zip(srcs, dsts):
                assert not g.has_edge_between(src, dst, etype)
            assert not F.asnumpy(g.has_edges_between(srcs, dsts, etype)).any()

            srcs, dsts = edges[etype]
            n_edges = len(srcs)

            # predecessors & in_edges & in_degree
            pred = [s for s, d in zip(srcs, dsts) if d == 0]
            assert set(F.asnumpy(g.predecessors(0, etype)).tolist()) == set(pred)
            u, v = g.in_edges([0], etype=etype)
            assert F.asnumpy(v).tolist() == [0] * len(pred)
            assert set(F.asnumpy(u).tolist()) == set(pred)
            assert g.in_degree(0, etype) == len(pred)

            # successors & out_edges & out_degree
            succ = [d for s, d in zip(srcs, dsts) if s == 0]
            assert set(F.asnumpy(g.successors(0, etype)).tolist()) == set(succ)
            u, v = g.out_edges([0], etype=etype)
            assert F.asnumpy(u).tolist() == [0] * len(succ)
            assert set(F.asnumpy(v).tolist()) == set(succ)
            assert g.out_degree(0, etype) == len(succ)

            # edge_id & edge_ids
            for i, (src, dst) in enumerate(zip(srcs, dsts)):
                assert g.edge_id(src, dst, etype=etype) == i
233
                assert F.asnumpy(g.edge_id(src, dst, etype=etype, return_array=True)).tolist() == [i]
Minjie Wang's avatar
Minjie Wang committed
234
            assert F.asnumpy(g.edge_ids(srcs, dsts, etype=etype)).tolist() == list(range(n_edges))
235
            u, v, e = g.edge_ids(srcs, dsts, etype=etype, return_uv=True)
236
237
238
239
            assert F.asnumpy(u).tolist() == srcs
            assert F.asnumpy(v).tolist() == dsts
            assert F.asnumpy(e).tolist() == list(range(n_edges))

Minjie Wang's avatar
Minjie Wang committed
240
            # find_edges
241
242
243
244
            for edge_ids in [list(range(n_edges)), np.arange(n_edges), F.astype(F.arange(0, n_edges), g.idtype)]:
                u, v = g.find_edges(edge_ids, etype)
                assert F.asnumpy(u).tolist() == srcs
                assert F.asnumpy(v).tolist() == dsts
Minjie Wang's avatar
Minjie Wang committed
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276

            # all_edges.
            for order in ['eid']:
                u, v, e = g.all_edges('all', order, etype)
                assert F.asnumpy(u).tolist() == srcs
                assert F.asnumpy(v).tolist() == dsts
                assert F.asnumpy(e).tolist() == list(range(n_edges))

            # in_degrees & out_degrees
            in_degrees = F.asnumpy(g.in_degrees(etype=etype))
            out_degrees = F.asnumpy(g.out_degrees(etype=etype))
            src_count = Counter(srcs)
            dst_count = Counter(dsts)
            utype, _, vtype = g.to_canonical_etype(etype)
            for i in range(g.number_of_nodes(utype)):
                assert out_degrees[i] == src_count[i]
            for i in range(g.number_of_nodes(vtype)):
                assert in_degrees[i] == dst_count[i]

    edges = {
        'follows': ([0, 1], [1, 2]),
        'plays': ([0, 1, 2, 1], [0, 0, 1, 1]),
        'wishes': ([0, 2], [1, 0]),
        'develops': ([0, 1], [0, 1]),
    }
    # edges that does not exist in the graph
    negative_edges = {
        'follows': ([0, 1], [0, 1]),
        'plays': ([0, 2], [1, 0]),
        'wishes': ([0, 1], [0, 1]),
        'develops': ([0, 1], [1, 0]),
    }
277
    g = create_test_heterograph(index_dtype)
Minjie Wang's avatar
Minjie Wang committed
278
    _test(g)
279
    g = create_test_heterograph1(index_dtype)
Minjie Wang's avatar
Minjie Wang committed
280
    _test(g)
281
    g = create_test_heterograph3(index_dtype)
282
    _test(g)
Minjie Wang's avatar
Minjie Wang committed
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297

    etypes = canonical_etypes
    edges = {
        ('user', 'follows', 'user'): ([0, 1], [1, 2]),
        ('user', 'plays', 'game'): ([0, 1, 2, 1], [0, 0, 1, 1]),
        ('user', 'wishes', 'game'): ([0, 2], [1, 0]),
        ('developer', 'develops', 'game'): ([0, 1], [0, 1]),
    }
    # edges that does not exist in the graph
    negative_edges = {
        ('user', 'follows', 'user'): ([0, 1], [0, 1]),
        ('user', 'plays', 'game'): ([0, 2], [1, 0]),
        ('user', 'wishes', 'game'): ([0, 1], [0, 1]),
        ('developer', 'develops', 'game'): ([0, 1], [1, 0]),
        }
298
    g = create_test_heterograph(index_dtype)
Minjie Wang's avatar
Minjie Wang committed
299
    _test(g)
300
    g = create_test_heterograph1(index_dtype)
Minjie Wang's avatar
Minjie Wang committed
301
    _test(g)
302
    g = create_test_heterograph3(index_dtype)
303
    _test(g)
Minjie Wang's avatar
Minjie Wang committed
304
305
306
307

    # test repr
    print(g)

308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
def test_hypersparse():
    N1 = 1 << 50        # should crash if allocated a CSR
    N2 = 1 << 48

    g = dgl.heterograph({
        ('user', 'follows', 'user'): [(0, 1)],
        ('user', 'plays', 'game'): [(0, N2)]},
        {'user': N1, 'game': N1})
    assert g.number_of_nodes('user') == N1
    assert g.number_of_nodes('game') == N1
    assert g.number_of_edges('follows') == 1
    assert g.number_of_edges('plays') == 1

    assert g.has_edge_between(0, 1, 'follows')
    assert not g.has_edge_between(0, 0, 'follows')
    mask = F.asnumpy(g.has_edges_between([0, 0], [0, 1], 'follows')).tolist()
    assert mask == [0, 1]

    assert g.has_edge_between(0, N2, 'plays')
    assert not g.has_edge_between(0, 0, 'plays')
    mask = F.asnumpy(g.has_edges_between([0, 0], [0, N2], 'plays')).tolist()
    assert mask == [0, 1]

    assert F.asnumpy(g.predecessors(0, 'follows')).tolist() == []
    assert F.asnumpy(g.successors(0, 'follows')).tolist() == [1]
    assert F.asnumpy(g.predecessors(1, 'follows')).tolist() == [0]
    assert F.asnumpy(g.successors(1, 'follows')).tolist() == []

    assert F.asnumpy(g.predecessors(0, 'plays')).tolist() == []
    assert F.asnumpy(g.successors(0, 'plays')).tolist() == [N2]
    assert F.asnumpy(g.predecessors(N2, 'plays')).tolist() == [0]
    assert F.asnumpy(g.successors(N2, 'plays')).tolist() == []

    assert g.edge_id(0, 1, etype='follows') == 0
    assert g.edge_id(0, N2, etype='plays') == 0
    assert F.asnumpy(g.edge_ids(0, 1, etype='follows')).tolist() == [0]
    assert F.asnumpy(g.edge_ids(0, N2, etype='plays')).tolist() == [0]

    u, v = g.find_edges([0], 'follows')
    assert F.asnumpy(u).tolist() == [0]
    assert F.asnumpy(v).tolist() == [1]
    u, v = g.find_edges([0], 'plays')
    assert F.asnumpy(u).tolist() == [0]
    assert F.asnumpy(v).tolist() == [N2]
    u, v, e = g.all_edges('all', 'eid', 'follows')
    assert F.asnumpy(u).tolist() == [0]
    assert F.asnumpy(v).tolist() == [1]
    assert F.asnumpy(e).tolist() == [0]
    u, v, e = g.all_edges('all', 'eid', 'plays')
    assert F.asnumpy(u).tolist() == [0]
    assert F.asnumpy(v).tolist() == [N2]
    assert F.asnumpy(e).tolist() == [0]

    assert g.in_degree(0, 'follows') == 0
    assert g.in_degree(1, 'follows') == 1
    assert F.asnumpy(g.in_degrees([0, 1], 'follows')).tolist() == [0, 1]
    assert g.in_degree(0, 'plays') == 0
    assert g.in_degree(N2, 'plays') == 1
    assert F.asnumpy(g.in_degrees([0, N2], 'plays')).tolist() == [0, 1]
    assert g.out_degree(0, 'follows') == 1
    assert g.out_degree(1, 'follows') == 0
    assert F.asnumpy(g.out_degrees([0, 1], 'follows')).tolist() == [1, 0]
    assert g.out_degree(0, 'plays') == 1
    assert g.out_degree(N2, 'plays') == 0
    assert F.asnumpy(g.out_degrees([0, N2], 'plays')).tolist() == [1, 0]

374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
def test_edge_ids():
    N1 = 1 << 50        # should crash if allocated a CSR
    N2 = 1 << 48

    g = dgl.heterograph({
        ('user', 'follows', 'user'): [(0, 1)],
        ('user', 'plays', 'game'): [(0, N2)]},
        {'user': N1, 'game': N1})
    with pytest.raises(AssertionError):
        eids = g.edge_ids(0, 0, etype='follows')

    with pytest.raises(AssertionError):
        eid = g.edge_id(0, 0, etype='follows')

    g2 = dgl.heterograph({
        ('user', 'follows', 'user'): [(0, 1), (0, 1)],
        ('user', 'plays', 'game'): [(0, N2)]},
        {'user': N1, 'game': N1})

    with pytest.raises(AssertionError):
        eids = g2.edge_ids(0, 1, etype='follows')

    with pytest.raises(AssertionError):
        eid = g2.edge_id(0, 1, etype='follows')

399
400
401
@parametrize_dtype
def test_adj(index_dtype):
    g = create_test_heterograph(index_dtype)
Minjie Wang's avatar
Minjie Wang committed
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
    adj = F.sparse_to_numpy(g.adj(etype='follows'))
    assert np.allclose(
            adj,
            np.array([[0., 0., 0.],
                      [1., 0., 0.],
                      [0., 1., 0.]]))
    adj = F.sparse_to_numpy(g.adj(transpose=True, etype='follows'))
    assert np.allclose(
            adj,
            np.array([[0., 1., 0.],
                      [0., 0., 1.],
                      [0., 0., 0.]]))
    adj = F.sparse_to_numpy(g.adj(etype='plays'))
    assert np.allclose(
            adj,
            np.array([[1., 1., 0.],
                      [0., 1., 1.]]))
    adj = F.sparse_to_numpy(g.adj(transpose=True, etype='plays'))
    assert np.allclose(
            adj,
            np.array([[1., 0.],
                      [1., 1.],
                      [0., 1.]]))

    adj = g.adj(scipy_fmt='csr', etype='follows')
    assert np.allclose(
            adj.todense(),
            np.array([[0., 0., 0.],
                      [1., 0., 0.],
                      [0., 1., 0.]]))
    adj = g.adj(scipy_fmt='coo', etype='follows')
    assert np.allclose(
            adj.todense(),
            np.array([[0., 0., 0.],
                      [1., 0., 0.],
                      [0., 1., 0.]]))
    adj = g.adj(scipy_fmt='csr', etype='plays')
    assert np.allclose(
            adj.todense(),
            np.array([[1., 1., 0.],
                      [0., 1., 1.]]))
    adj = g.adj(scipy_fmt='coo', etype='plays')
    assert np.allclose(
            adj.todense(),
            np.array([[1., 1., 0.],
                      [0., 1., 1.]]))
    adj = F.sparse_to_numpy(g['follows'].adj())
    assert np.allclose(
            adj,
            np.array([[0., 0., 0.],
                      [1., 0., 0.],
                      [0., 1., 0.]]))

