test_heterograph.py 115 KB
Newer Older
1
2
3
4
5
6
7
8
import dgl
import dgl.function as fn
from collections import Counter
import numpy as np
import scipy.sparse as ssp
import itertools
import backend as F
import networkx as nx
9
import unittest, pytest
10
from dgl import DGLError
11
import test_utils
nv-dlasalle's avatar
nv-dlasalle committed
12
from test_utils import parametrize_idtype, get_cases
13
from utils import assert_is_identical_hetero
14
from scipy.sparse import rand
15
import multiprocessing as mp
16

17
def create_test_heterograph(idtype):
18
    # test heterograph from the docstring, plus a user -- wishes -- game relation
Minjie Wang's avatar
Minjie Wang committed
19
20
21
22
23
24
    # 3 users, 2 games, 2 developers
    # metagraph:
    #    ('user', 'follows', 'user'),
    #    ('user', 'plays', 'game'),
    #    ('user', 'wishes', 'game'),
    #    ('developer', 'develops', 'game')])
25

26
27
28
29
30
31
    g = dgl.heterograph({
        ('user', 'follows', 'user'): ([0, 1], [1, 2]),
        ('user', 'plays', 'game'): ([0, 1, 2, 1], [0, 0, 1, 1]),
        ('user', 'wishes', 'game'): ([0, 2], [1, 0]),
        ('developer', 'develops', 'game'): ([0, 1], [0, 1])
    }, idtype=idtype, device=F.ctx())
32
33
    assert g.idtype == idtype
    assert g.device == F.ctx()
34
35
    return g

36
def create_test_heterograph1(idtype):
Minjie Wang's avatar
Minjie Wang committed
37
    edges = []
38
39
40
41
42
    edges.extend([(0, 1), (1, 2)])  # follows
    edges.extend([(0, 3), (1, 3), (2, 4), (1, 4)])  # plays
    edges.extend([(0, 4), (2, 3)])  # wishes
    edges.extend([(5, 3), (6, 4)])  # develops
    edges = tuple(zip(*edges))
Minjie Wang's avatar
Minjie Wang committed
43
44
    ntypes = F.tensor([0, 0, 0, 1, 1, 2, 2])
    etypes = F.tensor([0, 0, 1, 1, 1, 1, 2, 2, 3, 3])
45
    g0 = dgl.graph(edges, idtype=idtype, device=F.ctx())
Minjie Wang's avatar
Minjie Wang committed
46
47
    g0.ndata[dgl.NTYPE] = ntypes
    g0.edata[dgl.ETYPE] = etypes
48
49
    return dgl.to_heterogeneous(g0, ['user', 'game', 'developer'],
                                ['follows', 'plays', 'wishes', 'develops'])
Minjie Wang's avatar
Minjie Wang committed
50

51
def create_test_heterograph2(idtype):
52
    g = dgl.heterograph({
53
54
        ('user', 'follows', 'user'): ([0, 1], [1, 2]),
        ('user', 'plays', 'game'): ([0, 1, 2, 1], [0, 0, 1, 1]),
55
56
        ('user', 'wishes', 'game'): ('csr', ([0, 1, 1, 2], [1, 0], [])),
        ('developer', 'develops', 'game'): ('csc', ([0, 1, 2], [0, 1], [0, 1])),
57
58
59
        }, idtype=idtype, device=F.ctx())
    assert g.idtype == idtype
    assert g.device == F.ctx()
60
61
    return g

62
63
64
65
66
67
68
def create_test_heterograph3(idtype):
    g = dgl.heterograph({
        ('user', 'plays', 'game'): (F.tensor([0, 1, 1, 2], dtype=idtype),
                                    F.tensor([0, 0, 1, 1], dtype=idtype)),
        ('developer', 'develops', 'game'): (F.tensor([0, 1], dtype=idtype),
                                            F.tensor([0, 1], dtype=idtype))},
        idtype=idtype, device=F.ctx())
69
70
71
72

    g.nodes['user'].data['h'] = F.copy_to(F.tensor([1, 1, 1], dtype=idtype), ctx=F.ctx())
    g.nodes['game'].data['h'] = F.copy_to(F.tensor([2, 2], dtype=idtype), ctx=F.ctx())
    g.nodes['developer'].data['h'] = F.copy_to(F.tensor([3, 3], dtype=idtype), ctx=F.ctx())
73
74
75
    g.edges['plays'].data['h'] = F.copy_to(F.tensor([1, 1, 1, 1], dtype=idtype), ctx=F.ctx())
    return g

76
def create_test_heterograph4(idtype):
77
78
    g = dgl.heterograph({
        ('user', 'follows', 'user'): (F.tensor([0, 1, 1, 2, 2, 2], dtype=idtype),
79
                                      F.tensor([0, 0, 1, 1, 2, 2], dtype=idtype)),
80
        ('user', 'plays', 'game'): (F.tensor([0, 1], dtype=idtype),
81
                                    F.tensor([0, 1], dtype=idtype))},
82
        idtype=idtype, device=F.ctx())
83
84
    g.nodes['user'].data['h'] = F.copy_to(F.tensor([1, 1, 1], dtype=idtype), ctx=F.ctx())
    g.nodes['game'].data['h'] = F.copy_to(F.tensor([2, 2], dtype=idtype), ctx=F.ctx())
85
86
87
88
    g.edges['follows'].data['h'] = F.copy_to(F.tensor([1, 2, 3, 4, 5, 6], dtype=idtype), ctx=F.ctx())
    g.edges['plays'].data['h'] = F.copy_to(F.tensor([1, 2], dtype=idtype), ctx=F.ctx())
    return g

89
def create_test_heterograph5(idtype):
90
91
    g = dgl.heterograph({
        ('user', 'follows', 'user'): (F.tensor([1, 2], dtype=idtype),
92
                                      F.tensor([0, 1], dtype=idtype)),
93
94
95
        ('user', 'plays', 'game'): (F.tensor([0, 1], dtype=idtype),
                                    F.tensor([0, 1], dtype=idtype))},
        idtype=idtype, device=F.ctx())
96
97
    g.nodes['user'].data['h'] = F.copy_to(F.tensor([1, 1, 1], dtype=idtype), ctx=F.ctx())
    g.nodes['game'].data['h'] = F.copy_to(F.tensor([2, 2], dtype=idtype), ctx=F.ctx())
98
99
    g.edges['follows'].data['h'] = F.copy_to(F.tensor([1, 2], dtype=idtype), ctx=F.ctx())
    g.edges['plays'].data['h'] = F.copy_to(F.tensor([1, 2], dtype=idtype), ctx=F.ctx())
100
101
    return g

Minjie Wang's avatar
Minjie Wang committed
102
103
104
def get_redfn(name):
    return getattr(F, name)

nv-dlasalle's avatar
nv-dlasalle committed
105
@parametrize_idtype
106
107
108
109
110
def test_create(idtype):
    device = F.ctx()
    g0 = create_test_heterograph(idtype)
    g1 = create_test_heterograph1(idtype)
    g2 = create_test_heterograph2(idtype)
111
112
    assert set(g0.ntypes) == set(g1.ntypes) == set(g2.ntypes)
    assert set(g0.canonical_etypes) == set(g1.canonical_etypes) == set(g2.canonical_etypes)
Minjie Wang's avatar
Minjie Wang committed
113

114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
    # Create a bipartite graph from a SciPy matrix
    src_ids = np.array([2, 3, 4])
    dst_ids = np.array([1, 2, 3])
    eweight = np.array([0.2, 0.3, 0.5])
    sp_mat = ssp.coo_matrix((eweight, (src_ids, dst_ids)))
    g = dgl.bipartite_from_scipy(sp_mat, utype='user', etype='plays',
                                 vtype='game', idtype=idtype, device=device)
    assert g.idtype == idtype
    assert g.device == device
    assert g.num_src_nodes() == 5
    assert g.num_dst_nodes() == 4
    assert g.num_edges() == 3
    src, dst = g.edges()
    assert F.allclose(src, F.tensor([2, 3, 4], dtype=idtype))
    assert F.allclose(dst, F.tensor([1, 2, 3], dtype=idtype))
    g = dgl.bipartite_from_scipy(sp_mat, utype='_U', etype='_E', vtype='_V',
                                 eweight_name='w', idtype=idtype, device=device)
    assert F.allclose(g.edata['w'], F.tensor(eweight))

    # Create a bipartite graph from a NetworkX graph
    nx_g = nx.DiGraph()
    nx_g.add_nodes_from([1, 3], bipartite=0, feat1=np.zeros((2)), feat2=np.ones((2)))
    nx_g.add_nodes_from([2, 4, 5], bipartite=1, feat3=np.zeros((3)))
    nx_g.add_edge(1, 4, weight=np.ones((1)), eid=np.array([1]))
    nx_g.add_edge(3, 5, weight=np.ones((1)), eid=np.array([0]))
    g = dgl.bipartite_from_networkx(nx_g, utype='user', etype='plays',
                                    vtype='game', idtype=idtype, device=device)
141
142
    assert g.idtype == idtype
    assert g.device == device
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
    assert g.num_src_nodes() == 2
    assert g.num_dst_nodes() == 3
    assert g.num_edges() == 2
    src, dst = g.edges()
    assert F.allclose(src, F.tensor([0, 1], dtype=idtype))
    assert F.allclose(dst, F.tensor([1, 2], dtype=idtype))
    g = dgl.bipartite_from_networkx(nx_g, utype='_U', etype='_E', vtype='V',
                                    u_attrs=['feat1', 'feat2'],
                                    e_attrs = ['weight'], v_attrs = ['feat3'])
    assert F.allclose(g.srcdata['feat1'], F.tensor(np.zeros((2, 2))))
    assert F.allclose(g.srcdata['feat2'], F.tensor(np.ones((2, 2))))
    assert F.allclose(g.dstdata['feat3'], F.tensor(np.zeros((3, 3))))
    assert F.allclose(g.edata['weight'], F.tensor(np.ones((2, 1))))
    g = dgl.bipartite_from_networkx(nx_g, utype='_U', etype='_E', vtype='V',
                                    edge_id_attr_name='eid', idtype=idtype, device=device)
    src, dst = g.edges()
    assert F.allclose(src, F.tensor([1, 0], dtype=idtype))
    assert F.allclose(dst, F.tensor([2, 1], dtype=idtype))
Minjie Wang's avatar
Minjie Wang committed
161
162
163

    # create from scipy
    spmat = ssp.coo_matrix(([1,1,1], ([0, 0, 1], [2, 3, 2])), shape=(4, 4))
164
165
166
    g = dgl.from_scipy(spmat, idtype=idtype, device=device)
    assert g.num_nodes() == 4
    assert g.num_edges() == 3
167
168
    assert g.idtype == idtype
    assert g.device == device
Minjie Wang's avatar
Minjie Wang committed
169

170
171
    # test inferring number of nodes for heterograph
    g = dgl.heterograph({
172
173
174
        ('l0', 'e0', 'l1'): ([0, 0], [1, 2]),
        ('l0', 'e1', 'l2'): ([2], [2]),
        ('l2', 'e2', 'l2'): ([1, 3], [1, 3])
175
        }, idtype=idtype, device=device)
176
177
178
    assert g.num_nodes('l0') == 3
    assert g.num_nodes('l1') == 3
    assert g.num_nodes('l2') == 4
179
180
    assert g.idtype == idtype
    assert g.device == device
181