455
456
457
@parametrize_dtype
def test_inc(index_dtype):
    g = create_test_heterograph(index_dtype)
Minjie Wang's avatar
Minjie Wang committed
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
    #follows_g = dgl.graph([(0, 1), (1, 2)], 'user', 'follows')
    adj = F.sparse_to_numpy(g['follows'].inc('in'))
    assert np.allclose(
            adj,
            np.array([[0., 0.],
                      [1., 0.],
                      [0., 1.]]))
    adj = F.sparse_to_numpy(g['follows'].inc('out'))
    assert np.allclose(
            adj,
            np.array([[1., 0.],
                      [0., 1.],
                      [0., 0.]]))
    adj = F.sparse_to_numpy(g['follows'].inc('both'))
    assert np.allclose(
            adj,
            np.array([[-1., 0.],
                      [1., -1.],
                      [0., 1.]]))
    adj = F.sparse_to_numpy(g.inc('in', etype='plays'))
    assert np.allclose(
            adj,
            np.array([[1., 1., 0., 0.],
                      [0., 0., 1., 1.]]))
    adj = F.sparse_to_numpy(g.inc('out', etype='plays'))
    assert np.allclose(
            adj,
            np.array([[1., 0., 0., 0.],
                      [0., 1., 0., 1.],
                      [0., 0., 1., 0.]]))
    adj = F.sparse_to_numpy(g.inc('both', etype='follows'))
    assert np.allclose(
            adj,
            np.array([[-1., 0.],
                      [1., -1.],
                      [0., 1.]]))
494
495
496

@parametrize_dtype
def test_view(index_dtype):
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
    # test single node type
    g = dgl.graph([(0, 1), (1, 2)], 'user', 'follows')
    f1 = F.randn((3, 6))
    g.ndata['h'] = f1
    f2 = g.nodes['user'].data['h']
    assert F.array_equal(f1, f2)
    fail = False
    try:
        g.ndata['h'] = {'user' : f1}
    except Exception:
        fail = True
    assert fail

    # test single edge type
    f3 = F.randn((2, 4))
    g.edata['h'] = f3
    f4 = g.edges['follows'].data['h']
    assert F.array_equal(f3, f4)
    fail = False
    try:
        g.edata['h'] = {'follows' : f3}
    except Exception:
        fail = True
    assert fail

Minjie Wang's avatar
Minjie Wang committed
522
    # test data view
523
    g = create_test_heterograph(index_dtype)
524
525

    f1 = F.randn((3, 6))
Minjie Wang's avatar
Minjie Wang committed
526
527
    g.nodes['user'].data['h'] = f1       # ok
    f2 = g.nodes['user'].data['h']
528
    assert F.array_equal(f1, f2)
Minjie Wang's avatar
Minjie Wang committed
529
    assert F.array_equal(F.tensor(g.nodes('user')), F.arange(0, 3))
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
    g.nodes['user'].data.pop('h')

    # multi type ndata
    f1 = F.randn((3, 6))
    f2 = F.randn((2, 6))
    fail = False
    try:
        g.ndata['h'] = f1
    except Exception:
        fail = True
    assert fail
    g.ndata['h'] = {'user' : f1,
                    'game' : f2}
    f3 = g.nodes['user'].data['h']
    f4 = g.nodes['game'].data['h']
    assert F.array_equal(f1, f3)
    assert F.array_equal(f2, f4)
    data = g.ndata['h']
    assert F.array_equal(f1, data['user'])
    assert F.array_equal(f2, data['game'])
    # test repr
    print(g.ndata)
    g.ndata.pop('h')
    # test repr
    print(g.ndata)
555
556

    f3 = F.randn((2, 4))
Minjie Wang's avatar
Minjie Wang committed
557
558
559
    g.edges['user', 'follows', 'user'].data['h'] = f3
    f4 = g.edges['user', 'follows', 'user'].data['h']
    f5 = g.edges['follows'].data['h']
560
    assert F.array_equal(f3, f4)
Minjie Wang's avatar
Minjie Wang committed
561
562
    assert F.array_equal(f3, f5)
    assert F.array_equal(F.tensor(g.edges(etype='follows', form='eid')), F.arange(0, 2))
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
    g.edges['follows'].data.pop('h')

    f3 = F.randn((2, 4))
    fail = False
    try:
        g.edata['h'] = f3
    except Exception:
        fail = True
    assert fail
    g.edata['h'] = {('user', 'follows', 'user') : f3}
    f4 = g.edges['user', 'follows', 'user'].data['h']
    f5 = g.edges['follows'].data['h']
    assert F.array_equal(f3, f4)
    assert F.array_equal(f3, f5)
    data = g.edata['h']
    assert F.array_equal(f3, data[('user', 'follows', 'user')])
    # test repr
    print(g.edata)
    g.edata.pop('h')
    # test repr
    print(g.edata)

    # test srcdata
    f1 = F.randn((3, 6))
    g.srcnodes['user'].data['h'] = f1       # ok
    f2 = g.srcnodes['user'].data['h']
    assert F.array_equal(f1, f2)
    assert F.array_equal(F.tensor(g.srcnodes('user')), F.arange(0, 3))
    g.srcnodes['user'].data.pop('h')

    # multi type ndata
    f1 = F.randn((3, 6))
    f2 = F.randn((2, 6))
    fail = False
    try:
        g.srcdata['h'] = f1
    except Exception:
        fail = True
    assert fail
    g.srcdata['h'] = {'user' : f1,
                      'developer' : f2}
    f3 = g.srcnodes['user'].data['h']
    f4 = g.srcnodes['developer'].data['h']
    assert F.array_equal(f1, f3)
    assert F.array_equal(f2, f4)
    data = g.srcdata['h']
    assert F.array_equal(f1, data['user'])
    assert F.array_equal(f2, data['developer'])
    # test repr
    print(g.srcdata)
    g.srcdata.pop('h')

    # test dstdata
    f1 = F.randn((3, 6))
    g.dstnodes['user'].data['h'] = f1       # ok
    f2 = g.dstnodes['user'].data['h']
    assert F.array_equal(f1, f2)
    assert F.array_equal(F.tensor(g.dstnodes('user')), F.arange(0, 3))
    g.dstnodes['user'].data.pop('h')

    # multi type ndata
    f1 = F.randn((3, 6))
    f2 = F.randn((2, 6))
    fail = False
    try:
        g.dstdata['h'] = f1
    except Exception:
        fail = True
    assert fail
    g.dstdata['h'] = {'user' : f1,
                      'game' : f2}
    f3 = g.dstnodes['user'].data['h']
    f4 = g.dstnodes['game'].data['h']
    assert F.array_equal(f1, f3)
    assert F.array_equal(f2, f4)
    data = g.dstdata['h']
    assert F.array_equal(f1, data['user'])
    assert F.array_equal(f2, data['game'])
    # test repr
    print(g.dstdata)
    g.dstdata.pop('h')
Minjie Wang's avatar
Minjie Wang committed
644

645
646
@parametrize_dtype
def test_view1(index_dtype):
Minjie Wang's avatar
Minjie Wang committed
647
    # test relation view
648
    HG = create_test_heterograph(index_dtype)
Minjie Wang's avatar
Minjie Wang committed
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
    ntypes = ['user', 'game', 'developer']
    canonical_etypes = [
        ('user', 'follows', 'user'),
        ('user', 'plays', 'game'),
        ('user', 'wishes', 'game'),
        ('developer', 'develops', 'game')]
    etypes = ['follows', 'plays', 'wishes', 'develops']

    def _test_query():
        for etype in etypes:
            utype, _, vtype = HG.to_canonical_etype(etype)
            g = HG[etype]
            srcs, dsts = edges[etype]
            for src, dst in zip(srcs, dsts):
                assert g.has_edge_between(src, dst)
            assert F.asnumpy(g.has_edges_between(srcs, dsts)).all()

            srcs, dsts = negative_edges[etype]
            for src, dst in zip(srcs, dsts):
                assert not g.has_edge_between(src, dst)
            assert not F.asnumpy(g.has_edges_between(srcs, dsts)).any()

            srcs, dsts = edges[etype]
            n_edges = len(srcs)

            # predecessors & in_edges & in_degree
            pred = [s for s, d in zip(srcs, dsts) if d == 0]
            assert set(F.asnumpy(g.predecessors(0)).tolist()) == set(pred)
            u, v = g.in_edges([0])
            assert F.asnumpy(v).tolist() == [0] * len(pred)
            assert set(F.asnumpy(u).tolist()) == set(pred)
            assert g.in_degree(0) == len(pred)

            # successors & out_edges & out_degree
            succ = [d for s, d in zip(srcs, dsts) if s == 0]
            assert set(F.asnumpy(g.successors(0)).tolist()) == set(succ)
            u, v = g.out_edges([0])
            assert F.asnumpy(u).tolist() == [0] * len(succ)
            assert set(F.asnumpy(v).tolist()) == set(succ)
            assert g.out_degree(0) == len(succ)

            # edge_id & edge_ids
            for i, (src, dst) in enumerate(zip(srcs, dsts)):
                assert g.edge_id(src, dst) == i
693
                assert F.asnumpy(g.edge_id(src, dst, return_array=True)).tolist() == [i]
Minjie Wang's avatar
Minjie Wang committed
694
            assert F.asnumpy(g.edge_ids(srcs, dsts)).tolist() == list(range(n_edges))
695
            u, v, e = g.edge_ids(srcs, dsts, return_uv=True)
Minjie Wang's avatar
Minjie Wang committed
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
            assert F.asnumpy(u).tolist() == srcs
            assert F.asnumpy(v).tolist() == dsts
            assert F.asnumpy(e).tolist() == list(range(n_edges))

            # find_edges
            u, v = g.find_edges(list(range(n_edges)))
            assert F.asnumpy(u).tolist() == srcs
            assert F.asnumpy(v).tolist() == dsts

            # all_edges.
            for order in ['eid']:
                u, v, e = g.all_edges(form='all', order=order)
                assert F.asnumpy(u).tolist() == srcs
                assert F.asnumpy(v).tolist() == dsts
                assert F.asnumpy(e).tolist() == list(range(n_edges))

            # in_degrees & out_degrees
            in_degrees = F.asnumpy(g.in_degrees())
            out_degrees = F.asnumpy(g.out_degrees())
            src_count = Counter(srcs)
            dst_count = Counter(dsts)
            for i in range(g.number_of_nodes(utype)):
                assert out_degrees[i] == src_count[i]
            for i in range(g.number_of_nodes(vtype)):
                assert in_degrees[i] == dst_count[i]   

    edges = {
        'follows': ([0, 1], [1, 2]),
        'plays': ([0, 1, 2, 1], [0, 0, 1, 1]),
        'wishes': ([0, 2], [1, 0]),
        'develops': ([0, 1], [0, 1]),
    }
    # edges that does not exist in the graph
    negative_edges = {
        'follows': ([0, 1], [0, 1]),
        'plays': ([0, 2], [1, 0]),
        'wishes': ([0, 1], [0, 1]),
        'develops': ([0, 1], [1, 0]),
    }
    _test_query()
    etypes = canonical_etypes
    edges = {
        ('user', 'follows', 'user'): ([0, 1], [1, 2]),
        ('user', 'plays', 'game'): ([0, 1, 2, 1], [0, 0, 1, 1]),
        ('user', 'wishes', 'game'): ([0, 2], [1, 0]),
        ('developer', 'develops', 'game'): ([0, 1], [0, 1]),
    }
    # edges that does not exist in the graph
    negative_edges = {
        ('user', 'follows', 'user'): ([0, 1], [0, 1]),
        ('user', 'plays', 'game'): ([0, 2], [1, 0]),
        ('user', 'wishes', 'game'): ([0, 1], [0, 1]),
        ('developer', 'develops', 'game'): ([0, 1], [1, 0]),
        }
    _test_query()

    # test features
    HG.nodes['user'].data['h'] = F.ones((HG.number_of_nodes('user'), 5))
    HG.nodes['game'].data['m'] = F.ones((HG.number_of_nodes('game'), 3)) * 2

    # test only one node type
    g = HG['follows']
    assert g.number_of_nodes() == 3

    # test ndata and edata
    f1 = F.randn((3, 6))
    g.ndata['h'] = f1       # ok
    f2 = HG.nodes['user'].data['h']
    assert F.array_equal(f1, f2)
    assert F.array_equal(F.tensor(g.nodes()), F.arange(0, 3))

    f3 = F.randn((2, 4))
    g.edata['h'] = f3
    f4 = HG.edges['follows'].data['h']
    assert F.array_equal(f3, f4)
    assert F.array_equal(F.tensor(g.edges(form='eid')), F.arange(0, 2))

773
774
775
776
777
778
779
780
    # multiple types
    ndata = HG.ndata['h']
    assert isinstance(ndata, dict)
    assert F.array_equal(ndata['user'], f2)
    
    edata = HG.edata['h']
    assert isinstance(edata, dict)
    assert F.array_equal(edata[('user', 'follows', 'user')], f4)
Minjie Wang's avatar
Minjie Wang committed
781

782
783
@parametrize_dtype
def test_flatten(index_dtype):
Minjie Wang's avatar
Minjie Wang committed
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
    def check_mapping(g, fg):
        if len(fg.ntypes) == 1:
            SRC = DST = fg.ntypes[0]
        else:
            SRC = fg.ntypes[0]
            DST = fg.ntypes[1]

        etypes = F.asnumpy(fg.edata[dgl.ETYPE]).tolist()
        eids = F.asnumpy(fg.edata[dgl.EID]).tolist()

        for i, (etype, eid) in enumerate(zip(etypes, eids)):
            src_g, dst_g = g.find_edges([eid], g.canonical_etypes[etype])
            src_fg, dst_fg = fg.find_edges([i])
            # TODO(gq): I feel this code is quite redundant; can we just add new members (like
            # "induced_srcid") to returned heterograph object and not store them as features?
799
            assert F.asnumpy(src_g) == F.asnumpy(F.gather_row(fg.nodes[SRC].data[dgl.NID], src_fg)[0])
VoVAllen's avatar
VoVAllen committed
800
            tid = F.asnumpy(F.gather_row(fg.nodes[SRC].data[dgl.NTYPE], src_fg)).item()
Minjie Wang's avatar
Minjie Wang committed
801
            assert g.canonical_etypes[etype][0] == g.ntypes[tid]
802
            assert F.asnumpy(dst_g) == F.asnumpy(F.gather_row(fg.nodes[DST].data[dgl.NID], dst_fg)[0])
VoVAllen's avatar
VoVAllen committed
803
            tid = F.asnumpy(F.gather_row(fg.nodes[DST].data[dgl.NTYPE], dst_fg)).item()
Minjie Wang's avatar
Minjie Wang committed
804
805
806
            assert g.canonical_etypes[etype][2] == g.ntypes[tid]

    # check for wildcard slices
807
    g = create_test_heterograph(index_dtype)
Minjie Wang's avatar
Minjie Wang committed
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
    g.nodes['user'].data['h'] = F.ones((3, 5))
    g.nodes['game'].data['i'] = F.ones((2, 5))
    g.edges['plays'].data['e'] = F.ones((4, 4))
    g.edges['wishes'].data['e'] = F.ones((2, 4))
    g.edges['wishes'].data['f'] = F.ones((2, 4))

    fg = g['user', :, 'game']   # user--plays->game and user--wishes->game
    assert len(fg.ntypes) == 2
    assert fg.ntypes == ['user', 'game']
    assert fg.etypes == ['plays+wishes']

    assert F.array_equal(fg.nodes['user'].data['h'], F.ones((3, 5)))
    assert F.array_equal(fg.nodes['game'].data['i'], F.ones((2, 5)))
    assert F.array_equal(fg.edata['e'], F.ones((6, 4)))
    assert 'f' not in fg.edata

    etypes = F.asnumpy(fg.edata[dgl.ETYPE]).tolist()
    eids = F.asnumpy(fg.edata[dgl.EID]).tolist()
    assert set(zip(etypes, eids)) == set([(1, 0), (1, 1), (1, 2), (1, 3), (2, 0), (2, 1)])

    check_mapping(g, fg)

    fg = g['user', :, 'user']
    # NOTE(gq): The node/edge types from the parent graph is returned if there is only one
    # node/edge type.  This differs from the behavior above.
    assert fg.ntypes == ['user']
    assert fg.etypes == ['follows']
    u1, v1 = g.edges(etype='follows', order='eid')
    u2, v2 = fg.edges(etype='follows', order='eid')
    assert F.array_equal(u1, u2)
    assert F.array_equal(v1, v2)

    fg = g['developer', :, 'game']
    assert fg.ntypes == ['developer', 'game']
    assert fg.etypes == ['develops']
    u1, v1 = g.edges(etype='develops', order='eid')
    u2, v2 = fg.edges(etype='develops', order='eid')
    assert F.array_equal(u1, u2)
    assert F.array_equal(v1, v2)

    fg = g[:, :, :]
    assert fg.ntypes == ['developer+user', 'game+user']
    assert fg.etypes == ['develops+follows+plays+wishes']
    check_mapping(g, fg)

    # Test another heterograph
854
855
    g_x = dgl.graph(([0, 1, 2], [1, 2, 3]), 'user', 'follows', index_dtype=index_dtype)
    g_y = dgl.graph(([0, 2], [2, 3]), 'user', 'knows', index_dtype=index_dtype)
Minjie Wang's avatar
Minjie Wang committed
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
    g_x.nodes['user'].data['h'] = F.randn((4, 3))
    g_x.edges['follows'].data['w'] = F.randn((3, 2))
    g_y.nodes['user'].data['hh'] = F.randn((4, 5))
    g_y.edges['knows'].data['ww'] = F.randn((2, 10))
    g = dgl.hetero_from_relations([g_x, g_y])

    assert F.array_equal(g.ndata['h'], g_x.ndata['h'])
    assert F.array_equal(g.ndata['hh'], g_y.ndata['hh'])
    assert F.array_equal(g.edges['follows'].data['w'], g_x.edata['w'])
    assert F.array_equal(g.edges['knows'].data['ww'], g_y.edata['ww'])

    fg = g['user', :, 'user']
    assert fg.ntypes == ['user']
    assert fg.etypes == ['follows+knows']
    check_mapping(g, fg)

    fg = g['user', :, :]
    assert fg.ntypes == ['user']
    assert fg.etypes == ['follows+knows']
    check_mapping(g, fg)

877
@unittest.skipIf(F._default_context_str == 'cpu', reason="Need gpu for this test")
878
879
@parametrize_dtype
def test_to_device(index_dtype):
880
881
882
883
    g = create_test_heterograph(index_dtype)
    g.nodes['user'].data['h'] = F.copy_to(F.ones((3, 5)), F.cpu())
    g.nodes['game'].data['i'] = F.copy_to(F.ones((2, 5)), F.cpu())
    g.edges['plays'].data['e'] = F.copy_to(F.ones((4, 4)), F.cpu())
884
    if F.is_cuda_available():
885
886
        g1 = g.to(F.cuda())
        assert g1 is not None
887

888
889
890
891
892
893
894
895
896
    # set feature after g.to
    g = create_test_heterograph(index_dtype)
    if F.is_cuda_available():
        g1 = g.to(F.cuda())
        assert g1 is not None
        g1.nodes['user'].data['h'] = F.copy_to(F.ones((3, 5)), F.cuda())
        g1.nodes['game'].data['i'] = F.copy_to(F.ones((2, 5)), F.cuda())
        g1.edges['plays'].data['e'] = F.copy_to(F.ones((4, 4)), F.cuda())

897
898
@parametrize_dtype
def test_convert_bound(index_dtype):
899
900
    def _test_bipartite_bound(data, card):
        try:
901
            dgl.bipartite(data, num_nodes=card, index_dtype=index_dtype)
902
903
904
905
906
907
        except dgl.DGLError:
            return
        assert False, 'bipartite bound test with wrong uid failed'

    def _test_graph_bound(data, card):
        try:
908
            dgl.graph(data, num_nodes=card, index_dtype=index_dtype)
909
910
911
912
913
914
915
916
917
918
        except dgl.DGLError:
            return
        assert False, 'graph bound test with wrong uid failed'

    _test_bipartite_bound(([1,2],[1,2]),(2,3))
    _test_bipartite_bound(([0,1],[1,4]),(2,3))
    _test_graph_bound(([1,3],[1,2]), 3)
    _test_graph_bound(([0,1],[1,3]),3)


919
920
921
@parametrize_dtype
def test_convert(index_dtype):
    hg = create_test_heterograph(index_dtype)
Minjie Wang's avatar
Minjie Wang committed
922
923
924
925
926
927
928
929
930
931
932
933
934
935
    hs = []
    for ntype in hg.ntypes:
        h = F.randn((hg.number_of_nodes(ntype), 5))
        hg.nodes[ntype].data['h'] = h
        hs.append(h)
    hg.nodes['user'].data['x'] = F.randn((3, 3))
    ws = []
    for etype in hg.canonical_etypes:
        w = F.randn((hg.number_of_edges(etype), 5))
        hg.edges[etype].data['w'] = w
        ws.append(w)
    hg.edges['plays'].data['x'] = F.randn((4, 3))

    g = dgl.to_homo(hg)
936
    assert g._idtype_str == index_dtype
Minjie Wang's avatar
Minjie Wang committed
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
    assert F.array_equal(F.cat(hs, dim=0), g.ndata['h'])
    assert 'x' not in g.ndata
    assert F.array_equal(F.cat(ws, dim=0), g.edata['w'])
    assert 'x' not in g.edata

    src, dst = g.all_edges(order='eid')
    src = F.asnumpy(src)
    dst = F.asnumpy(dst)
    etype_id, eid = F.asnumpy(g.edata[dgl.ETYPE]), F.asnumpy(g.edata[dgl.EID])
    ntype_id, nid = F.asnumpy(g.ndata[dgl.NTYPE]), F.asnumpy(g.ndata[dgl.NID])
    for i in range(g.number_of_edges()):
        srctype = hg.ntypes[ntype_id[src[i]]]
        dsttype = hg.ntypes[ntype_id[dst[i]]]
        etype = hg.etypes[etype_id[i]]
        src_i, dst_i = hg.find_edges([eid[i]], (srctype, etype, dsttype))
        assert np.asscalar(F.asnumpy(src_i)) == nid[src[i]]
        assert np.asscalar(F.asnumpy(dst_i)) == nid[dst[i]]

    mg = nx.MultiDiGraph([
        ('user', 'user', 'follows'),
        ('user', 'game', 'plays'),
        ('user', 'game', 'wishes'),
        ('developer', 'game', 'develops')])

    for _mg in [None, mg]:
        hg2 = dgl.to_hetero(
963
                g, hg.ntypes, hg.etypes,
Minjie Wang's avatar
Minjie Wang committed
964
965
966
967
968
969
970
971
972
973
974
975
976
977
                ntype_field=dgl.NTYPE, etype_field=dgl.ETYPE, metagraph=_mg)
        assert set(hg.ntypes) == set(hg2.ntypes)
        assert set(hg.canonical_etypes) == set(hg2.canonical_etypes)
        for ntype in hg.ntypes:
            assert hg.number_of_nodes(ntype) == hg2.number_of_nodes(ntype)
            assert F.array_equal(hg.nodes[ntype].data['h'], hg2.nodes[ntype].data['h'])
        for canonical_etype in hg.canonical_etypes:
            src, dst = hg.all_edges(etype=canonical_etype, order='eid')
            src2, dst2 = hg2.all_edges(etype=canonical_etype, order='eid')
            assert F.array_equal(src, src2)
            assert F.array_equal(dst, dst2)
            assert F.array_equal(hg.edges[canonical_etype].data['w'], hg2.edges[canonical_etype].data['w'])