182
183
    # test if validate flag works
    # homo graph
184
    with pytest.raises(DGLError):
185
186
        g = dgl.graph(
            ([0, 0, 0, 1, 1, 2], [0, 1, 2, 0, 1, 2]),
187
            num_nodes=2,
188
            idtype=idtype, device=device
189
190
191
        )
    # bipartite graph
    def _test_validate_bipartite(card):
192
        with pytest.raises(DGLError):
193
194
195
            g = dgl.heterograph({
                ('_U', '_E', '_V'): ([0, 0, 1, 1, 2], [1, 1, 2, 2, 3])
            }, {'_U': card[0], '_V': card[1]}, idtype=idtype, device=device)
196
197
198
199

    _test_validate_bipartite((3, 3))
    _test_validate_bipartite((2, 4))

200
201
202
203
204
205
206
207
208
209
    # test from_scipy
    num_nodes = 10
    density = 0.25
    for fmt in ['csr', 'coo', 'csc']:
        adj = rand(num_nodes, num_nodes, density=density, format=fmt)
        g = dgl.from_scipy(adj, eweight_name='w', idtype=idtype)
        assert g.idtype == idtype
        assert g.device == F.cpu()
        assert F.array_equal(g.edata['w'], F.copy_to(F.tensor(adj.data), F.cpu()))

210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
def test_create2():
    mat = ssp.random(20, 30, 0.1)

    # coo
    mat = mat.tocoo()
    row = F.tensor(mat.row, dtype=F.int64)
    col = F.tensor(mat.col, dtype=F.int64)
    g = dgl.heterograph(
        {('A', 'AB', 'B'): ('coo', (row, col))}, num_nodes_dict={'A': 20, 'B': 30})

    # csr
    mat = mat.tocsr()
    indptr = F.tensor(mat.indptr, dtype=F.int64)
    indices = F.tensor(mat.indices, dtype=F.int64)
    data = F.tensor([], dtype=F.int64)
    g = dgl.heterograph(
        {('A', 'AB', 'B'): ('csr', (indptr, indices, data))}, num_nodes_dict={'A': 20, 'B': 30})

    # csc
    mat = mat.tocsc()
    indptr = F.tensor(mat.indptr, dtype=F.int64)
    indices = F.tensor(mat.indices, dtype=F.int64)
    data = F.tensor([], dtype=F.int64)
    g = dgl.heterograph(
        {('A', 'AB', 'B'): ('csc', (indptr, indices, data))}, num_nodes_dict={'A': 20, 'B': 30})

nv-dlasalle's avatar
nv-dlasalle committed
236
@parametrize_idtype
237
238
def test_query(idtype):
    g = create_test_heterograph(idtype)
239
240

    ntypes = ['user', 'game', 'developer']
Minjie Wang's avatar
Minjie Wang committed
241
    canonical_etypes = [
242
243
244
245
        ('user', 'follows', 'user'),
        ('user', 'plays', 'game'),
        ('user', 'wishes', 'game'),
        ('developer', 'develops', 'game')]
Minjie Wang's avatar
Minjie Wang committed
246
    etypes = ['follows', 'plays', 'wishes', 'develops']
247
248

    # node & edge types
Minjie Wang's avatar
Minjie Wang committed
249
250
251
    assert set(ntypes) == set(g.ntypes)
    assert set(etypes) == set(g.etypes)
    assert set(canonical_etypes) == set(g.canonical_etypes)
252
253

    # metagraph
254
    mg = g.metagraph()
Minjie Wang's avatar
Minjie Wang committed
255
    assert set(g.ntypes) == set(mg.nodes)
256
257
258
259
260
261
    etype_triplets = [(u, v, e) for u, v, e in mg.edges(keys=True)]
    assert set([
        ('user', 'user', 'follows'),
        ('user', 'game', 'plays'),
        ('user', 'game', 'wishes'),
        ('developer', 'game', 'develops')]) == set(etype_triplets)
Minjie Wang's avatar
Minjie Wang committed
262
263
    for i in range(len(etypes)):
        assert g.to_canonical_etype(etypes[i]) == canonical_etypes[i]
264

265
266
    def _test(g):
        # number of nodes
267
        assert [g.num_nodes(ntype) for ntype in ntypes] == [3, 2, 2]
268

269
        # number of edges
270
        assert [g.num_edges(etype) for etype in etypes] == [2, 4, 2, 2]
271

272
273
274
275
276
277
278
279
        # has_node & has_nodes
        for ntype in ntypes:
            n = g.number_of_nodes(ntype)
            for i in range(n):
                assert g.has_node(i, ntype)
            assert not g.has_node(n, ntype)
            assert np.array_equal(
                F.asnumpy(g.has_nodes([0, n], ntype)).astype('int32'), [1, 0])
Minjie Wang's avatar
Minjie Wang committed
280

281
        assert not g.is_multigraph
Minjie Wang's avatar
Minjie Wang committed
282
283
284
285

        for etype in etypes:
            srcs, dsts = edges[etype]
            for src, dst in zip(srcs, dsts):
286
                assert g.has_edges_between(src, dst, etype)
Minjie Wang's avatar
Minjie Wang committed
287
288
289
290
            assert F.asnumpy(g.has_edges_between(srcs, dsts, etype)).all()

            srcs, dsts = negative_edges[etype]
            for src, dst in zip(srcs, dsts):
291
                assert not g.has_edges_between(src, dst, etype)
Minjie Wang's avatar
Minjie Wang committed
292
293
294
295
296
297
298
299
300
301
302
            assert not F.asnumpy(g.has_edges_between(srcs, dsts, etype)).any()

            srcs, dsts = edges[etype]
            n_edges = len(srcs)

            # predecessors & in_edges & in_degree
            pred = [s for s, d in zip(srcs, dsts) if d == 0]
            assert set(F.asnumpy(g.predecessors(0, etype)).tolist()) == set(pred)
            u, v = g.in_edges([0], etype=etype)
            assert F.asnumpy(v).tolist() == [0] * len(pred)
            assert set(F.asnumpy(u).tolist()) == set(pred)
303
            assert g.in_degrees(0, etype) == len(pred)
Minjie Wang's avatar
Minjie Wang committed
304
305
306
307
308
309
310

            # successors & out_edges & out_degree
            succ = [d for s, d in zip(srcs, dsts) if s == 0]
            assert set(F.asnumpy(g.successors(0, etype)).tolist()) == set(succ)
            u, v = g.out_edges([0], etype=etype)
            assert F.asnumpy(u).tolist() == [0] * len(succ)
            assert set(F.asnumpy(v).tolist()) == set(succ)
311
            assert g.out_degrees(0, etype) == len(succ)
Minjie Wang's avatar
Minjie Wang committed
312
313
314

            # edge_id & edge_ids
            for i, (src, dst) in enumerate(zip(srcs, dsts)):
315
316
317
                assert g.edge_ids(src, dst, etype=etype) == i
                _, _, eid = g.edge_ids(src, dst, etype=etype, return_uv=True)
                assert eid == i
Minjie Wang's avatar
Minjie Wang committed
318
            assert F.asnumpy(g.edge_ids(srcs, dsts, etype=etype)).tolist() == list(range(n_edges))
319
            u, v, e = g.edge_ids(srcs, dsts, etype=etype, return_uv=True)
320
321
322
            u, v, e = F.asnumpy(u), F.asnumpy(v), F.asnumpy(e)
            assert u[e].tolist() == srcs
            assert v[e].tolist() == dsts
323

Minjie Wang's avatar
Minjie Wang committed
324
            # find_edges
325
326
            for eid in [list(range(n_edges)), np.arange(n_edges), F.astype(F.arange(0, n_edges), g.idtype)]:
                u, v = g.find_edges(eid, etype)
327
328
                assert F.asnumpy(u).tolist() == srcs
                assert F.asnumpy(v).tolist() == dsts
Minjie Wang's avatar
Minjie Wang committed
329
330
331

            # all_edges.
            for order in ['eid']:
332
                u, v, e = g.edges('all', order, etype)
Minjie Wang's avatar
Minjie Wang committed
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
                assert F.asnumpy(u).tolist() == srcs
                assert F.asnumpy(v).tolist() == dsts
                assert F.asnumpy(e).tolist() == list(range(n_edges))

            # in_degrees & out_degrees
            in_degrees = F.asnumpy(g.in_degrees(etype=etype))
            out_degrees = F.asnumpy(g.out_degrees(etype=etype))
            src_count = Counter(srcs)
            dst_count = Counter(dsts)
            utype, _, vtype = g.to_canonical_etype(etype)
            for i in range(g.number_of_nodes(utype)):
                assert out_degrees[i] == src_count[i]
            for i in range(g.number_of_nodes(vtype)):
                assert in_degrees[i] == dst_count[i]

    edges = {
        'follows': ([0, 1], [1, 2]),
        'plays': ([0, 1, 2, 1], [0, 0, 1, 1]),
        'wishes': ([0, 2], [1, 0]),
        'develops': ([0, 1], [0, 1]),
    }
    # edges that does not exist in the graph
    negative_edges = {
        'follows': ([0, 1], [0, 1]),
        'plays': ([0, 2], [1, 0]),
        'wishes': ([0, 1], [0, 1]),
        'develops': ([0, 1], [1, 0]),
    }
361
    g = create_test_heterograph(idtype)
Minjie Wang's avatar
Minjie Wang committed
362
    _test(g)
363
    g = create_test_heterograph1(idtype)
364
    _test(g)
365
366
    if F._default_context_str != 'gpu':
        # XXX: CUDA COO operators have not been live yet.
367
        g = create_test_heterograph2(idtype)
368
        _test(g)
Minjie Wang's avatar
Minjie Wang committed
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383

    etypes = canonical_etypes
    edges = {
        ('user', 'follows', 'user'): ([0, 1], [1, 2]),
        ('user', 'plays', 'game'): ([0, 1, 2, 1], [0, 0, 1, 1]),
        ('user', 'wishes', 'game'): ([0, 2], [1, 0]),
        ('developer', 'develops', 'game'): ([0, 1], [0, 1]),
    }
    # edges that does not exist in the graph
    negative_edges = {
        ('user', 'follows', 'user'): ([0, 1], [0, 1]),
        ('user', 'plays', 'game'): ([0, 2], [1, 0]),
        ('user', 'wishes', 'game'): ([0, 1], [0, 1]),
        ('developer', 'develops', 'game'): ([0, 1], [1, 0]),
        }
384
    g = create_test_heterograph(idtype)
Minjie Wang's avatar
Minjie Wang committed
385
    _test(g)
386
    g = create_test_heterograph1(idtype)
387
    _test(g)
388
389
    if F._default_context_str != 'gpu':
        # XXX: CUDA COO operators have not been live yet.
390
        g = create_test_heterograph2(idtype)
391
        _test(g)
Minjie Wang's avatar
Minjie Wang committed
392
393
394
395

    # test repr
    print(g)

nv-dlasalle's avatar
nv-dlasalle committed
396
@parametrize_idtype
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
def test_empty_query(idtype):
    g = dgl.graph(([1, 2, 3], [0, 4, 5]), idtype=idtype, device=F.ctx())
    g.add_nodes(0)
    g.add_edges([], [])
    g.remove_edges([])
    g.remove_nodes([])
    assert F.shape(g.has_nodes([])) == (0,)
    assert F.shape(g.has_edges_between([], [])) == (0,)
    g.edge_ids([], [])
    g.edge_ids([], [], return_uv=True)
    g.find_edges([])

    assert F.shape(g.in_edges([], form='eid')) == (0,)
    u, v = g.in_edges([], form='uv')
    assert F.shape(u) == (0,)
    assert F.shape(v) == (0,)
    u, v, e = g.in_edges([], form='all')
    assert F.shape(u) == (0,)
    assert F.shape(v) == (0,)
    assert F.shape(e) == (0,)

    assert F.shape(g.out_edges([], form='eid')) == (0,)
    u, v = g.out_edges([], form='uv')
    assert F.shape(u) == (0,)
    assert F.shape(v) == (0,)
    u, v, e = g.out_edges([], form='all')
    assert F.shape(u) == (0,)
    assert F.shape(v) == (0,)
    assert F.shape(e) == (0,)

    assert F.shape(g.in_degrees([])) == (0,)
    assert F.shape(g.out_degrees([])) == (0,)