    # hetero_from_homo test case 2
978
    g = dgl.graph([(0, 2), (1, 2), (2, 3), (0, 3)], index_dtype=index_dtype)
Minjie Wang's avatar
Minjie Wang committed
979
980
981
    g.ndata[dgl.NTYPE] = F.tensor([0, 0, 1, 2])
    g.edata[dgl.ETYPE] = F.tensor([0, 0, 1, 2])
    hg = dgl.to_hetero(g, ['l0', 'l1', 'l2'], ['e0', 'e1', 'e2'])
982
    assert hg._idtype_str == index_dtype
Minjie Wang's avatar
Minjie Wang committed
983
984
985
986
987
988
989
990
991
992
993
994
995
    assert set(hg.canonical_etypes) == set(
        [('l0', 'e0', 'l1'), ('l1', 'e1', 'l2'), ('l0', 'e2', 'l2')])
    assert hg.number_of_nodes('l0') == 2
    assert hg.number_of_nodes('l1') == 1
    assert hg.number_of_nodes('l2') == 1
    assert hg.number_of_edges('e0') == 2
    assert hg.number_of_edges('e1') == 1
    assert hg.number_of_edges('e2') == 1

    # hetero_from_homo test case 3
    mg = nx.MultiDiGraph([
        ('user', 'movie', 'watches'),
        ('user', 'TV', 'watches')])
996
    g = dgl.graph([(0, 1), (0, 2)], index_dtype=index_dtype)
Minjie Wang's avatar
Minjie Wang committed
997
998
999
1000
    g.ndata[dgl.NTYPE] = F.tensor([0, 1, 2])
    g.edata[dgl.ETYPE] = F.tensor([0, 0])
    for _mg in [None, mg]:
        hg = dgl.to_hetero(g, ['user', 'TV', 'movie'], ['watches'], metagraph=_mg)
1001
        assert hg._idtype_str == index_dtype
Minjie Wang's avatar
Minjie Wang committed
1002
1003
1004
1005
1006
1007
1008
1009
1010
        assert set(hg.canonical_etypes) == set(
            [('user', 'watches', 'movie'), ('user', 'watches', 'TV')])
        assert hg.number_of_nodes('user') == 1
        assert hg.number_of_nodes('TV') == 1
        assert hg.number_of_nodes('movie') == 1
        assert hg.number_of_edges(('user', 'watches', 'TV')) == 1
        assert hg.number_of_edges(('user', 'watches', 'movie')) == 1
        assert len(hg.etypes) == 2

1011
    # hetero_to_homo test case 2
1012
    hg = dgl.bipartite([(0, 0), (1, 1)], num_nodes=(2, 3))
1013
1014
1015
    g = dgl.to_homo(hg)
    assert g.number_of_nodes() == 5

1016
1017
1018
@parametrize_dtype
def test_transform(index_dtype):
    g = create_test_heterograph(index_dtype)
Mufei Li's avatar
Mufei Li committed
1019
1020
1021
1022
    x = F.randn((3, 5))
    g.nodes['user'].data['h'] = x

    new_g = dgl.metapath_reachable_graph(g, ['follows', 'plays'])
1023
    assert new_g._idtype_str == index_dtype
Mufei Li's avatar
Mufei Li committed
1024
1025
1026
1027
1028
    assert new_g.ntypes == ['user', 'game']
    assert new_g.number_of_edges() == 3
    assert F.asnumpy(new_g.has_edges_between([0, 0, 1], [0, 1, 1])).all()

    new_g = dgl.metapath_reachable_graph(g, ['follows'])
1029
    assert new_g._idtype_str == index_dtype
Mufei Li's avatar
Mufei Li committed
1030
1031
1032
1033
    assert new_g.ntypes == ['user']
    assert new_g.number_of_edges() == 2
    assert F.asnumpy(new_g.has_edges_between([0, 1], [1, 2])).all()

1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
@unittest.skipIf(dgl.backend.backend_name == "mxnet", reason="MXNet doesn't support bool tensor")
@parametrize_dtype
def test_subgraph_mask(index_dtype):
    g = create_test_heterograph(index_dtype)
    g_graph = g['follows']
    g_bipartite = g['plays']

    x = F.randn((3, 5))
    y = F.randn((2, 4))
    g.nodes['user'].data['h'] = x
    g.edges['follows'].data['h'] = y

    def _check_subgraph(g, sg):
        assert sg.ntypes == g.ntypes
        assert sg.etypes == g.etypes
        assert sg.canonical_etypes == g.canonical_etypes
        assert F.array_equal(F.tensor(sg.nodes['user'].data[dgl.NID]),
                             F.tensor([1, 2], F.int64))
        assert F.array_equal(F.tensor(sg.nodes['game'].data[dgl.NID]),
                             F.tensor([0], F.int64))
        assert F.array_equal(F.tensor(sg.edges['follows'].data[dgl.EID]),
                             F.tensor([1], F.int64))
        assert F.array_equal(F.tensor(sg.edges['plays'].data[dgl.EID]),
                             F.tensor([1], F.int64))
        assert F.array_equal(F.tensor(sg.edges['wishes'].data[dgl.EID]),
                             F.tensor([1], F.int64))
        assert sg.number_of_nodes('developer') == 0
        assert sg.number_of_edges('develops') == 0
        assert F.array_equal(sg.nodes['user'].data['h'], g.nodes['user'].data['h'][1:3])
        assert F.array_equal(sg.edges['follows'].data['h'], g.edges['follows'].data['h'][1:2])

    # backend boo input tensor
    sg1 = g.subgraph({'user': F.tensor([False, True, True], dtype=F.data_type_dict['bool']),
                      'game': F.tensor([True, False, False, False], dtype=F.data_type_dict['bool'])})
    _check_subgraph(g, sg1)
    sg2 = g.edge_subgraph({'follows': F.tensor([False, True], dtype=F.data_type_dict['bool']),
                           'plays': F.tensor([False, True, False, False], dtype=F.data_type_dict['bool']),
                           'wishes': F.tensor([False, True], dtype=F.data_type_dict['bool'])})
    _check_subgraph(g, sg2)

1074
1075
1076
@parametrize_dtype
def test_subgraph(index_dtype):
    g = create_test_heterograph(index_dtype)
Quan (Andy) Gan's avatar
Quan (Andy) Gan committed
1077
1078
1079
    g_graph = g['follows']
    g_bipartite = g['plays']

Minjie Wang's avatar
Minjie Wang committed
1080
1081
1082
1083
1084
1085
    x = F.randn((3, 5))
    y = F.randn((2, 4))
    g.nodes['user'].data['h'] = x
    g.edges['follows'].data['h'] = y

    def _check_subgraph(g, sg):
1086
1087
1088
        assert sg.ntypes == g.ntypes
        assert sg.etypes == g.etypes
        assert sg.canonical_etypes == g.canonical_etypes
Minjie Wang's avatar
Minjie Wang committed
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
        assert F.array_equal(F.tensor(sg.nodes['user'].data[dgl.NID]),
                             F.tensor([1, 2], F.int64))
        assert F.array_equal(F.tensor(sg.nodes['game'].data[dgl.NID]),
                             F.tensor([0], F.int64))
        assert F.array_equal(F.tensor(sg.edges['follows'].data[dgl.EID]),
                             F.tensor([1], F.int64))
        assert F.array_equal(F.tensor(sg.edges['plays'].data[dgl.EID]),
                             F.tensor([1], F.int64))
        assert F.array_equal(F.tensor(sg.edges['wishes'].data[dgl.EID]),
                             F.tensor([1], F.int64))
        assert sg.number_of_nodes('developer') == 0
        assert sg.number_of_edges('develops') == 0
        assert F.array_equal(sg.nodes['user'].data['h'], g.nodes['user'].data['h'][1:3])
        assert F.array_equal(sg.edges['follows'].data['h'], g.edges['follows'].data['h'][1:2])

    sg1 = g.subgraph({'user': [1, 2], 'game': [0]})
    _check_subgraph(g, sg1)
    sg2 = g.edge_subgraph({'follows': [1], 'plays': [1], 'wishes': [1]})
    _check_subgraph(g, sg2)

1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
    # backend tensor input
    sg1 = g.subgraph({'user': F.tensor([1, 2], dtype=F.data_type_dict[index_dtype]),
                      'game': F.tensor([0], dtype=F.data_type_dict[index_dtype])})
    _check_subgraph(g, sg1)
    sg2 = g.edge_subgraph({'follows': F.tensor([1], dtype=F.data_type_dict[index_dtype]),
                           'plays': F.tensor([1], dtype=F.data_type_dict[index_dtype]),
                           'wishes': F.tensor([1], dtype=F.data_type_dict[index_dtype])})
    _check_subgraph(g, sg2)

    # numpy input
    sg1 = g.subgraph({'user': np.array([1, 2]),
                      'game': np.array([0])})
    _check_subgraph(g, sg1)
    sg2 = g.edge_subgraph({'follows': np.array([1]),
                           'plays': np.array([1]),
                           'wishes': np.array([1])})
    _check_subgraph(g, sg2)

Quan (Andy) Gan's avatar
Quan (Andy) Gan committed
1127
    def _check_subgraph_single_ntype(g, sg, preserve_nodes=False):
Quan (Andy) Gan's avatar
Quan (Andy) Gan committed
1128
1129
1130
        assert sg.ntypes == g.ntypes
        assert sg.etypes == g.etypes
        assert sg.canonical_etypes == g.canonical_etypes
Quan (Andy) Gan's avatar
Quan (Andy) Gan committed
1131
1132
1133
1134
1135
1136
1137
1138

        if not preserve_nodes:
            assert F.array_equal(F.tensor(sg.nodes['user'].data[dgl.NID]),
                                 F.tensor([1, 2], F.int64))
        else:
            for ntype in sg.ntypes:
                assert g.number_of_nodes(ntype) == sg.number_of_nodes(ntype)

Quan (Andy) Gan's avatar
Quan (Andy) Gan committed
1139
1140
        assert F.array_equal(F.tensor(sg.edges['follows'].data[dgl.EID]),
                             F.tensor([1], F.int64))
Quan (Andy) Gan's avatar
Quan (Andy) Gan committed
1141
1142
1143

        if not preserve_nodes:
            assert F.array_equal(sg.nodes['user'].data['h'], g.nodes['user'].data['h'][1:3])
Quan (Andy) Gan's avatar
Quan (Andy) Gan committed
1144
1145
        assert F.array_equal(sg.edges['follows'].data['h'], g.edges['follows'].data['h'][1:2])

Quan (Andy) Gan's avatar
Quan (Andy) Gan committed
1146
    def _check_subgraph_single_etype(g, sg, preserve_nodes=False):
Quan (Andy) Gan's avatar
Quan (Andy) Gan committed
1147
1148
1149
        assert sg.ntypes == g.ntypes
        assert sg.etypes == g.etypes
        assert sg.canonical_etypes == g.canonical_etypes
Quan (Andy) Gan's avatar
Quan (Andy) Gan committed
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159

        if not preserve_nodes:
            assert F.array_equal(F.tensor(sg.nodes['user'].data[dgl.NID]),
                                 F.tensor([0, 1], F.int64))
            assert F.array_equal(F.tensor(sg.nodes['game'].data[dgl.NID]),
                                 F.tensor([0], F.int64))
        else:
            for ntype in sg.ntypes:
                assert g.number_of_nodes(ntype) == sg.number_of_nodes(ntype)