430
@unittest.skipIf(F._default_context_str == 'gpu', reason="GPU does not have COO impl.")
431
def _test_hypersparse():
432
433
434
435
    N1 = 1 << 50        # should crash if allocated a CSR
    N2 = 1 << 48

    g = dgl.heterograph({
436
437
        ('user', 'follows', 'user'): (F.tensor([0], F.int64), F.tensor([1], F.int64)),
        ('user', 'plays', 'game'): (F.tensor([0], F.int64), F.tensor([N2], F.int64))},
438
        {'user': N1, 'game': N1},
439
        device=F.ctx())
440
441
442
443
444
    assert g.number_of_nodes('user') == N1
    assert g.number_of_nodes('game') == N1
    assert g.number_of_edges('follows') == 1
    assert g.number_of_edges('plays') == 1

445
446
    assert g.has_edges_between(0, 1, 'follows')
    assert not g.has_edges_between(0, 0, 'follows')
447
448
449
    mask = F.asnumpy(g.has_edges_between([0, 0], [0, 1], 'follows')).tolist()
    assert mask == [0, 1]

450
451
    assert g.has_edges_between(0, N2, 'plays')
    assert not g.has_edges_between(0, 0, 'plays')
452
453
454
455
456
457
458
459
460
461
462
463
464
    mask = F.asnumpy(g.has_edges_between([0, 0], [0, N2], 'plays')).tolist()
    assert mask == [0, 1]

    assert F.asnumpy(g.predecessors(0, 'follows')).tolist() == []
    assert F.asnumpy(g.successors(0, 'follows')).tolist() == [1]
    assert F.asnumpy(g.predecessors(1, 'follows')).tolist() == [0]
    assert F.asnumpy(g.successors(1, 'follows')).tolist() == []

    assert F.asnumpy(g.predecessors(0, 'plays')).tolist() == []
    assert F.asnumpy(g.successors(0, 'plays')).tolist() == [N2]
    assert F.asnumpy(g.predecessors(N2, 'plays')).tolist() == [0]
    assert F.asnumpy(g.successors(N2, 'plays')).tolist() == []

465
466
    assert g.edge_ids(0, 1, etype='follows') == 0
    assert g.edge_ids(0, N2, etype='plays') == 0
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482

    u, v = g.find_edges([0], 'follows')
    assert F.asnumpy(u).tolist() == [0]
    assert F.asnumpy(v).tolist() == [1]
    u, v = g.find_edges([0], 'plays')
    assert F.asnumpy(u).tolist() == [0]
    assert F.asnumpy(v).tolist() == [N2]
    u, v, e = g.all_edges('all', 'eid', 'follows')
    assert F.asnumpy(u).tolist() == [0]
    assert F.asnumpy(v).tolist() == [1]
    assert F.asnumpy(e).tolist() == [0]
    u, v, e = g.all_edges('all', 'eid', 'plays')
    assert F.asnumpy(u).tolist() == [0]
    assert F.asnumpy(v).tolist() == [N2]
    assert F.asnumpy(e).tolist() == [0]

483
484
    assert g.in_degrees(0, 'follows') == 0
    assert g.in_degrees(1, 'follows') == 1
485
    assert F.asnumpy(g.in_degrees([0, 1], 'follows')).tolist() == [0, 1]
486
487
    assert g.in_degrees(0, 'plays') == 0
    assert g.in_degrees(N2, 'plays') == 1
488
    assert F.asnumpy(g.in_degrees([0, N2], 'plays')).tolist() == [0, 1]
489
490
    assert g.out_degrees(0, 'follows') == 1
    assert g.out_degrees(1, 'follows') == 0
491
    assert F.asnumpy(g.out_degrees([0, 1], 'follows')).tolist() == [1, 0]
492
493
    assert g.out_degrees(0, 'plays') == 1
    assert g.out_degrees(N2, 'plays') == 0
494
495
    assert F.asnumpy(g.out_degrees([0, N2], 'plays')).tolist() == [1, 0]

496
def _test_edge_ids():
497
498
499
500
    N1 = 1 << 50        # should crash if allocated a CSR
    N2 = 1 << 48

    g = dgl.heterograph({
501
502
        ('user', 'follows', 'user'): (F.tensor([0], F.int64), F.tensor([1], F.int64)),
        ('user', 'plays', 'game'): (F.tensor([0], F.int64), F.tensor([N2], F.int64))},
503
        {'user': N1, 'game': N1})
504
505
    with pytest.raises(DGLError):
        eid = g.edge_ids(0, 0, etype='follows')
506
507

    g2 = dgl.heterograph({
508
509
510
        ('user', 'follows', 'user'): (F.tensor([0, 0], F.int64), F.tensor([1, 1], F.int64)),
        ('user', 'plays', 'game'): (F.tensor([0], F.int64), F.tensor([N2], F.int64))},
        {'user': N1, 'game': N1}, device=F.cpu())
511

512
513
    eid = g2.edge_ids(0, 1, etype='follows')
    assert eid == 0
514

nv-dlasalle's avatar
nv-dlasalle committed
515
@parametrize_idtype
516
517
def test_adj(idtype):
    g = create_test_heterograph(idtype)
518
    adj = F.sparse_to_numpy(g.adj(transpose=True, etype='follows'))
Minjie Wang's avatar
Minjie Wang committed
519
520
521
522
523
    assert np.allclose(
            adj,
            np.array([[0., 0., 0.],
                      [1., 0., 0.],
                      [0., 1., 0.]]))
524
    adj = F.sparse_to_numpy(g.adj(transpose=False, etype='follows'))
Minjie Wang's avatar
Minjie Wang committed
525
526
527
528
529
    assert np.allclose(
            adj,
            np.array([[0., 1., 0.],
                      [0., 0., 1.],
                      [0., 0., 0.]]))
530
    adj = F.sparse_to_numpy(g.adj(transpose=True, etype='plays'))
Minjie Wang's avatar
Minjie Wang committed
531
532
533
534
    assert np.allclose(
            adj,
            np.array([[1., 1., 0.],
                      [0., 1., 1.]]))
535
    adj = F.sparse_to_numpy(g.adj(transpose=False, etype='plays'))
Minjie Wang's avatar
Minjie Wang committed
536
537
538
539
540
541
    assert np.allclose(
            adj,
            np.array([[1., 0.],
                      [1., 1.],
                      [0., 1.]]))

542
    adj = g.adj(transpose=True, scipy_fmt='csr', etype='follows')
Minjie Wang's avatar
Minjie Wang committed
543
544
545
546
547
    assert np.allclose(
            adj.todense(),
            np.array([[0., 0., 0.],
                      [1., 0., 0.],
                      [0., 1., 0.]]))
548
    adj = g.adj(transpose=True, scipy_fmt='coo', etype='follows')
Minjie Wang's avatar
Minjie Wang committed
549
550
551
552
553
    assert np.allclose(
            adj.todense(),
            np.array([[0., 0., 0.],
                      [1., 0., 0.],
                      [0., 1., 0.]]))
554
    adj = g.adj(transpose=True, scipy_fmt='csr', etype='plays')
Minjie Wang's avatar
Minjie Wang committed
555
556
557
558
    assert np.allclose(
            adj.todense(),
            np.array([[1., 1., 0.],
                      [0., 1., 1.]]))
559
    adj = g.adj(transpose=True, scipy_fmt='coo', etype='plays')
Minjie Wang's avatar
Minjie Wang committed
560
561
562
563
    assert np.allclose(
            adj.todense(),
            np.array([[1., 1., 0.],
                      [0., 1., 1.]]))
564
    adj = F.sparse_to_numpy(g['follows'].adj(transpose=True))
Minjie Wang's avatar
Minjie Wang committed
565
566
567
568
569
570
    assert np.allclose(
            adj,
            np.array([[0., 0., 0.],
                      [1., 0., 0.],
                      [0., 1., 0.]]))

nv-dlasalle's avatar
nv-dlasalle committed
571
@parametrize_idtype
572
573
def test_inc(idtype):
    g = create_test_heterograph(idtype)
Minjie Wang's avatar
Minjie Wang committed
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
    adj = F.sparse_to_numpy(g['follows'].inc('in'))
    assert np.allclose(
            adj,
            np.array([[0., 0.],
                      [1., 0.],
                      [0., 1.]]))
    adj = F.sparse_to_numpy(g['follows'].inc('out'))
    assert np.allclose(
            adj,
            np.array([[1., 0.],
                      [0., 1.],
                      [0., 0.]]))
    adj = F.sparse_to_numpy(g['follows'].inc('both'))
    assert np.allclose(
            adj,
            np.array([[-1., 0.],
                      [1., -1.],
                      [0., 1.]]))
    adj = F.sparse_to_numpy(g.inc('in', etype='plays'))
    assert np.allclose(
            adj,
            np.array([[1., 1., 0., 0.],
                      [0., 0., 1., 1.]]))
    adj = F.sparse_to_numpy(g.inc('out', etype='plays'))
    assert np.allclose(
            adj,
            np.array([[1., 0., 0., 0.],
                      [0., 1., 0., 1.],
                      [0., 0., 1., 0.]]))
    adj = F.sparse_to_numpy(g.inc('both', etype='follows'))
    assert np.allclose(
            adj,
            np.array([[-1., 0.],
                      [1., -1.],
                      [0., 1.]]))
609

nv-dlasalle's avatar
nv-dlasalle committed
610
@parametrize_idtype
611
def test_view(idtype):
612
    # test single node type
613
614
615
    g = dgl.heterograph({
        ('user', 'follows', 'user'): ([0, 1], [1, 2])
    }, idtype=idtype, device=F.ctx())
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
    f1 = F.randn((3, 6))
    g.ndata['h'] = f1
    f2 = g.nodes['user'].data['h']
    assert F.array_equal(f1, f2)
    fail = False
    try:
        g.ndata['h'] = {'user' : f1}
    except Exception:
        fail = True
    assert fail

    # test single edge type
    f3 = F.randn((2, 4))
    g.edata['h'] = f3
    f4 = g.edges['follows'].data['h']
    assert F.array_equal(f3, f4)
    fail = False
    try:
        g.edata['h'] = {'follows' : f3}
    except Exception:
        fail = True
    assert fail

Minjie Wang's avatar
Minjie Wang committed
639
    # test data view
640
    g = create_test_heterograph(idtype)
641
642

    f1 = F.randn((3, 6))
Minjie Wang's avatar
Minjie Wang committed
643
644
    g.nodes['user'].data['h'] = f1       # ok
    f2 = g.nodes['user'].data['h']
645
    assert F.array_equal(f1, f2)
646
    assert F.array_equal(g.nodes('user'), F.arange(0, 3, idtype))
647
648
649
650
651
652
653
654
655
656
657
    g.nodes['user'].data.pop('h')

    # multi type ndata
    f1 = F.randn((3, 6))
    f2 = F.randn((2, 6))
    fail = False
    try:
        g.ndata['h'] = f1
    except Exception:
        fail = True
    assert fail
658
659

    f3 = F.randn((2, 4))
Minjie Wang's avatar
Minjie Wang committed
660
661
662
    g.edges['user', 'follows', 'user'].data['h'] = f3
    f4 = g.edges['user', 'follows', 'user'].data['h']
    f5 = g.edges['follows'].data['h']
663
    assert F.array_equal(f3, f4)
Minjie Wang's avatar
Minjie Wang committed
664
    assert F.array_equal(f3, f5)
665
    assert F.array_equal(g.edges(etype='follows', form='eid'), F.arange(0, 2, idtype))
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
    g.edges['follows'].data.pop('h')

    f3 = F.randn((2, 4))
    fail = False
    try:
        g.edata['h'] = f3
    except Exception:
        fail = True
    assert fail

    # test srcdata
    f1 = F.randn((3, 6))
    g.srcnodes['user'].data['h'] = f1       # ok
    f2 = g.srcnodes['user'].data['h']
    assert F.array_equal(f1, f2)
681
    assert F.array_equal(g.srcnodes('user'), F.arange(0, 3, idtype))
682
683
684
685
686
687
688
    g.srcnodes['user'].data.pop('h')

    # test dstdata
    f1 = F.randn((3, 6))
    g.dstnodes['user'].data['h'] = f1       # ok
    f2 = g.dstnodes['user'].data['h']
    assert F.array_equal(f1, f2)
689
    assert F.array_equal(g.dstnodes('user'), F.arange(0, 3, idtype))
690
691
    g.dstnodes['user'].data.pop('h')

nv-dlasalle's avatar
nv-dlasalle committed
692
@parametrize_idtype
693
def test_view1(idtype):
Minjie Wang's avatar
Minjie Wang committed
694
    # test relation view
695
    HG = create_test_heterograph(idtype)
Minjie Wang's avatar
Minjie Wang committed
696
697
698
699
700
701
702
703
704
705
706
707
708
709
    ntypes = ['user', 'game', 'developer']
    canonical_etypes = [
        ('user', 'follows', 'user'),
        ('user', 'plays', 'game'),
        ('user', 'wishes', 'game'),
        ('developer', 'develops', 'game')]
    etypes = ['follows', 'plays', 'wishes', 'develops']

    def _test_query():
        for etype in etypes:
            utype, _, vtype = HG.to_canonical_etype(etype)
            g = HG[etype]
            srcs, dsts = edges[etype]
            for src, dst in zip(srcs, dsts):
710
                assert g.has_edges_between(src, dst)
Minjie Wang's avatar
Minjie Wang committed
711
712
713
714
            assert F.asnumpy(g.has_edges_between(srcs, dsts)).all()

            srcs, dsts = negative_edges[etype]
            for src, dst in zip(srcs, dsts):
715
                assert not g.has_edges_between(src, dst)
Minjie Wang's avatar
Minjie Wang committed
716
717
718
719
720
721
722
723
724
725
726
            assert not F.asnumpy(g.has_edges_between(srcs, dsts)).any()

            srcs, dsts = edges[etype]
            n_edges = len(srcs)

            # predecessors & in_edges & in_degree
            pred = [s for s, d in zip(srcs, dsts) if d == 0]
            assert set(F.asnumpy(g.predecessors(0)).tolist()) == set(pred)
            u, v = g.in_edges([0])
            assert F.asnumpy(v).tolist() == [0] * len(pred)
            assert set(F.asnumpy(u).tolist()) == set(pred)
727
            assert g.in_degrees(0) == len(pred)
Minjie Wang's avatar
Minjie Wang committed
728
729
730
731
732
733
734

            # successors & out_edges & out_degree
            succ = [d for s, d in zip(srcs, dsts) if s == 0]
            assert set(F.asnumpy(g.successors(0)).tolist()) == set(succ)
            u, v = g.out_edges([0])
            assert F.asnumpy(u).tolist() == [0] * len(succ)
            assert set(F.asnumpy(v).tolist()) == set(succ)
735
            assert g.out_degrees(0) == len(succ)
Minjie Wang's avatar
Minjie Wang committed
736
737
738

            # edge_id & edge_ids
            for i, (src, dst) in enumerate(zip(srcs, dsts)):
739
740
741
                assert g.edge_ids(src, dst, etype=etype) == i
                _, _, eid = g.edge_ids(src, dst, etype=etype, return_uv=True)
                assert eid == i
Minjie Wang's avatar
Minjie Wang committed
742
            assert F.asnumpy(g.edge_ids(srcs, dsts)).tolist() == list(range(n_edges))
743
            u, v, e = g.edge_ids(srcs, dsts, return_uv=True)
744
745
746
            u, v, e = F.asnumpy(u), F.asnumpy(v), F.asnumpy(e)
            assert u[e].tolist() == srcs
            assert v[e].tolist() == dsts
Minjie Wang's avatar
Minjie Wang committed
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767

            # find_edges
            u, v = g.find_edges(list(range(n_edges)))
            assert F.asnumpy(u).tolist() == srcs
            assert F.asnumpy(v).tolist() == dsts

            # all_edges.
            for order in ['eid']:
                u, v, e = g.all_edges(form='all', order=order)
                assert F.asnumpy(u).tolist() == srcs
                assert F.asnumpy(v).tolist() == dsts
                assert F.asnumpy(e).tolist() == list(range(n_edges))

            # in_degrees & out_degrees
            in_degrees = F.asnumpy(g.in_degrees())
            out_degrees = F.asnumpy(g.out_degrees())
            src_count = Counter(srcs)
            dst_count = Counter(dsts)
            for i in range(g.number_of_nodes(utype)):
                assert out_degrees[i] == src_count[i]
            for i in range(g.number_of_nodes(vtype)):
768
                assert in_degrees[i] == dst_count[i]
Minjie Wang's avatar
Minjie Wang committed
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812

    edges = {
        'follows': ([0, 1], [1, 2]),
        'plays': ([0, 1, 2, 1], [0, 0, 1, 1]),
        'wishes': ([0, 2], [1, 0]),
        'develops': ([0, 1], [0, 1]),
    }
    # edges that does not exist in the graph
    negative_edges = {
        'follows': ([0, 1], [0, 1]),
        'plays': ([0, 2], [1, 0]),
        'wishes': ([0, 1], [0, 1]),
        'develops': ([0, 1], [1, 0]),
    }
    _test_query()
    etypes = canonical_etypes
    edges = {
        ('user', 'follows', 'user'): ([0, 1], [1, 2]),
        ('user', 'plays', 'game'): ([0, 1, 2, 1], [0, 0, 1, 1]),
        ('user', 'wishes', 'game'): ([0, 2], [1, 0]),
        ('developer', 'develops', 'game'): ([0, 1], [0, 1]),
    }
    # edges that does not exist in the graph
    negative_edges = {
        ('user', 'follows', 'user'): ([0, 1], [0, 1]),
        ('user', 'plays', 'game'): ([0, 2], [1, 0]),
        ('user', 'wishes', 'game'): ([0, 1], [0, 1]),
        ('developer', 'develops', 'game'): ([0, 1], [1, 0]),
        }
    _test_query()

    # test features
    HG.nodes['user'].data['h'] = F.ones((HG.number_of_nodes('user'), 5))
    HG.nodes['game'].data['m'] = F.ones((HG.number_of_nodes('game'), 3)) * 2

    # test only one node type
    g = HG['follows']
    assert g.number_of_nodes() == 3

    # test ndata and edata
    f1 = F.randn((3, 6))
    g.ndata['h'] = f1       # ok
    f2 = HG.nodes['user'].data['h']
    assert F.array_equal(f1, f2)
813
    assert F.array_equal(g.nodes(), F.arange(0, 3, g.idtype))
Minjie Wang's avatar
Minjie Wang committed
814
815
816
817
818

    f3 = F.randn((2, 4))
    g.edata['h'] = f3
    f4 = HG.edges['follows'].data['h']
    assert F.array_equal(f3, f4)
819
    assert F.array_equal(g.edges(form='eid'), F.arange(0, 2, g.idtype))
Minjie Wang's avatar
Minjie Wang committed
820

nv-dlasalle's avatar
nv-dlasalle committed
821
@parametrize_idtype
822
def test_flatten(idtype):
Minjie Wang's avatar
Minjie Wang committed
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
    def check_mapping(g, fg):
        if len(fg.ntypes) == 1:
            SRC = DST = fg.ntypes[0]
        else:
            SRC = fg.ntypes[0]
            DST = fg.ntypes[1]

        etypes = F.asnumpy(fg.edata[dgl.ETYPE]).tolist()
        eids = F.asnumpy(fg.edata[dgl.EID]).tolist()

        for i, (etype, eid) in enumerate(zip(etypes, eids)):
            src_g, dst_g = g.find_edges([eid], g.canonical_etypes[etype])
            src_fg, dst_fg = fg.find_edges([i])
            # TODO(gq): I feel this code is quite redundant; can we just add new members (like
            # "induced_srcid") to returned heterograph object and not store them as features?
838
            assert F.asnumpy(src_g) == F.asnumpy(F.gather_row(fg.nodes[SRC].data[dgl.NID], src_fg)[0])
VoVAllen's avatar
VoVAllen committed
839
            tid = F.asnumpy(F.gather_row(fg.nodes[SRC].data[dgl.NTYPE], src_fg)).item()
Minjie Wang's avatar
Minjie Wang committed
840
            assert g.canonical_etypes[etype][0] == g.ntypes[tid]
841
            assert F.asnumpy(dst_g) == F.asnumpy(F.gather_row(fg.nodes[DST].data[dgl.NID], dst_fg)[0])
VoVAllen's avatar
VoVAllen committed
842
            tid = F.asnumpy(F.gather_row(fg.nodes[DST].data[dgl.NTYPE], dst_fg)).item()
Minjie Wang's avatar
Minjie Wang committed
843
844
845
            assert g.canonical_etypes[etype][2] == g.ntypes[tid]