Quan (Andy) Gan's avatar
Quan (Andy) Gan committed
1160
1161
1162
1163
1164
        assert F.array_equal(F.tensor(sg.edges['plays'].data[dgl.EID]),
                             F.tensor([0, 1], F.int64))

    sg1_graph = g_graph.subgraph([1, 2])
    _check_subgraph_single_ntype(g_graph, sg1_graph)
Quan (Andy) Gan's avatar
Quan (Andy) Gan committed
1165
1166
1167
1168
    sg1_graph = g_graph.edge_subgraph([1])
    _check_subgraph_single_ntype(g_graph, sg1_graph)
    sg1_graph = g_graph.edge_subgraph([1], preserve_nodes=True)
    _check_subgraph_single_ntype(g_graph, sg1_graph, True)
Quan (Andy) Gan's avatar
Quan (Andy) Gan committed
1169
1170
    sg2_bipartite = g_bipartite.edge_subgraph([0, 1])
    _check_subgraph_single_etype(g_bipartite, sg2_bipartite)
Quan (Andy) Gan's avatar
Quan (Andy) Gan committed
1171
1172
    sg2_bipartite = g_bipartite.edge_subgraph([0, 1], preserve_nodes=True)
    _check_subgraph_single_etype(g_bipartite, sg2_bipartite, True)
Quan (Andy) Gan's avatar
Quan (Andy) Gan committed
1173

1174
    def _check_typed_subgraph1(g, sg):
Minjie Wang's avatar
Minjie Wang committed
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
        assert set(sg.ntypes) == {'user', 'game'}
        assert set(sg.etypes) == {'follows', 'plays', 'wishes'}
        for ntype in sg.ntypes:
            assert sg.number_of_nodes(ntype) == g.number_of_nodes(ntype)
        for etype in sg.etypes:
            src_sg, dst_sg = sg.all_edges(etype=etype, order='eid')
            src_g, dst_g = g.all_edges(etype=etype, order='eid')
            assert F.array_equal(src_sg, src_g)
            assert F.array_equal(dst_sg, dst_g)
        assert F.array_equal(sg.nodes['user'].data['h'], g.nodes['user'].data['h'])
        assert F.array_equal(sg.edges['follows'].data['h'], g.edges['follows'].data['h'])
VoVAllen's avatar
VoVAllen committed
1186
1187
        g.nodes['user'].data['h'] = F.scatter_row(g.nodes['user'].data['h'], F.tensor([2]), F.randn((1, 5)))
        g.edges['follows'].data['h'] = F.scatter_row(g.edges['follows'].data['h'], F.tensor([1]), F.randn((1, 4)))
Minjie Wang's avatar
Minjie Wang committed
1188
1189
1190
        assert F.array_equal(sg.nodes['user'].data['h'], g.nodes['user'].data['h'])
        assert F.array_equal(sg.edges['follows'].data['h'], g.edges['follows'].data['h'])

1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
    def _check_typed_subgraph2(g, sg):
        assert set(sg.ntypes) == {'developer', 'game'}
        assert set(sg.etypes) == {'develops'}
        for ntype in sg.ntypes:
            assert sg.number_of_nodes(ntype) == g.number_of_nodes(ntype)
        for etype in sg.etypes:
            src_sg, dst_sg = sg.all_edges(etype=etype, order='eid')
            src_g, dst_g = g.all_edges(etype=etype, order='eid')
            assert F.array_equal(src_sg, src_g)
            assert F.array_equal(dst_sg, dst_g)

Minjie Wang's avatar
Minjie Wang committed
1202
    sg3 = g.node_type_subgraph(['user', 'game'])
1203
1204
1205
1206
1207
    _check_typed_subgraph1(g, sg3)
    sg4 = g.edge_type_subgraph(['develops'])
    _check_typed_subgraph2(g, sg4)
    sg5 = g.edge_type_subgraph(['follows', 'plays', 'wishes'])
    _check_typed_subgraph1(g, sg5)
1208

Quan (Andy) Gan's avatar
Quan (Andy) Gan committed
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
    # Test for restricted format
    for fmt in ['csr', 'csc', 'coo']:
        g = dgl.graph([(0, 1), (1, 2)], restrict_format=fmt)
        sg = g.subgraph({g.ntypes[0]: [1, 0]})
        nids = F.asnumpy(sg.ndata[dgl.NID])
        assert np.array_equal(nids, np.array([1, 0]))
        src, dst = sg.all_edges(order='eid')
        src = F.asnumpy(src)
        dst = F.asnumpy(dst)
        assert np.array_equal(src, np.array([1]))
        assert np.array_equal(dst, np.array([0]))

1221
1222
@parametrize_dtype
def test_apply(index_dtype):
1223
1224
1225
1226
1227
    def node_udf(nodes):
        return {'h': nodes.data['h'] * 2}
    def edge_udf(edges):
        return {'h': edges.data['h'] * 2 + edges.src['h']}

1228
    g = create_test_heterograph(index_dtype)
Minjie Wang's avatar
Minjie Wang committed
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
    g.nodes['user'].data['h'] = F.ones((3, 5))
    g.apply_nodes(node_udf, ntype='user')
    assert F.array_equal(g.nodes['user'].data['h'], F.ones((3, 5)) * 2)

    g['plays'].edata['h'] = F.ones((4, 5))
    g.apply_edges(edge_udf, etype=('user', 'plays', 'game'))
    assert F.array_equal(g['plays'].edata['h'], F.ones((4, 5)) * 4)

    # test apply on graph with only one type
    g['follows'].apply_nodes(node_udf)
    assert F.array_equal(g.nodes['user'].data['h'], F.ones((3, 5)) * 4)
1240

Minjie Wang's avatar
Minjie Wang committed
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
    g['plays'].apply_edges(edge_udf)
    assert F.array_equal(g['plays'].edata['h'], F.ones((4, 5)) * 12)

    # test fail case
    # fail due to multiple types
    fail = False
    try:
        g.apply_nodes(node_udf)
    except dgl.DGLError:
        fail = True
    assert fail

    fail = False
    try:
        g.apply_edges(edge_udf)
    except dgl.DGLError:
        fail = True
    assert fail

1260
1261
@parametrize_dtype
def test_level1(index_dtype):
Minjie Wang's avatar
Minjie Wang committed
1262
1263
1264
1265
1266
1267
    #edges = {
    #    'follows': ([0, 1], [1, 2]),
    #    'plays': ([0, 1, 2, 1], [0, 0, 1, 1]),
    #    'wishes': ([0, 2], [1, 0]),
    #    'develops': ([0, 1], [0, 1]),
    #}
1268
    g = create_test_heterograph(index_dtype)
Minjie Wang's avatar
Minjie Wang committed
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
    def rfunc(nodes):
        return {'y': F.sum(nodes.mailbox['m'], 1)}
    def rfunc2(nodes):
        return {'y': F.max(nodes.mailbox['m'], 1)}
    def mfunc(edges):
        return {'m': edges.src['h']}
    def afunc(nodes):
        return {'y' : nodes.data['y'] + 1}
    g.nodes['user'].data['h'] = F.ones((3, 2))
    g.send([2, 3], mfunc, etype='plays')
    g.recv([0, 1], rfunc, etype='plays')
    y = g.nodes['game'].data['y']
    assert F.array_equal(y, F.tensor([[0., 0.], [2., 2.]]))
    g.nodes['game'].data.pop('y')

    # only one type
    play_g = g['plays']
    play_g.send([2, 3], mfunc)
    play_g.recv([0, 1], rfunc)
    y = g.nodes['game'].data['y']
    assert F.array_equal(y, F.tensor([[0., 0.], [2., 2.]]))
    # TODO(minjie): following codes will fail because messages are
    #   not shared with the base graph. However, since send and recv
    #   are rarely used, no fix at the moment.
    # g['plays'].send([2, 3], mfunc)
    # g['plays'].recv([0, 1], mfunc)

    # test fail case
    # fail due to multiple types
    fail = False
    try:
        g.send([2, 3], mfunc)
    except dgl.DGLError:
        fail = True
    assert fail

    fail = False
    try:
        g.recv([0, 1], rfunc)
    except dgl.DGLError:
        fail = True
    assert fail

    # test multi recv
    g.send(g.edges(etype='plays'), mfunc, etype='plays')
    g.send(g.edges(etype='wishes'), mfunc, etype='wishes')
    g.multi_recv([0, 1], {'plays' : rfunc, ('user', 'wishes', 'game'): rfunc2}, 'sum')
    assert F.array_equal(g.nodes['game'].data['y'], F.tensor([[3., 3.], [3., 3.]]))

    # test multi recv with apply function
    g.send(g.edges(etype='plays'), mfunc, etype='plays')
    g.send(g.edges(etype='wishes'), mfunc, etype='wishes')
    g.multi_recv([0, 1], {'plays' : (rfunc, afunc), ('user', 'wishes', 'game'): rfunc2}, 'sum', afunc)
    assert F.array_equal(g.nodes['game'].data['y'], F.tensor([[5., 5.], [5., 5.]]))

    # test cross reducer
    g.nodes['user'].data['h'] = F.randn((3, 2))
    for cred in ['sum', 'max', 'min', 'mean']:
        g.send(g.edges(etype='plays'), mfunc, etype='plays')
        g.send(g.edges(etype='wishes'), mfunc, etype='wishes')
        g.multi_recv([0, 1], {'plays' : (rfunc, afunc), 'wishes': rfunc2}, cred, afunc)
        y = g.nodes['game'].data['y']
        g1 = g['plays']
        g2 = g['wishes']
        g1.send(g1.edges(), mfunc)
        g1.recv(g1.nodes('game'), rfunc, afunc)
        y1 = g.nodes['game'].data['y']
        g2.send(g2.edges(), mfunc)
        g2.recv(g2.nodes('game'), rfunc2)
        y2 = g.nodes['game'].data['y']
        yy = get_redfn(cred)(F.stack([y1, y2], 0), 0)
        yy = yy + 1  # final afunc
        assert F.array_equal(y, yy)

    # test fail case
    # fail because cannot infer ntype
    fail = False
    try:
        g.multi_recv([0, 1], {'plays' : rfunc, 'follows': rfunc2}, 'sum')
    except dgl.DGLError:
        fail = True
    assert fail

VoVAllen's avatar
VoVAllen committed
1352

1353
1354
@parametrize_dtype
def test_level2(index_dtype):
Minjie Wang's avatar
Minjie Wang committed
1355
1356
1357
1358
1359
1360
    #edges = {
    #    'follows': ([0, 1], [1, 2]),
    #    'plays': ([0, 1, 2, 1], [0, 0, 1, 1]),
    #    'wishes': ([0, 2], [1, 0]),
    #    'develops': ([0, 1], [0, 1]),
    #}
1361
    g = create_test_heterograph(index_dtype)
Minjie Wang's avatar
Minjie Wang committed
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
    def rfunc(nodes):
        return {'y': F.sum(nodes.mailbox['m'], 1)}
    def rfunc2(nodes):
        return {'y': F.max(nodes.mailbox['m'], 1)}
    def mfunc(edges):
        return {'m': edges.src['h']}
    def afunc(nodes):
        return {'y' : nodes.data['y'] + 1}

    #############################################################
    #  send_and_recv
    #############################################################

    g.nodes['user'].data['h'] = F.ones((3, 2))
    g.send_and_recv([2, 3], mfunc, rfunc, etype='plays')
    y = g.nodes['game'].data['y']
    assert F.array_equal(y, F.tensor([[0., 0.], [2., 2.]]))