    # check for wildcard slices
846
    g = create_test_heterograph(idtype)
Minjie Wang's avatar
Minjie Wang committed
847
848
849
850
851
852
853
854
855
856
    g.nodes['user'].data['h'] = F.ones((3, 5))
    g.nodes['game'].data['i'] = F.ones((2, 5))
    g.edges['plays'].data['e'] = F.ones((4, 4))
    g.edges['wishes'].data['e'] = F.ones((2, 4))
    g.edges['wishes'].data['f'] = F.ones((2, 4))

    fg = g['user', :, 'game']   # user--plays->game and user--wishes->game
    assert len(fg.ntypes) == 2
    assert fg.ntypes == ['user', 'game']
    assert fg.etypes == ['plays+wishes']
857
858
    assert fg.idtype == g.idtype
    assert fg.device == g.device
859
860
    etype = fg.etypes[0]
    assert fg[etype] is not None        # Issue #2166
Minjie Wang's avatar
Minjie Wang committed
861
862
863
864
865
866
867
868

    assert F.array_equal(fg.nodes['user'].data['h'], F.ones((3, 5)))
    assert F.array_equal(fg.nodes['game'].data['i'], F.ones((2, 5)))
    assert F.array_equal(fg.edata['e'], F.ones((6, 4)))
    assert 'f' not in fg.edata

    etypes = F.asnumpy(fg.edata[dgl.ETYPE]).tolist()
    eids = F.asnumpy(fg.edata[dgl.EID]).tolist()
869
    assert set(zip(etypes, eids)) == set([(3, 0), (3, 1), (2, 1), (2, 0), (2, 3), (2, 2)])
Minjie Wang's avatar
Minjie Wang committed
870
871
872
873

    check_mapping(g, fg)

    fg = g['user', :, 'user']
874
875
    assert fg.idtype == g.idtype
    assert fg.device == g.device
Minjie Wang's avatar
Minjie Wang committed
876
877
878
879
880
881
882
883
884
885
    # NOTE(gq): The node/edge types from the parent graph is returned if there is only one
    # node/edge type.  This differs from the behavior above.
    assert fg.ntypes == ['user']
    assert fg.etypes == ['follows']
    u1, v1 = g.edges(etype='follows', order='eid')
    u2, v2 = fg.edges(etype='follows', order='eid')
    assert F.array_equal(u1, u2)
    assert F.array_equal(v1, v2)

    fg = g['developer', :, 'game']
886
887
    assert fg.idtype == g.idtype
    assert fg.device == g.device
Minjie Wang's avatar
Minjie Wang committed
888
889
890
891
892
893
894
895
    assert fg.ntypes == ['developer', 'game']
    assert fg.etypes == ['develops']
    u1, v1 = g.edges(etype='develops', order='eid')
    u2, v2 = fg.edges(etype='develops', order='eid')
    assert F.array_equal(u1, u2)
    assert F.array_equal(v1, v2)

    fg = g[:, :, :]
896
897
    assert fg.idtype == g.idtype
    assert fg.device == g.device
Minjie Wang's avatar
Minjie Wang committed
898
899
900
901
902
    assert fg.ntypes == ['developer+user', 'game+user']
    assert fg.etypes == ['develops+follows+plays+wishes']
    check_mapping(g, fg)

    # Test another heterograph
903
904
905
906
907
908
909
910
    g = dgl.heterograph({
        ('user', 'follows', 'user'): ([0, 1, 2], [1, 2, 3]),
        ('user', 'knows', 'user'): ([0, 2], [2, 3])
    }, idtype=idtype, device=F.ctx())
    g.nodes['user'].data['h'] = F.randn((4, 3))
    g.edges['follows'].data['w'] = F.randn((3, 2))
    g.nodes['user'].data['hh'] = F.randn((4, 5))
    g.edges['knows'].data['ww'] = F.randn((2, 10))
Minjie Wang's avatar
Minjie Wang committed
911
912

    fg = g['user', :, 'user']
913
914
    assert fg.idtype == g.idtype
    assert fg.device == g.device
Minjie Wang's avatar
Minjie Wang committed
915
916
917
918
919
    assert fg.ntypes == ['user']
    assert fg.etypes == ['follows+knows']
    check_mapping(g, fg)

    fg = g['user', :, :]
920
921
    assert fg.idtype == g.idtype
    assert fg.device == g.device
Minjie Wang's avatar
Minjie Wang committed
922
923
924
925
    assert fg.ntypes == ['user']
    assert fg.etypes == ['follows+knows']
    check_mapping(g, fg)

926
@unittest.skipIf(F._default_context_str == 'cpu', reason="Need gpu for this test")
nv-dlasalle's avatar
nv-dlasalle committed
927
@parametrize_idtype
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
def test_to_device(idtype):
    # TODO: rewrite this test case to accept different graphs so we
    #  can test reverse graph and batched graph
    g = create_test_heterograph(idtype)
    g.nodes['user'].data['h'] = F.ones((3, 5))
    g.nodes['game'].data['i'] = F.ones((2, 5))
    g.edges['plays'].data['e'] = F.ones((4, 4))
    assert g.device == F.ctx()
    g = g.to(F.cpu())
    assert g.device == F.cpu()
    assert F.context(g.nodes['user'].data['h']) == F.cpu()
    assert F.context(g.nodes['game'].data['i']) == F.cpu()
    assert F.context(g.edges['plays'].data['e']) == F.cpu()
    for ntype in g.ntypes:
        assert F.context(g.batch_num_nodes(ntype)) == F.cpu()
    for etype in g.canonical_etypes:
        assert F.context(g.batch_num_edges(etype)) == F.cpu()

946
    if F.is_cuda_available():
947
        g1 = g.to(F.cuda())
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
        assert g1.device == F.cuda()
        assert F.context(g1.nodes['user'].data['h']) == F.cuda()
        assert F.context(g1.nodes['game'].data['i']) == F.cuda()
        assert F.context(g1.edges['plays'].data['e']) == F.cuda()
        for ntype in g1.ntypes:
            assert F.context(g1.batch_num_nodes(ntype)) == F.cuda()
        for etype in g1.canonical_etypes:
            assert F.context(g1.batch_num_edges(etype)) == F.cuda()
        assert F.context(g.nodes['user'].data['h']) == F.cpu()
        assert F.context(g.nodes['game'].data['i']) == F.cpu()
        assert F.context(g.edges['plays'].data['e']) == F.cpu()
        for ntype in g.ntypes:
            assert F.context(g.batch_num_nodes(ntype)) == F.cpu()
        for etype in g.canonical_etypes:
            assert F.context(g.batch_num_edges(etype)) == F.cpu()
        with pytest.raises(DGLError):
            g1.nodes['user'].data['h'] = F.copy_to(F.ones((3, 5)), F.cpu())
        with pytest.raises(DGLError):
            g1.edges['plays'].data['e'] = F.copy_to(F.ones((4, 4)), F.cpu())
967

968
@unittest.skipIf(F._default_context_str == 'cpu', reason="Need gpu for this test")
nv-dlasalle's avatar
nv-dlasalle committed
969
@parametrize_idtype
970
971
972
973
974
@pytest.mark.parametrize('g', get_cases(['block']))
def test_to_device2(g, idtype):
    g = g.astype(idtype)
    g = g.to(F.cpu())
    assert g.device == F.cpu()
975
976
    if F.is_cuda_available():
        g1 = g.to(F.cuda())
977
978
979
980
        assert g1.device == F.cuda()
        assert g1.ntypes == g.ntypes
        assert g1.etypes == g.etypes
        assert g1.canonical_etypes == g.canonical_etypes
981

982
@unittest.skipIf(F._default_context_str == 'cpu', reason="Need gpu for this test")
983
@unittest.skipIf(dgl.backend.backend_name != "pytorch", reason="Pinning graph inplace only supported for PyTorch")
nv-dlasalle's avatar
nv-dlasalle committed
984
@parametrize_idtype
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
def test_pin_memory_(idtype):
    # TODO: rewrite this test case to accept different graphs so we
    #  can test reverse graph and batched graph
    g = create_test_heterograph(idtype)
    g.nodes['user'].data['h'] = F.ones((3, 5))
    g.nodes['game'].data['i'] = F.ones((2, 5))
    g.edges['plays'].data['e'] = F.ones((4, 4))
    g = g.to(F.cpu())
    assert not g.is_pinned()

    if F.is_cuda_available():
        # unpin an unpinned CPU graph, directly return
        g.unpin_memory_()
        assert not g.is_pinned()
        assert g.device == F.cpu()

        # pin a CPU graph
        g.pin_memory_()
        assert g.is_pinned()
        assert g.device == F.cpu()
        assert F.context(g.nodes['user'].data['h']) == F.cpu()
        assert F.context(g.nodes['game'].data['i']) == F.cpu()
        assert F.context(g.edges['plays'].data['e']) == F.cpu()
        for ntype in g.ntypes:
            assert F.context(g.batch_num_nodes(ntype)) == F.cpu()
        for etype in g.canonical_etypes:
            assert F.context(g.batch_num_edges(etype)) == F.cpu()

        # it's fine to clone with new formats, but new graphs are not pinned
        # >>> g.formats()
        # {'created': ['coo'], 'not created': ['csr', 'csc']}
        assert not g.formats('csc').is_pinned()
        assert not g.formats('csr').is_pinned()
        # 'coo' formats is already created and thus not cloned
        assert g.formats('coo').is_pinned()

1021
        # pin a pinned graph, directly return
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
        g.pin_memory_()
        assert g.is_pinned()
        assert g.device == F.cpu()

        # unpin a pinned graph
        g.unpin_memory_()
        assert not g.is_pinned()
        assert g.device == F.cpu()

        g1 = g.to(F.cuda())

        # unpin an unpinned GPU graph, directly return
        g1.unpin_memory_()
        assert not g1.is_pinned()
        assert g1.device == F.cuda()

        # error pinning a GPU graph
        with pytest.raises(DGLError):
            g1.pin_memory_()

nv-dlasalle's avatar
nv-dlasalle committed
1042
@parametrize_idtype
1043
def test_convert_bound(idtype):
1044
    def _test_bipartite_bound(data, card):
1045
        with pytest.raises(DGLError):
1046
1047
1048
            dgl.heterograph({
                ('_U', '_E', '_V'): data
            }, {'_U': card[0], '_V': card[1]}, idtype=idtype, device=F.ctx())
1049
1050

    def _test_graph_bound(data, card):
1051
1052
        with pytest.raises(DGLError):
            dgl.graph(data, num_nodes=card, idtype=idtype, device=F.ctx())
1053

1054
1055
1056
1057
    _test_bipartite_bound(([1, 2], [1, 2]), (2, 3))
    _test_bipartite_bound(([0, 1], [1, 4]), (2, 3))
    _test_graph_bound(([1, 3], [1, 2]), 3)
    _test_graph_bound(([0, 1], [1, 3]), 3)
1058
1059


nv-dlasalle's avatar
nv-dlasalle committed
1060
@parametrize_idtype
1061
1062
def test_convert(idtype):
    hg = create_test_heterograph(idtype)
Minjie Wang's avatar
Minjie Wang committed
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
    hs = []
    for ntype in hg.ntypes:
        h = F.randn((hg.number_of_nodes(ntype), 5))
        hg.nodes[ntype].data['h'] = h
        hs.append(h)
    hg.nodes['user'].data['x'] = F.randn((3, 3))
    ws = []
    for etype in hg.canonical_etypes:
        w = F.randn((hg.number_of_edges(etype), 5))
        hg.edges[etype].data['w'] = w
        ws.append(w)
    hg.edges['plays'].data['x'] = F.randn((4, 3))

1076
    g = dgl.to_homogeneous(hg, ndata=['h'], edata=['w'])
1077
1078
    assert g.idtype == idtype
    assert g.device == hg.device
Minjie Wang's avatar
Minjie Wang committed
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
    assert F.array_equal(F.cat(hs, dim=0), g.ndata['h'])
    assert 'x' not in g.ndata
    assert F.array_equal(F.cat(ws, dim=0), g.edata['w'])
    assert 'x' not in g.edata

    src, dst = g.all_edges(order='eid')
    src = F.asnumpy(src)
    dst = F.asnumpy(dst)
    etype_id, eid = F.asnumpy(g.edata[dgl.ETYPE]), F.asnumpy(g.edata[dgl.EID])
    ntype_id, nid = F.asnumpy(g.ndata[dgl.NTYPE]), F.asnumpy(g.ndata[dgl.NID])
    for i in range(g.number_of_edges()):
        srctype = hg.ntypes[ntype_id[src[i]]]
        dsttype = hg.ntypes[ntype_id[dst[i]]]
        etype = hg.etypes[etype_id[i]]
        src_i, dst_i = hg.find_edges([eid[i]], (srctype, etype, dsttype))
        assert np.asscalar(F.asnumpy(src_i)) == nid[src[i]]
        assert np.asscalar(F.asnumpy(dst_i)) == nid[dst[i]]

    mg = nx.MultiDiGraph([
        ('user', 'user', 'follows'),
        ('user', 'game', 'plays'),
        ('user', 'game', 'wishes'),
        ('developer', 'game', 'develops')])

    for _mg in [None, mg]:
1104
        hg2 = dgl.to_heterogeneous(
1105
                g, hg.ntypes, hg.etypes,
Minjie Wang's avatar
Minjie Wang committed
1106
                ntype_field=dgl.NTYPE, etype_field=dgl.ETYPE, metagraph=_mg)
1107
1108
        assert hg2.idtype == hg.idtype
        assert hg2.device == hg.device
Minjie Wang's avatar
Minjie Wang committed
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
        assert set(hg.ntypes) == set(hg2.ntypes)
        assert set(hg.canonical_etypes) == set(hg2.canonical_etypes)
        for ntype in hg.ntypes:
            assert hg.number_of_nodes(ntype) == hg2.number_of_nodes(ntype)
            assert F.array_equal(hg.nodes[ntype].data['h'], hg2.nodes[ntype].data['h'])
        for canonical_etype in hg.canonical_etypes:
            src, dst = hg.all_edges(etype=canonical_etype, order='eid')
            src2, dst2 = hg2.all_edges(etype=canonical_etype, order='eid')
            assert F.array_equal(src, src2)
            assert F.array_equal(dst, dst2)
            assert F.array_equal(hg.edges[canonical_etype].data['w'], hg2.edges[canonical_etype].data['w'])

    # hetero_from_homo test case 2
1122
    g = dgl.graph(([0, 1, 2, 0], [2, 2, 3, 3]), idtype=idtype, device=F.ctx())
Minjie Wang's avatar
Minjie Wang committed
1123
1124
    g.ndata[dgl.NTYPE] = F.tensor([0, 0, 1, 2])
    g.edata[dgl.ETYPE] = F.tensor([0, 0, 1, 2])
1125
    hg = dgl.to_heterogeneous(g, ['l0', 'l1', 'l2'], ['e0', 'e1', 'e2'])
1126
1127
    assert hg.idtype == idtype
    assert hg.device == g.device
Minjie Wang's avatar
Minjie Wang committed
1128
1129
1130
1131
1132
1133
1134
1135
    assert set(hg.canonical_etypes) == set(
        [('l0', 'e0', 'l1'), ('l1', 'e1', 'l2'), ('l0', 'e2', 'l2')])
    assert hg.number_of_nodes('l0') == 2
    assert hg.number_of_nodes('l1') == 1
    assert hg.number_of_nodes('l2') == 1
    assert hg.number_of_edges('e0') == 2
    assert hg.number_of_edges('e1') == 1
    assert hg.number_of_edges('e2') == 1
1136
1137
1138
1139
1140
1141
    assert F.array_equal(hg.ndata[dgl.NID]['l0'], F.tensor([0, 1], F.int64))
    assert F.array_equal(hg.ndata[dgl.NID]['l1'], F.tensor([2], F.int64))
    assert F.array_equal(hg.ndata[dgl.NID]['l2'], F.tensor([3], F.int64))
    assert F.array_equal(hg.edata[dgl.EID][('l0', 'e0', 'l1')], F.tensor([0, 1], F.int64))
    assert F.array_equal(hg.edata[dgl.EID][('l0', 'e2', 'l2')], F.tensor([3], F.int64))
    assert F.array_equal(hg.edata[dgl.EID][('l1', 'e1', 'l2')], F.tensor([2], F.int64))
Minjie Wang's avatar
Minjie Wang committed
1142
1143
1144
1145
1146

    # hetero_from_homo test case 3
    mg = nx.MultiDiGraph([
        ('user', 'movie', 'watches'),
        ('user', 'TV', 'watches')])
1147
    g = dgl.graph(((0, 0), (1, 2)), idtype=idtype, device=F.ctx())
Minjie Wang's avatar
Minjie Wang committed
1148
1149
1150
    g.ndata[dgl.NTYPE] = F.tensor([0, 1, 2])
    g.edata[dgl.ETYPE] = F.tensor([0, 0])
    for _mg in [None, mg]:
1151
        hg = dgl.to_heterogeneous(g, ['user', 'TV', 'movie'], ['watches'], metagraph=_mg)
1152
1153
        assert hg.idtype == g.idtype
        assert hg.device == g.device
Minjie Wang's avatar
Minjie Wang committed
1154
1155
1156
1157
1158
1159
1160
1161
1162
        assert set(hg.canonical_etypes) == set(
            [('user', 'watches', 'movie'), ('user', 'watches', 'TV')])
        assert hg.number_of_nodes('user') == 1
        assert hg.number_of_nodes('TV') == 1
        assert hg.number_of_nodes('movie') == 1
        assert hg.number_of_edges(('user', 'watches', 'TV')) == 1
        assert hg.number_of_edges(('user', 'watches', 'movie')) == 1
        assert len(hg.etypes) == 2

1163
    # hetero_to_homo test case 2
1164
1165
1166
1167
    hg = dgl.heterograph({
        ('_U', '_E', '_V'): ([0, 1], [0, 1])
    }, {'_U': 2, '_V': 3}, idtype=idtype, device=F.ctx())
    g = dgl.to_homogeneous(hg)
1168
1169
    assert hg.idtype == g.idtype
    assert hg.device == g.device
1170
1171
    assert g.number_of_nodes() == 5

1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
    # hetero_to_subgraph_to_homo
    hg = dgl.heterograph({
        ('user', 'plays', 'game'): ([0, 1, 1, 2], [0, 0, 2, 1]),
        ('user', 'follows', 'user'): ([0, 1, 1], [1, 2, 2])
    }, idtype=idtype, device=F.ctx())
    hg.nodes['user'].data['h'] = F.copy_to(
        F.tensor([[1, 0], [0, 1], [1, 1]], dtype=idtype), ctx=F.ctx())
    sg = dgl.node_subgraph(hg, {'user': [1, 2]})
    assert len(sg.ntypes) == 2
    assert len(sg.etypes) == 2
    assert sg.num_nodes('user') == 2
    assert sg.num_nodes('game') == 0
    g = dgl.to_homogeneous(sg, ndata=['h'])
    assert 'h' in g.ndata.keys()
    assert g.num_nodes() == 2

1188
@unittest.skipIf(F._default_context_str == 'gpu', reason="Test on cpu is enough")
nv-dlasalle's avatar
nv-dlasalle committed
1189
@parametrize_idtype
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
def test_to_homo_zero_nodes(idtype):
    # Fix gihub issue #2870
    g = dgl.heterograph({
        ('A', 'AB', 'B'): (np.random.randint(0, 200, (1000,)), np.random.randint(0, 200, (1000,))),
        ('B', 'BA', 'A'): (np.random.randint(0, 200, (1000,)), np.random.randint(0, 200, (1000,))),
    }, num_nodes_dict={'A': 200, 'B': 200, 'C': 0}, idtype=idtype)
    g.nodes['A'].data['x'] = F.randn((200, 3))
    g.nodes['B'].data['x'] = F.randn((200, 3))
    gg = dgl.to_homogeneous(g, ['x'])
    assert 'x' in gg.ndata

nv-dlasalle's avatar
nv-dlasalle committed
1201
@parametrize_idtype
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
def test_to_homo2(idtype):
    # test the result homogeneous graph has nodes and edges sorted by their types
    hg = create_test_heterograph(idtype)
    g = dgl.to_homogeneous(hg)
    ntypes = F.asnumpy(g.ndata[dgl.NTYPE])
    etypes = F.asnumpy(g.edata[dgl.ETYPE])
    p = 0
    for tid, ntype in enumerate(hg.ntypes):
        num_nodes = hg.num_nodes(ntype)
        for i in range(p, p + num_nodes):
            assert ntypes[i] == tid
        p += num_nodes
    p = 0
    for tid, etype in enumerate(hg.canonical_etypes):
        num_edges = hg.num_edges(etype)
        for i in range(p, p + num_edges):
            assert etypes[i] == tid
        p += num_edges
    # test store_type=False
    g = dgl.to_homogeneous(hg, store_type=False)
    assert dgl.NTYPE not in g.ndata
    assert dgl.ETYPE not in g.edata
    # test return_count=True
    g, ntype_count, etype_count = dgl.to_homogeneous(hg, return_count=True)
    for i, count in enumerate(ntype_count):
        assert count == hg.num_nodes(hg.ntypes[i])
    for i, count in enumerate(etype_count):
        assert count == hg.num_edges(hg.canonical_etypes[i])

nv-dlasalle's avatar
nv-dlasalle committed
1231
@parametrize_idtype
1232
1233
1234
1235
1236
1237
1238
def test_invertible_conversion(idtype):
    # Test whether to_homogeneous and to_heterogeneous are invertible
    hg = create_test_heterograph(idtype)
    g = dgl.to_homogeneous(hg)
    hg2 = dgl.to_heterogeneous(g, hg.ntypes, hg.etypes)
    assert_is_identical_hetero(hg, hg2, True)

nv-dlasalle's avatar
nv-dlasalle committed
1239
@parametrize_idtype
1240
1241
def test_metagraph_reachable(idtype):
    g = create_test_heterograph(idtype)
Mufei Li's avatar
Mufei Li committed
1242
1243
1244
1245
    x = F.randn((3, 5))
    g.nodes['user'].data['h'] = x

    new_g = dgl.metapath_reachable_graph(g, ['follows', 'plays'])
1246
    assert new_g.idtype == idtype
1247
    assert new_g.ntypes == ['game', 'user']
Mufei Li's avatar
Mufei Li committed
1248
1249
1250
1251
    assert new_g.number_of_edges() == 3
    assert F.asnumpy(new_g.has_edges_between([0, 0, 1], [0, 1, 1])).all()

    new_g = dgl.metapath_reachable_graph(g, ['follows'])
1252
    assert new_g.idtype == idtype
Mufei Li's avatar
Mufei Li committed
1253
1254
1255
1256
    assert new_g.ntypes == ['user']
    assert new_g.number_of_edges() == 2
    assert F.asnumpy(new_g.has_edges_between([0, 1], [1, 2])).all()

1257
@unittest.skipIf(dgl.backend.backend_name == "mxnet", reason="MXNet doesn't support bool tensor")
nv-dlasalle's avatar
nv-dlasalle committed
1258
@parametrize_idtype
1259
1260
def test_subgraph_mask(idtype):
    g = create_test_heterograph(idtype)
1261
1262
1263
1264
1265
1266
1267
1268
1269
    g_graph = g['follows']
    g_bipartite = g['plays']

    x = F.randn((3, 5))
    y = F.randn((2, 4))
    g.nodes['user'].data['h'] = x
    g.edges['follows'].data['h'] = y

    def _check_subgraph(g, sg):
1270
1271
        assert sg.idtype == g.idtype
        assert sg.device == g.device
1272
1273
1274
1275
        assert sg.ntypes == g.ntypes
        assert sg.etypes == g.etypes
        assert sg.canonical_etypes == g.canonical_etypes
        assert F.array_equal(F.tensor(sg.nodes['user'].data[dgl.NID]),
1276
                             F.tensor([1, 2], idtype))
1277
        assert F.array_equal(F.tensor(sg.nodes['game'].data[dgl.NID]),
1278
                             F.tensor([0], idtype))
1279
        assert F.array_equal(F.tensor(sg.edges['follows'].data[dgl.EID]),
1280
                             F.tensor([1], idtype))
1281
        assert F.array_equal(F.tensor(sg.edges['plays'].data[dgl.EID]),
1282
                             F.tensor([1], idtype))
1283
        assert F.array_equal(F.tensor(sg.edges['wishes'].data[dgl.EID]),
1284
                             F.tensor([1], idtype))
1285
1286
1287
1288
1289
        assert sg.number_of_nodes('developer') == 0
        assert sg.number_of_edges('develops') == 0
        assert F.array_equal(sg.nodes['user'].data['h'], g.nodes['user'].data['h'][1:3])
        assert F.array_equal(sg.edges['follows'].data['h'], g.edges['follows'].data['h'][1:2])