    # only one type
    g['plays'].send_and_recv([2, 3], mfunc, rfunc)
    y = g.nodes['game'].data['y']
    assert F.array_equal(y, F.tensor([[0., 0.], [2., 2.]]))
    
    # test fail case
    # fail due to multiple types
    fail = False
    try:
        g.send_and_recv([2, 3], mfunc, rfunc)
    except dgl.DGLError:
        fail = True
    assert fail

    # test multi
    g.multi_send_and_recv(
        {'plays' : (g.edges(etype='plays'), mfunc, rfunc),
         ('user', 'wishes', 'game'): (g.edges(etype='wishes'), mfunc, rfunc2)},
        'sum')
    assert F.array_equal(g.nodes['game'].data['y'], F.tensor([[3., 3.], [3., 3.]]))

    # test multi
    g.multi_send_and_recv(
        {'plays' : (g.edges(etype='plays'), mfunc, rfunc, afunc),
         ('user', 'wishes', 'game'): (g.edges(etype='wishes'), mfunc, rfunc2)},
        'sum', afunc)
    assert F.array_equal(g.nodes['game'].data['y'], F.tensor([[5., 5.], [5., 5.]]))

    # test cross reducer
    g.nodes['user'].data['h'] = F.randn((3, 2))
    for cred in ['sum', 'max', 'min', 'mean']:
        g.multi_send_and_recv(
            {'plays' : (g.edges(etype='plays'), mfunc, rfunc, afunc),
             'wishes': (g.edges(etype='wishes'), mfunc, rfunc2)},
            cred, afunc)
        y = g.nodes['game'].data['y']
        g['plays'].send_and_recv(g.edges(etype='plays'), mfunc, rfunc, afunc)
        y1 = g.nodes['game'].data['y']
        g['wishes'].send_and_recv(g.edges(etype='wishes'), mfunc, rfunc2)
        y2 = g.nodes['game'].data['y']
        yy = get_redfn(cred)(F.stack([y1, y2], 0), 0)
        yy = yy + 1  # final afunc
        assert F.array_equal(y, yy)

    # test fail case
    # fail because cannot infer ntype
    fail = False
    try:
        g.multi_send_and_recv(
            {'plays' : (g.edges(etype='plays'), mfunc, rfunc),
             'follows': (g.edges(etype='follows'), mfunc, rfunc2)},
            'sum')
    except dgl.DGLError:
        fail = True
    assert fail

    g.nodes['game'].data.clear()

    #############################################################
    #  pull
    #############################################################

    g.nodes['user'].data['h'] = F.ones((3, 2))
    g.pull(1, mfunc, rfunc, etype='plays')
    y = g.nodes['game'].data['y']
    assert F.array_equal(y, F.tensor([[0., 0.], [2., 2.]]))

    # only one type
    g['plays'].pull(1, mfunc, rfunc)
    y = g.nodes['game'].data['y']
    assert F.array_equal(y, F.tensor([[0., 0.], [2., 2.]]))

    # test fail case
    fail = False
    try:
        g.pull(1, mfunc, rfunc)
    except dgl.DGLError:
        fail = True
    assert fail

    # test multi
    g.multi_pull(
        1,
        {'plays' : (mfunc, rfunc),
         ('user', 'wishes', 'game'): (mfunc, rfunc2)},
        'sum')
    assert F.array_equal(g.nodes['game'].data['y'], F.tensor([[0., 0.], [3., 3.]]))

    # test multi
    g.multi_pull(
        1,
        {'plays' : (mfunc, rfunc, afunc),
         ('user', 'wishes', 'game'): (mfunc, rfunc2)},
        'sum', afunc)
    assert F.array_equal(g.nodes['game'].data['y'], F.tensor([[0., 0.], [5., 5.]]))

    # test cross reducer
    g.nodes['user'].data['h'] = F.randn((3, 2))
    for cred in ['sum', 'max', 'min', 'mean']:
        g.multi_pull(
            1,
            {'plays' : (mfunc, rfunc, afunc),
             'wishes': (mfunc, rfunc2)},
            cred, afunc)
        y = g.nodes['game'].data['y']
        g['plays'].pull(1, mfunc, rfunc, afunc)
        y1 = g.nodes['game'].data['y']
        g['wishes'].pull(1, mfunc, rfunc2)
        y2 = g.nodes['game'].data['y']
        g.nodes['game'].data['y'] = get_redfn(cred)(F.stack([y1, y2], 0), 0)
        g.apply_nodes(afunc, 1, ntype='game')
        yy = g.nodes['game'].data['y']
        assert F.array_equal(y, yy)

    # test fail case
    # fail because cannot infer ntype
    fail = False
    try:
        g.multi_pull(
            1,
            {'plays' : (mfunc, rfunc),
             'follows': (mfunc, rfunc2)},
            'sum')
    except dgl.DGLError:
        fail = True
    assert fail

    g.nodes['game'].data.clear()

    #############################################################
    #  update_all
    #############################################################

    g.nodes['user'].data['h'] = F.ones((3, 2))
    g.update_all(mfunc, rfunc, etype='plays')
    y = g.nodes['game'].data['y']
    assert F.array_equal(y, F.tensor([[2., 2.], [2., 2.]]))

    # only one type
    g['plays'].update_all(mfunc, rfunc)
    y = g.nodes['game'].data['y']
    assert F.array_equal(y, F.tensor([[2., 2.], [2., 2.]]))

    # test fail case
    # fail due to multiple types
    fail = False
    try:
        g.update_all(mfunc, rfunc)
    except dgl.DGLError:
        fail = True
    assert fail

    # test multi
    g.multi_update_all(
        {'plays' : (mfunc, rfunc),
         ('user', 'wishes', 'game'): (mfunc, rfunc2)},
        'sum')
    assert F.array_equal(g.nodes['game'].data['y'], F.tensor([[3., 3.], [3., 3.]]))

    # test multi
    g.multi_update_all(
        {'plays' : (mfunc, rfunc, afunc),
         ('user', 'wishes', 'game'): (mfunc, rfunc2)},
        'sum', afunc)
    assert F.array_equal(g.nodes['game'].data['y'], F.tensor([[5., 5.], [5., 5.]]))

    # test cross reducer
    g.nodes['user'].data['h'] = F.randn((3, 2))
    for cred in ['sum', 'max', 'min', 'mean', 'stack']:
        g.multi_update_all(
            {'plays' : (mfunc, rfunc, afunc),
             'wishes': (mfunc, rfunc2)},
            cred, afunc)
        y = g.nodes['game'].data['y']
        g['plays'].update_all(mfunc, rfunc, afunc)
        y1 = g.nodes['game'].data['y']
        g['wishes'].update_all(mfunc, rfunc2)
        y2 = g.nodes['game'].data['y']
        if cred == 'stack':
1559
1560
1561
1562
            # stack has an internal order by edge type id
            yy = F.stack([y1, y2], 1)
            yy = yy + 1  # final afunc
            assert F.array_equal(y, yy)
Minjie Wang's avatar
Minjie Wang committed
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
        else:
            yy = get_redfn(cred)(F.stack([y1, y2], 0), 0)
            yy = yy + 1  # final afunc
            assert F.array_equal(y, yy)

    # test fail case
    # fail because cannot infer ntype
    fail = False
    try:
        g.update_all(
            {'plays' : (mfunc, rfunc),
             'follows': (mfunc, rfunc2)},
            'sum')
    except dgl.DGLError:
        fail = True
    assert fail

    g.nodes['game'].data.clear()
1581

1582
1583
@parametrize_dtype
def test_updates(index_dtype):
1584
1585
1586
1587
1588
1589
    def msg_func(edges):
        return {'m': edges.src['h']}
    def reduce_func(nodes):
        return {'y': F.sum(nodes.mailbox['m'], 1)}
    def apply_func(nodes):
        return {'y': nodes.data['y'] * 2}
1590
    g = create_test_heterograph(index_dtype)
1591
    x = F.randn((3, 5))
Minjie Wang's avatar
Minjie Wang committed
1592
    g.nodes['user'].data['h'] = x
1593
1594
1595
1596
1597
1598
1599

    for msg, red, apply in itertools.product(
            [fn.copy_u('h', 'm'), msg_func], [fn.sum('m', 'y'), reduce_func],
            [None, apply_func]):
        multiplier = 1 if apply is None else 2

        g['user', 'plays', 'game'].update_all(msg, red, apply)
Minjie Wang's avatar
Minjie Wang committed
1600
        y = g.nodes['game'].data['y']
1601
1602
        assert F.array_equal(y[0], (x[0] + x[1]) * multiplier)
        assert F.array_equal(y[1], (x[1] + x[2]) * multiplier)
Minjie Wang's avatar
Minjie Wang committed
1603
        del g.nodes['game'].data['y']
1604
1605

        g['user', 'plays', 'game'].send_and_recv(([0, 1, 2], [0, 1, 1]), msg, red, apply)
Minjie Wang's avatar
Minjie Wang committed
1606
        y = g.nodes['game'].data['y']
1607
1608
        assert F.array_equal(y[0], x[0] * multiplier)
        assert F.array_equal(y[1], (x[1] + x[2]) * multiplier)
Minjie Wang's avatar
Minjie Wang committed
1609
        del g.nodes['game'].data['y']
1610

Minjie Wang's avatar
Minjie Wang committed
1611
1612
1613
1614
        plays_g = g['user', 'plays', 'game']
        plays_g.send(([0, 1, 2], [0, 1, 1]), msg)
        plays_g.recv([0, 1], red, apply)
        y = g.nodes['game'].data['y']
1615
1616
        assert F.array_equal(y[0], x[0] * multiplier)
        assert F.array_equal(y[1], (x[1] + x[2]) * multiplier)
Minjie Wang's avatar
Minjie Wang committed
1617
        del g.nodes['game'].data['y']
1618
1619
1620

        # pulls from destination (game) node 0
        g['user', 'plays', 'game'].pull(0, msg, red, apply)
Minjie Wang's avatar
Minjie Wang committed
1621
        y = g.nodes['game'].data['y']
1622
        assert F.array_equal(y[0], (x[0] + x[1]) * multiplier)
Minjie Wang's avatar
Minjie Wang committed
1623
        del g.nodes['game'].data['y']
1624
1625
1626

        # pushes from source (user) node 0
        g['user', 'plays', 'game'].push(0, msg, red, apply)
Minjie Wang's avatar
Minjie Wang committed
1627
        y = g.nodes['game'].data['y']
1628
        assert F.array_equal(y[0], x[0] * multiplier)
Minjie Wang's avatar
Minjie Wang committed
1629
1630
        del g.nodes['game'].data['y']

1631
1632
1633
1634

@parametrize_dtype
def test_backward(index_dtype):
    g = create_test_heterograph(index_dtype)
Minjie Wang's avatar
Minjie Wang committed
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
    x = F.randn((3, 5))
    F.attach_grad(x)
    g.nodes['user'].data['h'] = x
    with F.record_grad():
        g.multi_update_all(
            {'plays' : (fn.copy_u('h', 'm'), fn.sum('m', 'y')),
             'wishes': (fn.copy_u('h', 'm'), fn.sum('m', 'y'))},
            'sum')
        y = g.nodes['game'].data['y']
        F.backward(y, F.ones(y.shape))
    print(F.grad(x))
    assert F.array_equal(F.grad(x), F.tensor([[2., 2., 2., 2., 2.],
                                              [2., 2., 2., 2., 2.],
                                              [2., 2., 2., 2., 2.]]))
1649