1290
1291
    sg1 = g.subgraph({'user': F.tensor([False, True, True], dtype=F.bool),
                      'game': F.tensor([True, False, False, False], dtype=F.bool)})
1292
    _check_subgraph(g, sg1)
1293
1294
1295
1296
1297
1298
    if F._default_context_str != 'gpu':
        # TODO(minjie): enable this later
        sg2 = g.edge_subgraph({'follows': F.tensor([False, True], dtype=F.bool),
                               'plays': F.tensor([False, True, False, False], dtype=F.bool),
                               'wishes': F.tensor([False, True], dtype=F.bool)})
        _check_subgraph(g, sg2)
1299

nv-dlasalle's avatar
nv-dlasalle committed
1300
@parametrize_idtype
1301
1302
def test_subgraph(idtype):
    g = create_test_heterograph(idtype)
Quan (Andy) Gan's avatar
Quan (Andy) Gan committed
1303
1304
1305
    g_graph = g['follows']
    g_bipartite = g['plays']

Minjie Wang's avatar
Minjie Wang committed
1306
1307
1308
1309
1310
1311
    x = F.randn((3, 5))
    y = F.randn((2, 4))
    g.nodes['user'].data['h'] = x
    g.edges['follows'].data['h'] = y

    def _check_subgraph(g, sg):
1312
1313
        assert sg.idtype == g.idtype
        assert sg.device == g.device
1314
1315
1316
        assert sg.ntypes == g.ntypes
        assert sg.etypes == g.etypes
        assert sg.canonical_etypes == g.canonical_etypes
Minjie Wang's avatar
Minjie Wang committed
1317
        assert F.array_equal(F.tensor(sg.nodes['user'].data[dgl.NID]),
1318
                             F.tensor([1, 2], g.idtype))
Minjie Wang's avatar
Minjie Wang committed
1319
        assert F.array_equal(F.tensor(sg.nodes['game'].data[dgl.NID]),
1320
                             F.tensor([0], g.idtype))
Minjie Wang's avatar
Minjie Wang committed
1321
        assert F.array_equal(F.tensor(sg.edges['follows'].data[dgl.EID]),
1322
                             F.tensor([1], g.idtype))
Minjie Wang's avatar
Minjie Wang committed
1323
        assert F.array_equal(F.tensor(sg.edges['plays'].data[dgl.EID]),
1324
                             F.tensor([1], g.idtype))
Minjie Wang's avatar
Minjie Wang committed
1325
        assert F.array_equal(F.tensor(sg.edges['wishes'].data[dgl.EID]),
1326
                             F.tensor([1], g.idtype))
Minjie Wang's avatar
Minjie Wang committed
1327
1328
1329
1330
1331
1332
1333
        assert sg.number_of_nodes('developer') == 0
        assert sg.number_of_edges('develops') == 0
        assert F.array_equal(sg.nodes['user'].data['h'], g.nodes['user'].data['h'][1:3])
        assert F.array_equal(sg.edges['follows'].data['h'], g.edges['follows'].data['h'][1:2])

    sg1 = g.subgraph({'user': [1, 2], 'game': [0]})
    _check_subgraph(g, sg1)
1334
1335
1336
1337
    if F._default_context_str != 'gpu':
        # TODO(minjie): enable this later
        sg2 = g.edge_subgraph({'follows': [1], 'plays': [1], 'wishes': [1]})
        _check_subgraph(g, sg2)
Minjie Wang's avatar
Minjie Wang committed
1338

1339
    # backend tensor input
1340
1341
    sg1 = g.subgraph({'user': F.tensor([1, 2], dtype=idtype),
                      'game': F.tensor([0], dtype=idtype)})
1342
    _check_subgraph(g, sg1)
1343
1344
1345
1346
1347
1348
    if F._default_context_str != 'gpu':
        # TODO(minjie): enable this later
        sg2 = g.edge_subgraph({'follows': F.tensor([1], dtype=idtype),
                               'plays': F.tensor([1], dtype=idtype),
                               'wishes': F.tensor([1], dtype=idtype)})
        _check_subgraph(g, sg2)
1349
1350
1351
1352
1353

    # numpy input
    sg1 = g.subgraph({'user': np.array([1, 2]),
                      'game': np.array([0])})
    _check_subgraph(g, sg1)
1354
1355
1356
1357
1358
1359
    if F._default_context_str != 'gpu':
        # TODO(minjie): enable this later
        sg2 = g.edge_subgraph({'follows': np.array([1]),
                               'plays': np.array([1]),
                               'wishes': np.array([1])})
        _check_subgraph(g, sg2)
1360

Quan (Andy) Gan's avatar
Quan (Andy) Gan committed
1361
    def _check_subgraph_single_ntype(g, sg, preserve_nodes=False):
1362
1363
        assert sg.idtype == g.idtype
        assert sg.device == g.device
Quan (Andy) Gan's avatar
Quan (Andy) Gan committed
1364
1365
1366
        assert sg.ntypes == g.ntypes
        assert sg.etypes == g.etypes
        assert sg.canonical_etypes == g.canonical_etypes
Quan (Andy) Gan's avatar
Quan (Andy) Gan committed
1367
1368
1369

        if not preserve_nodes:
            assert F.array_equal(F.tensor(sg.nodes['user'].data[dgl.NID]),
1370
                                 F.tensor([1, 2], g.idtype))
Quan (Andy) Gan's avatar
Quan (Andy) Gan committed
1371
1372
1373
1374
        else:
            for ntype in sg.ntypes:
                assert g.number_of_nodes(ntype) == sg.number_of_nodes(ntype)

Quan (Andy) Gan's avatar
Quan (Andy) Gan committed
1375
        assert F.array_equal(F.tensor(sg.edges['follows'].data[dgl.EID]),
1376
                             F.tensor([1], g.idtype))
Quan (Andy) Gan's avatar
Quan (Andy) Gan committed
1377
1378
1379

        if not preserve_nodes:
            assert F.array_equal(sg.nodes['user'].data['h'], g.nodes['user'].data['h'][1:3])
Quan (Andy) Gan's avatar
Quan (Andy) Gan committed
1380
1381
        assert F.array_equal(sg.edges['follows'].data['h'], g.edges['follows'].data['h'][1:2])

Quan (Andy) Gan's avatar
Quan (Andy) Gan committed
1382
    def _check_subgraph_single_etype(g, sg, preserve_nodes=False):
Quan (Andy) Gan's avatar
Quan (Andy) Gan committed
1383
1384
1385
        assert sg.ntypes == g.ntypes
        assert sg.etypes == g.etypes
        assert sg.canonical_etypes == g.canonical_etypes
Quan (Andy) Gan's avatar
Quan (Andy) Gan committed
1386
1387
1388

        if not preserve_nodes:
            assert F.array_equal(F.tensor(sg.nodes['user'].data[dgl.NID]),
1389
                                 F.tensor([0, 1], g.idtype))
Quan (Andy) Gan's avatar
Quan (Andy) Gan committed
1390
            assert F.array_equal(F.tensor(sg.nodes['game'].data[dgl.NID]),
1391
                                 F.tensor([0], g.idtype))
Quan (Andy) Gan's avatar
Quan (Andy) Gan committed
1392
1393
1394
1395
        else:
            for ntype in sg.ntypes:
                assert g.number_of_nodes(ntype) == sg.number_of_nodes(ntype)

Quan (Andy) Gan's avatar
Quan (Andy) Gan committed
1396
        assert F.array_equal(F.tensor(sg.edges['plays'].data[dgl.EID]),
1397
                             F.tensor([0, 1], g.idtype))
Quan (Andy) Gan's avatar
Quan (Andy) Gan committed
1398
1399
1400

    sg1_graph = g_graph.subgraph([1, 2])
    _check_subgraph_single_ntype(g_graph, sg1_graph)
1401
1402
1403
1404
    if F._default_context_str != 'gpu':
        # TODO(minjie): enable this later
        sg1_graph = g_graph.edge_subgraph([1])
        _check_subgraph_single_ntype(g_graph, sg1_graph)
1405
        sg1_graph = g_graph.edge_subgraph([1], relabel_nodes=False)
1406
1407
1408
        _check_subgraph_single_ntype(g_graph, sg1_graph, True)
        sg2_bipartite = g_bipartite.edge_subgraph([0, 1])
        _check_subgraph_single_etype(g_bipartite, sg2_bipartite)
1409
        sg2_bipartite = g_bipartite.edge_subgraph([0, 1], relabel_nodes=False)
1410
        _check_subgraph_single_etype(g_bipartite, sg2_bipartite, True)
Quan (Andy) Gan's avatar
Quan (Andy) Gan committed
1411

1412
    def _check_typed_subgraph1(g, sg):
1413
1414
        assert g.idtype == sg.idtype
        assert g.device == sg.device
Minjie Wang's avatar
Minjie Wang committed
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
        assert set(sg.ntypes) == {'user', 'game'}
        assert set(sg.etypes) == {'follows', 'plays', 'wishes'}
        for ntype in sg.ntypes:
            assert sg.number_of_nodes(ntype) == g.number_of_nodes(ntype)
        for etype in sg.etypes:
            src_sg, dst_sg = sg.all_edges(etype=etype, order='eid')
            src_g, dst_g = g.all_edges(etype=etype, order='eid')
            assert F.array_equal(src_sg, src_g)
            assert F.array_equal(dst_sg, dst_g)
        assert F.array_equal(sg.nodes['user'].data['h'], g.nodes['user'].data['h'])
        assert F.array_equal(sg.edges['follows'].data['h'], g.edges['follows'].data['h'])
VoVAllen's avatar
VoVAllen committed
1426
1427
        g.nodes['user'].data['h'] = F.scatter_row(g.nodes['user'].data['h'], F.tensor([2]), F.randn((1, 5)))
        g.edges['follows'].data['h'] = F.scatter_row(g.edges['follows'].data['h'], F.tensor([1]), F.randn((1, 4)))
Minjie Wang's avatar
Minjie Wang committed
1428
1429
1430
        assert F.array_equal(sg.nodes['user'].data['h'], g.nodes['user'].data['h'])
        assert F.array_equal(sg.edges['follows'].data['h'], g.edges['follows'].data['h'])

1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
    def _check_typed_subgraph2(g, sg):
        assert set(sg.ntypes) == {'developer', 'game'}
        assert set(sg.etypes) == {'develops'}
        for ntype in sg.ntypes:
            assert sg.number_of_nodes(ntype) == g.number_of_nodes(ntype)
        for etype in sg.etypes:
            src_sg, dst_sg = sg.all_edges(etype=etype, order='eid')
            src_g, dst_g = g.all_edges(etype=etype, order='eid')
            assert F.array_equal(src_sg, src_g)
            assert F.array_equal(dst_sg, dst_g)