1650
1651
1652

@parametrize_dtype
def test_empty_heterograph(index_dtype):
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
    def assert_empty(g):
        assert g.number_of_nodes('user') == 0
        assert g.number_of_edges('plays') == 0
        assert g.number_of_nodes('game') == 0

    # empty edge list
    assert_empty(dgl.heterograph({('user', 'plays', 'game'): []}))
    # empty src-dst pair
    assert_empty(dgl.heterograph({('user', 'plays', 'game'): ([], [])}))
    # empty sparse matrix
    assert_empty(dgl.heterograph({('user', 'plays', 'game'): ssp.coo_matrix((0, 0))}))
    # empty networkx graph
    assert_empty(dgl.heterograph({('user', 'plays', 'game'): nx.DiGraph()}))

1667
1668
    g = dgl.heterograph({('user', 'follows', 'user'): []}, index_dtype=index_dtype)
    assert g._idtype_str == index_dtype
1669
1670
1671
1672
    assert g.number_of_nodes('user') == 0
    assert g.number_of_edges('follows') == 0

    # empty relation graph with others
1673
1674
1675
    g = dgl.heterograph({('user', 'plays', 'game'): [], ('developer', 'develops', 'game'): [
                        (0, 0), (1, 1)]}, index_dtype=index_dtype)
    assert g._idtype_str == index_dtype
1676
1677
1678
1679
1680
1681
    assert g.number_of_nodes('user') == 0
    assert g.number_of_edges('plays') == 0
    assert g.number_of_nodes('game') == 2
    assert g.number_of_edges('develops') == 2
    assert g.number_of_nodes('developer') == 2

1682

1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
def test_types_in_function():
    def mfunc1(edges):
        assert edges.canonical_etype == ('user', 'follow', 'user')
        return {}

    def rfunc1(nodes):
        assert nodes.ntype == 'user'
        return {}

    def filter_nodes1(nodes):
        assert nodes.ntype == 'user'
        return F.zeros((3,))

    def filter_edges1(edges):
        assert edges.canonical_etype == ('user', 'follow', 'user')
        return F.zeros((2,))

    def mfunc2(edges):
        assert edges.canonical_etype == ('user', 'plays', 'game')
        return {}

    def rfunc2(nodes):
        assert nodes.ntype == 'game'
        return {}

    def filter_nodes2(nodes):
        assert nodes.ntype == 'game'
        return F.zeros((3,))

    def filter_edges2(edges):
        assert edges.canonical_etype == ('user', 'plays', 'game')
        return F.zeros((2,))

    g = dgl.graph([(0, 1), (1, 2)], 'user', 'follow')
    g.apply_nodes(rfunc1)
    g.apply_edges(mfunc1)
    g.update_all(mfunc1, rfunc1)
    g.send_and_recv([0, 1], mfunc1, rfunc1)
    g.send([0, 1], mfunc1)
    g.recv([1, 2], rfunc1)
    g.push([0], mfunc1, rfunc1)
    g.pull([1], mfunc1, rfunc1)
    g.filter_nodes(filter_nodes1)
    g.filter_edges(filter_edges1)

    g = dgl.bipartite([(0, 1), (1, 2)], 'user', 'plays', 'game')
    g.apply_nodes(rfunc2, ntype='game')
    g.apply_edges(mfunc2)
    g.update_all(mfunc2, rfunc2)
    g.send_and_recv([0, 1], mfunc2, rfunc2)
    g.send([0, 1], mfunc2)
    g.recv([1, 2], rfunc2)
    g.push([0], mfunc2, rfunc2)
    g.pull([1], mfunc2, rfunc2)
    g.filter_nodes(filter_nodes2, ntype='game')
    g.filter_edges(filter_edges2)

1740
1741
@parametrize_dtype
def test_stack_reduce(index_dtype):
1742
1743
1744
1745
1746
1747
    #edges = {
    #    'follows': ([0, 1], [1, 2]),
    #    'plays': ([0, 1, 2, 1], [0, 0, 1, 1]),
    #    'wishes': ([0, 2], [1, 0]),
    #    'develops': ([0, 1], [0, 1]),
    #}
1748
    g = create_test_heterograph(index_dtype)
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
    g.nodes['user'].data['h'] = F.randn((3, 200))
    def rfunc(nodes):
        return {'y': F.sum(nodes.mailbox['m'], 1)}
    def rfunc2(nodes):
        return {'y': F.max(nodes.mailbox['m'], 1)}
    def mfunc(edges):
        return {'m': edges.src['h']}
    g.multi_update_all(
            {'plays' : (mfunc, rfunc),
             'wishes': (mfunc, rfunc2)},
            'stack')
    assert g.nodes['game'].data['y'].shape == (g.number_of_nodes('game'), 2, 200)
    # only one type-wise update_all, stack still adds one dimension
    g.multi_update_all(
            {'plays' : (mfunc, rfunc)},
            'stack')
    assert g.nodes['game'].data['y'].shape == (g.number_of_nodes('game'), 1, 200)

1767
1768
@parametrize_dtype
def test_isolated_ntype(index_dtype):
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
    g = dgl.heterograph({
        ('A', 'AB', 'B'): [(0, 1), (1, 2), (2, 3)]},
        num_nodes_dict={'A': 3, 'B': 4, 'C': 4})
    assert g.number_of_nodes('A') == 3
    assert g.number_of_nodes('B') == 4
    assert g.number_of_nodes('C') == 4

    g = dgl.heterograph({
        ('A', 'AC', 'C'): [(0, 1), (1, 2), (2, 3)]},
        num_nodes_dict={'A': 3, 'B': 4, 'C': 4})
    assert g.number_of_nodes('A') == 3
    assert g.number_of_nodes('B') == 4
    assert g.number_of_nodes('C') == 4

    G = dgl.DGLGraph()
    G.add_nodes(11)
    G.add_edges([0, 1, 2], [4, 5, 6])
    G.ndata[dgl.NTYPE] = F.tensor([0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2], dtype=F.int64)
    G.edata[dgl.ETYPE] = F.tensor([0, 0, 0], dtype=F.int64)
    g = dgl.to_hetero(G, ['A', 'B', 'C'], ['AB'])
    assert g.number_of_nodes('A') == 3
    assert g.number_of_nodes('B') == 4
    assert g.number_of_nodes('C') == 4

1793
1794
1795
1796
1797

@parametrize_dtype
def test_ismultigraph(index_dtype):
    g1 = dgl.bipartite([(0, 1), (0, 2), (1, 5), (2, 5)], 'A',
                       'AB', 'B', num_nodes=(6, 6), index_dtype=index_dtype)
1798
    assert g1.is_multigraph == False
1799
1800
    g2 = dgl.bipartite([(0, 1), (0, 1), (0, 2), (1, 5)], 'A',
                       'AC', 'C', num_nodes=(6, 6), index_dtype=index_dtype)
1801
    assert g2.is_multigraph == True
1802
1803
    g3 = dgl.graph([(0, 1), (1, 2)], 'A', 'AA',
                   num_nodes=6, index_dtype=index_dtype)
1804
    assert g3.is_multigraph == False
1805
1806
    g4 = dgl.graph([(0, 1), (0, 1), (1, 2)], 'A', 'AA',
                   num_nodes=6, index_dtype=index_dtype)
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
    assert g4.is_multigraph == True
    g = dgl.hetero_from_relations([g1, g3])
    assert g.is_multigraph == False
    g = dgl.hetero_from_relations([g1, g2])
    assert g.is_multigraph == True
    g = dgl.hetero_from_relations([g1, g4])
    assert g.is_multigraph == True
    g = dgl.hetero_from_relations([g2, g4])
    assert g.is_multigraph == True

1817
1818
1819
@parametrize_dtype
def test_bipartite(index_dtype):
    g1 = dgl.bipartite([(0, 1), (0, 2), (1, 5)], 'A', 'AB', 'B', index_dtype=index_dtype)
1820
1821
1822
1823
1824
1825
1826
    assert g1.is_unibipartite
    assert len(g1.ntypes) == 2
    assert g1.etypes == ['AB']
    assert g1.srctypes == ['A']
    assert g1.dsttypes == ['B']
    assert g1.number_of_nodes('A') == 2
    assert g1.number_of_nodes('B') == 6
1827
1828
1829
1830
    assert g1.number_of_src_nodes('A') == 2
    assert g1.number_of_src_nodes() == 2
    assert g1.number_of_dst_nodes('B') == 6
    assert g1.number_of_dst_nodes() == 6
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
    assert g1.number_of_edges() == 3
    g1.srcdata['h'] = F.randn((2, 5))
    assert F.array_equal(g1.srcnodes['A'].data['h'], g1.srcdata['h'])
    assert F.array_equal(g1.nodes['A'].data['h'], g1.srcdata['h'])
    assert F.array_equal(g1.nodes['SRC/A'].data['h'], g1.srcdata['h'])
    g1.dstdata['h'] = F.randn((6, 3))
    assert F.array_equal(g1.dstnodes['B'].data['h'], g1.dstdata['h'])
    assert F.array_equal(g1.nodes['B'].data['h'], g1.dstdata['h'])
    assert F.array_equal(g1.nodes['DST/B'].data['h'], g1.dstdata['h'])

    # more complicated bipartite
1842
    g2 = dgl.bipartite([(1, 0), (0, 0)], 'A', 'AC', 'C', index_dtype=index_dtype)
1843
1844
1845
1846
1847
1848
1849
    g3 = dgl.hetero_from_relations([g1, g2])
    assert g3.is_unibipartite
    assert g3.srctypes == ['A']
    assert set(g3.dsttypes) == {'B', 'C'}
    assert g3.number_of_nodes('A') == 2
    assert g3.number_of_nodes('B') == 6
    assert g3.number_of_nodes('C') == 1
1850
1851
1852
1853
    assert g3.number_of_src_nodes('A') == 2
    assert g3.number_of_src_nodes() == 2
    assert g3.number_of_dst_nodes('B') == 6
    assert g3.number_of_dst_nodes('C') == 1
1854
1855
1856
1857
1858
    g3.srcdata['h'] = F.randn((2, 5))
    assert F.array_equal(g3.srcnodes['A'].data['h'], g3.srcdata['h'])
    assert F.array_equal(g3.nodes['A'].data['h'], g3.srcdata['h'])
    assert F.array_equal(g3.nodes['SRC/A'].data['h'], g3.srcdata['h'])

1859
    g4 = dgl.graph([(0, 0), (1, 1)], 'A', 'AA', index_dtype=index_dtype)
1860
1861
1862
    g5 = dgl.hetero_from_relations([g1, g2, g4])
    assert not g5.is_unibipartite

1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
@parametrize_dtype
def test_dtype_cast(index_dtype):
    g = dgl.graph([(0, 0), (1, 1), (0, 1), (2, 0)], index_dtype=index_dtype)
    assert g._idtype_str == index_dtype
    g.ndata["feat"] = F.tensor([3, 4, 5])
    g.edata["h"] = F.tensor([3, 4, 5, 6])
    if index_dtype == "int32":
        g_cast = g.long()
        assert g_cast._idtype_str == 'int64'
    else:
        g_cast = g.int()
        assert g_cast._idtype_str == 'int32'
    assert "feat" in g_cast.ndata
    assert "h" in g_cast.edata
    assert F.array_equal(g.ndata["feat"], g_cast.ndata["feat"])
    assert F.array_equal(g.edata["h"], g_cast.edata["h"])

1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
def test_format():
    # single relation
    g = dgl.graph([(0, 0), (1, 1), (0, 1), (2, 0)], restrict_format='coo')
    assert g.restrict_format() == 'coo'
    assert g.format_in_use() == ['coo']
    try:
        spmat = g.adjacency_matrix(scipy_fmt="csr")
    except:
        print('test passed, graph with restrict_format coo should not create csr matrix.')
    else:
        assert False, 'cannot create csr when restrict_format is coo'
    g1 = g.to_format('any')
    assert g1.restrict_format() == 'any'
1893
1894
1895
1896
    g1.request_format('coo')
    g1.request_format('csr')
    g1.request_format('csc')
    assert len(g1.format_in_use()) == 3
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
    assert g.restrict_format() == 'coo'
    assert g.format_in_use() == ['coo']

    # multiple relation
    g = dgl.heterograph({
        ('user', 'follows', 'user'): [(0, 1), (1, 2)],
        ('user', 'plays', 'game'): [(0, 0), (1, 0), (1, 1), (2, 1)],
        ('developer', 'develops', 'game'): [(0, 0), (1, 1)],
        }, restrict_format='csr')
    user_feat = F.randn((g['follows'].number_of_src_nodes(), 5))
    g['follows'].srcdata['h'] = user_feat
    for rel_type in ['follows', 'plays', 'develops']:
        assert g.restrict_format(rel_type) == 'csr'
        assert g.format_in_use(rel_type) == ['csr']
        try:
1912
            g[rel_type].request_format('coo')
1913
1914
1915
        except:
            print('test passed, graph with restrict_format csr should not create coo matrix')
        else:
1916
            assert False, 'cannot create coo when restrict_format is csr'
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927

    g1 = g.to_format('csc')
    # test frame
    assert F.array_equal(g1['follows'].srcdata['h'], user_feat)
    # test each relation graph
    for rel_type in ['follows', 'plays', 'develops']:
        assert g1.restrict_format(rel_type) == 'csc'
        assert g1.format_in_use(rel_type) == ['csc']
        assert g.restrict_format(rel_type) == 'csr'
        assert g.format_in_use(rel_type) == ['csr']

1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
def test_edges_order():
    # (0, 2), (1, 2), (0, 1), (0, 1), (2, 1)
    g = dgl.graph((
        np.array([0, 1, 0, 0, 2]),
        np.array([2, 2, 1, 1, 1])
    ))

    src, dst = g.all_edges(order='srcdst')
    assert F.array_equal(F.copy_to(src, F.cpu()),
                         F.copy_to(F.tensor([0, 0, 0, 1, 2]), F.cpu()))
    assert F.array_equal(F.copy_to(dst, F.cpu()),
                         F.copy_to(F.tensor([1, 1, 2, 2, 1]), F.cpu()))

1941
1942
1943
1944
1945
1946
@parametrize_dtype
def test_reverse(index_dtype):
    g = dgl.heterograph({
        ('user', 'follows', 'user'): ([0, 1, 2, 4, 3 ,1, 3], [1, 2, 3, 2, 0, 0, 1]),
    }, index_dtype=index_dtype)
    gidx = g._graph
1947
    r_gidx = gidx.reverse(gidx.metagraph)
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958

    assert gidx.number_of_nodes(0) == r_gidx.number_of_nodes(0)
    assert gidx.number_of_edges(0) == r_gidx.number_of_edges(0)
    g_s, g_d, _ = gidx.edges(0)
    rg_s, rg_d, _ = r_gidx.edges(0)
    assert F.array_equal(g_s.tousertensor(), rg_d.tousertensor())
    assert F.array_equal(g_d.tousertensor(), rg_s.tousertensor())

    # force to start with 'csr'
    gidx = gidx.to_format('csr')
    gidx = gidx.to_format('any')
1959
    r_gidx = gidx.reverse(gidx.metagraph)
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
    assert gidx.format_in_use(0)[0] == 'csr'
    assert r_gidx.format_in_use(0)[0] == 'csc'
    assert gidx.number_of_nodes(0) == r_gidx.number_of_nodes(0)
    assert gidx.number_of_edges(0) == r_gidx.number_of_edges(0)
    g_s, g_d, _ = gidx.edges(0)
    rg_s, rg_d, _ = r_gidx.edges(0)
    assert F.array_equal(g_s.tousertensor(), rg_d.tousertensor())
    assert F.array_equal(g_d.tousertensor(), rg_s.tousertensor())

    # force to start with 'csc'
    gidx = gidx.to_format('csc')
    gidx = gidx.to_format('any')
1972
    r_gidx = gidx.reverse(gidx.metagraph)
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
    assert gidx.format_in_use(0)[0] == 'csc'
    assert r_gidx.format_in_use(0)[0] == 'csr'
    assert gidx.number_of_nodes(0) == r_gidx.number_of_nodes(0)
    assert gidx.number_of_edges(0) == r_gidx.number_of_edges(0)
    g_s, g_d, _ = gidx.edges(0)
    rg_s, rg_d, _ = r_gidx.edges(0)
    assert F.array_equal(g_s.tousertensor(), rg_d.tousertensor())
    assert F.array_equal(g_d.tousertensor(), rg_s.tousertensor())

    g = dgl.heterograph({
        ('user', 'follows', 'user'): ([0, 1, 2, 4, 3 ,1, 3], [1, 2, 3, 2, 0, 0, 1]),
        ('user', 'plays', 'game'): ([0, 0, 2, 3, 3, 4, 1], [1, 0, 1, 0, 1, 0, 0]),
        ('developer', 'develops', 'game'): ([0, 1, 1, 2], [0, 0, 1, 1]),
        }, index_dtype=index_dtype)
    gidx = g._graph
1988
    r_gidx = gidx.reverse(gidx.metagraph)
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
    # three node types and three edge types
    assert gidx.number_of_nodes(0) == r_gidx.number_of_nodes(0)
    assert gidx.number_of_nodes(1) == r_gidx.number_of_nodes(1)
    assert gidx.number_of_nodes(2) == r_gidx.number_of_nodes(2)
    assert gidx.number_of_edges(0) == r_gidx.number_of_edges(0)
    assert gidx.number_of_edges(1) == r_gidx.number_of_edges(1)
    assert gidx.number_of_edges(2) == r_gidx.number_of_edges(2)
    g_s, g_d, _ = gidx.edges(0)
    rg_s, rg_d, _ = r_gidx.edges(0)
    assert F.array_equal(g_s.tousertensor(), rg_d.tousertensor())
    assert F.array_equal(g_d.tousertensor(), rg_s.tousertensor())
    g_s, g_d, _ = gidx.edges(1)
    rg_s, rg_d, _ = r_gidx.edges(1)
    assert F.array_equal(g_s.tousertensor(), rg_d.tousertensor())
    assert F.array_equal(g_d.tousertensor(), rg_s.tousertensor())
    g_s, g_d, _ = gidx.edges(2)
    rg_s, rg_d, _ = r_gidx.edges(2)
    assert F.array_equal(g_s.tousertensor(), rg_d.tousertensor())
    assert F.array_equal(g_d.tousertensor(), rg_s.tousertensor())

    # force to start with 'csr'
    gidx = gidx.to_format('csr')
    gidx = gidx.to_format('any')
2012
    r_gidx = gidx.reverse(gidx.metagraph)
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
    # three node types and three edge types
    assert gidx.format_in_use(0)[0] == 'csr'
    assert r_gidx.format_in_use(0)[0] == 'csc'
    assert gidx.format_in_use(1)[0] == 'csr'
    assert r_gidx.format_in_use(1)[0] == 'csc'
    assert gidx.format_in_use(2)[0] == 'csr'
    assert r_gidx.format_in_use(2)[0] == 'csc'
    assert gidx.number_of_nodes(0) == r_gidx.number_of_nodes(0)
    assert gidx.number_of_nodes(1) == r_gidx.number_of_nodes(1)
    assert gidx.number_of_nodes(2) == r_gidx.number_of_nodes(2)
    assert gidx.number_of_edges(0) == r_gidx.number_of_edges(0)
    assert gidx.number_of_edges(1) == r_gidx.number_of_edges(1)
    assert gidx.number_of_edges(2) == r_gidx.number_of_edges(2)
    g_s, g_d, _ = gidx.edges(0)
    rg_s, rg_d, _ = r_gidx.edges(0)
    assert F.array_equal(g_s.tousertensor(), rg_d.tousertensor())
    assert F.array_equal(g_d.tousertensor(), rg_s.tousertensor())
    g_s, g_d, _ = gidx.edges(1)
    rg_s, rg_d, _ = r_gidx.edges(1)
    assert F.array_equal(g_s.tousertensor(), rg_d.tousertensor())
    assert F.array_equal(g_d.tousertensor(), rg_s.tousertensor())
    g_s, g_d, _ = gidx.edges(2)
    rg_s, rg_d, _ = r_gidx.edges(2)
    assert F.array_equal(g_s.tousertensor(), rg_d.tousertensor())
    assert F.array_equal(g_d.tousertensor(), rg_s.tousertensor())

    # force to start with 'csc'
    gidx = gidx.to_format('csc')
    gidx = gidx.to_format('any')
2042
    r_gidx = gidx.reverse(gidx.metagraph)
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
    # three node types and three edge types
    assert gidx.format_in_use(0)[0] == 'csc'
    assert r_gidx.format_in_use(0)[0] == 'csr'
    assert gidx.format_in_use(1)[0] == 'csc'
    assert r_gidx.format_in_use(1)[0] == 'csr'
    assert gidx.format_in_use(2)[0] == 'csc'
    assert r_gidx.format_in_use(2)[0] == 'csr'
    assert gidx.number_of_nodes(0) == r_gidx.number_of_nodes(0)
    assert gidx.number_of_nodes(1) == r_gidx.number_of_nodes(1)
    assert gidx.number_of_nodes(2) == r_gidx.number_of_nodes(2)
    assert gidx.number_of_edges(0) == r_gidx.number_of_edges(0)
    assert gidx.number_of_edges(1) == r_gidx.number_of_edges(1)
    assert gidx.number_of_edges(2) == r_gidx.number_of_edges(2)
    g_s, g_d, _ = gidx.edges(0)
    rg_s, rg_d, _ = r_gidx.edges(0)
    assert F.array_equal(g_s.tousertensor(), rg_d.tousertensor())
    assert F.array_equal(g_d.tousertensor(), rg_s.tousertensor())
    g_s, g_d, _ = gidx.edges(1)
    rg_s, rg_d, _ = r_gidx.edges(1)
    assert F.array_equal(g_s.tousertensor(), rg_d.tousertensor())
    assert F.array_equal(g_d.tousertensor(), rg_s.tousertensor())
    g_s, g_d, _ = gidx.edges(2)
    rg_s, rg_d, _ = r_gidx.edges(2)
    assert F.array_equal(g_s.tousertensor(), rg_d.tousertensor())
    assert F.array_equal(g_d.tousertensor(), rg_s.tousertensor())

2069

2070
if __name__ == '__main__':
2071
2072
2073
2074
2075
    # test_create()
    # test_query()
    # test_hypersparse()
    # test_adj("int32")
    # test_inc()
2076
    # test_view("int32")
2077
2078
2079
2080
    # test_view1("int32")
    # test_flatten()
    # test_convert_bound()
    # test_convert()
2081
    # test_to_device("int32")
2082
    # test_transform("int32")
2083
2084
    # test_subgraph("int32")
    # test_subgraph_mask("int32")
2085
2086
2087
2088
2089
    # test_apply()
    # test_level1()
    # test_level2()
    # test_updates()
    # test_backward()
2090
    # test_empty_heterograph('int32')
2091
2092
2093
2094
    # test_types_in_function()
    # test_stack_reduce()
    # test_isolated_ntype()
    # test_bipartite()
2095
    # test_dtype_cast()
2096
    test_reverse("int32")
2097
    test_format()
2098
    pass