Minjie Wang's avatar
Minjie Wang committed
1442
    sg3 = g.node_type_subgraph(['user', 'game'])
1443
1444
1445
1446
1447
    _check_typed_subgraph1(g, sg3)
    sg4 = g.edge_type_subgraph(['develops'])
    _check_typed_subgraph2(g, sg4)
    sg5 = g.edge_type_subgraph(['follows', 'plays', 'wishes'])
    _check_typed_subgraph1(g, sg5)
1448

nv-dlasalle's avatar
nv-dlasalle committed
1449
@parametrize_idtype
1450
def test_apply(idtype):
1451
1452
    def node_udf(nodes):
        return {'h': nodes.data['h'] * 2}
1453
1454
    def node_udf2(nodes):
        return {'h': F.sum(nodes.data['h'], dim=1, keepdims=True)}
1455
1456
1457
    def edge_udf(edges):
        return {'h': edges.data['h'] * 2 + edges.src['h']}

1458
    g = create_test_heterograph(idtype)
Minjie Wang's avatar
Minjie Wang committed
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
    g.nodes['user'].data['h'] = F.ones((3, 5))
    g.apply_nodes(node_udf, ntype='user')
    assert F.array_equal(g.nodes['user'].data['h'], F.ones((3, 5)) * 2)

    g['plays'].edata['h'] = F.ones((4, 5))
    g.apply_edges(edge_udf, etype=('user', 'plays', 'game'))
    assert F.array_equal(g['plays'].edata['h'], F.ones((4, 5)) * 4)

    # test apply on graph with only one type
    g['follows'].apply_nodes(node_udf)
    assert F.array_equal(g.nodes['user'].data['h'], F.ones((3, 5)) * 4)
1470

Minjie Wang's avatar
Minjie Wang committed
1471
1472
1473
    g['plays'].apply_edges(edge_udf)
    assert F.array_equal(g['plays'].edata['h'], F.ones((4, 5)) * 12)

1474
1475
1476
1477
1478
    # Test the case that feature size changes
    g.nodes['user'].data['h'] = F.ones((3, 5))
    g.apply_nodes(node_udf2, ntype='user')
    assert F.array_equal(g.nodes['user'].data['h'], F.ones((3, 1)) * 5)

Minjie Wang's avatar
Minjie Wang committed
1479
1480
    # test fail case
    # fail due to multiple types
1481
    with pytest.raises(DGLError):
Minjie Wang's avatar
Minjie Wang committed
1482
1483
        g.apply_nodes(node_udf)

1484
    with pytest.raises(DGLError):
Minjie Wang's avatar
Minjie Wang committed
1485
1486
        g.apply_edges(edge_udf)

nv-dlasalle's avatar
nv-dlasalle committed
1487
@parametrize_idtype
1488
def test_level2(idtype):
Minjie Wang's avatar
Minjie Wang committed
1489
1490
1491
1492
1493
1494
    #edges = {
    #    'follows': ([0, 1], [1, 2]),
    #    'plays': ([0, 1, 2, 1], [0, 0, 1, 1]),
    #    'wishes': ([0, 2], [1, 0]),
    #    'develops': ([0, 1], [0, 1]),
    #}
1495
    g = create_test_heterograph(idtype)
Minjie Wang's avatar
Minjie Wang committed
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
    def rfunc(nodes):
        return {'y': F.sum(nodes.mailbox['m'], 1)}
    def rfunc2(nodes):
        return {'y': F.max(nodes.mailbox['m'], 1)}
    def mfunc(edges):
        return {'m': edges.src['h']}
    def afunc(nodes):
        return {'y' : nodes.data['y'] + 1}

    #############################################################
    #  send_and_recv
    #############################################################

    g.nodes['user'].data['h'] = F.ones((3, 2))
    g.send_and_recv([2, 3], mfunc, rfunc, etype='plays')
    y = g.nodes['game'].data['y']
    assert F.array_equal(y, F.tensor([[0., 0.], [2., 2.]]))

    # only one type
    g['plays'].send_and_recv([2, 3], mfunc, rfunc)
    y = g.nodes['game'].data['y']
    assert F.array_equal(y, F.tensor([[0., 0.], [2., 2.]]))
1518

Minjie Wang's avatar
Minjie Wang committed
1519
1520
    # test fail case
    # fail due to multiple types
1521
    with pytest.raises(DGLError):
Minjie Wang's avatar
Minjie Wang committed
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
        g.send_and_recv([2, 3], mfunc, rfunc)

    g.nodes['game'].data.clear()

    #############################################################
    #  pull
    #############################################################

    g.nodes['user'].data['h'] = F.ones((3, 2))
    g.pull(1, mfunc, rfunc, etype='plays')
    y = g.nodes['game'].data['y']
    assert F.array_equal(y, F.tensor([[0., 0.], [2., 2.]]))

    # only one type
    g['plays'].pull(1, mfunc, rfunc)
    y = g.nodes['game'].data['y']
    assert F.array_equal(y, F.tensor([[0., 0.], [2., 2.]]))

    # test fail case
1541
    with pytest.raises(DGLError):
Minjie Wang's avatar
Minjie Wang committed
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
        g.pull(1, mfunc, rfunc)

    g.nodes['game'].data.clear()

    #############################################################
    #  update_all
    #############################################################

    g.nodes['user'].data['h'] = F.ones((3, 2))
    g.update_all(mfunc, rfunc, etype='plays')
    y = g.nodes['game'].data['y']
    assert F.array_equal(y, F.tensor([[2., 2.], [2., 2.]]))

    # only one type
    g['plays'].update_all(mfunc, rfunc)
    y = g.nodes['game'].data['y']
    assert F.array_equal(y, F.tensor([[2., 2.], [2., 2.]]))

    # test fail case
    # fail due to multiple types
1562
    with pytest.raises(DGLError):
Minjie Wang's avatar
Minjie Wang committed
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
        g.update_all(mfunc, rfunc)

    # test multi
    g.multi_update_all(
        {'plays' : (mfunc, rfunc),
         ('user', 'wishes', 'game'): (mfunc, rfunc2)},
        'sum')
    assert F.array_equal(g.nodes['game'].data['y'], F.tensor([[3., 3.], [3., 3.]]))

    # test multi
    g.multi_update_all(
        {'plays' : (mfunc, rfunc, afunc),
         ('user', 'wishes', 'game'): (mfunc, rfunc2)},
        'sum', afunc)
    assert F.array_equal(g.nodes['game'].data['y'], F.tensor([[5., 5.], [5., 5.]]))

    # test cross reducer
    g.nodes['user'].data['h'] = F.randn((3, 2))
    for cred in ['sum', 'max', 'min', 'mean', 'stack']:
        g.multi_update_all(
            {'plays' : (mfunc, rfunc, afunc),
             'wishes': (mfunc, rfunc2)},
            cred, afunc)
        y = g.nodes['game'].data['y']
        g['plays'].update_all(mfunc, rfunc, afunc)
        y1 = g.nodes['game'].data['y']
        g['wishes'].update_all(mfunc, rfunc2)
        y2 = g.nodes['game'].data['y']
        if cred == 'stack':
1592
1593
1594
1595
            # stack has an internal order by edge type id
            yy = F.stack([y1, y2], 1)
            yy = yy + 1  # final afunc
            assert F.array_equal(y, yy)
Minjie Wang's avatar
Minjie Wang committed
1596
1597
1598
1599
1600
1601
1602
        else:
            yy = get_redfn(cred)(F.stack([y1, y2], 0), 0)
            yy = yy + 1  # final afunc
            assert F.array_equal(y, yy)

    # test fail case
    # fail because cannot infer ntype
1603
    with pytest.raises(DGLError):
Minjie Wang's avatar
Minjie Wang committed
1604
1605
1606
1607
1608
1609
        g.update_all(
            {'plays' : (mfunc, rfunc),
             'follows': (mfunc, rfunc2)},
            'sum')

    g.nodes['game'].data.clear()
1610

nv-dlasalle's avatar
nv-dlasalle committed
1611
@parametrize_idtype
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
@unittest.skipIf(F._default_context_str == 'cpu', reason="Need gpu for this test")
def test_more_nnz(idtype):
    g = dgl.graph(([0, 0, 0, 0, 0], [1, 1, 1, 1, 1]), idtype=idtype, device=F.ctx())
    g.ndata['x'] = F.copy_to(F.ones((2, 5)), ctx=F.ctx())
    g.update_all(fn.copy_u('x', 'm'), fn.sum('m', 'y'))
    y = g.ndata['y']
    ans = np.zeros((2, 5))
    ans[1] = 5
    ans = F.copy_to(F.tensor(ans, dtype=F.dtype(y)), ctx=F.ctx())
    assert F.array_equal(y, ans)

nv-dlasalle's avatar
nv-dlasalle committed
1623
@parametrize_idtype
1624
def test_updates(idtype):
1625
1626
1627
1628
1629
1630
    def msg_func(edges):
        return {'m': edges.src['h']}
    def reduce_func(nodes):
        return {'y': F.sum(nodes.mailbox['m'], 1)}
    def apply_func(nodes):
        return {'y': nodes.data['y'] * 2}
1631
    g = create_test_heterograph(idtype)
1632
    x = F.randn((3, 5))
Minjie Wang's avatar
Minjie Wang committed
1633
    g.nodes['user'].data['h'] = x
1634
1635
1636
1637
1638
1639
1640

    for msg, red, apply in itertools.product(
            [fn.copy_u('h', 'm'), msg_func], [fn.sum('m', 'y'), reduce_func],
            [None, apply_func]):
        multiplier = 1 if apply is None else 2

        g['user', 'plays', 'game'].update_all(msg, red, apply)
Minjie Wang's avatar
Minjie Wang committed
1641
        y = g.nodes['game'].data['y']
1642
1643
        assert F.array_equal(y[0], (x[0] + x[1]) * multiplier)
        assert F.array_equal(y[1], (x[1] + x[2]) * multiplier)
Minjie Wang's avatar
Minjie Wang committed
1644
        del g.nodes['game'].data['y']
1645
1646

        g['user', 'plays', 'game'].send_and_recv(([0, 1, 2], [0, 1, 1]), msg, red, apply)
Minjie Wang's avatar
Minjie Wang committed
1647
        y = g.nodes['game'].data['y']
1648
1649
        assert F.array_equal(y[0], x[0] * multiplier)
        assert F.array_equal(y[1], (x[1] + x[2]) * multiplier)
Minjie Wang's avatar
Minjie Wang committed
1650
        del g.nodes['game'].data['y']
1651
1652
1653

        # pulls from destination (game) node 0
        g['user', 'plays', 'game'].pull(0, msg, red, apply)
Minjie Wang's avatar
Minjie Wang committed
1654
        y = g.nodes['game'].data['y']
1655
        assert F.array_equal(y[0], (x[0] + x[1]) * multiplier)
Minjie Wang's avatar
Minjie Wang committed
1656
        del g.nodes['game'].data['y']
1657
1658
1659

        # pushes from source (user) node 0
        g['user', 'plays', 'game'].push(0, msg, red, apply)
Minjie Wang's avatar
Minjie Wang committed
1660
        y = g.nodes['game'].data['y']
1661
        assert F.array_equal(y[0], x[0] * multiplier)
Minjie Wang's avatar
Minjie Wang committed
1662
1663
        del g.nodes['game'].data['y']

1664

nv-dlasalle's avatar
nv-dlasalle committed
1665
@parametrize_idtype
1666
1667
def test_backward(idtype):
    g = create_test_heterograph(idtype)
Minjie Wang's avatar
Minjie Wang committed
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
    x = F.randn((3, 5))
    F.attach_grad(x)
    g.nodes['user'].data['h'] = x
    with F.record_grad():
        g.multi_update_all(
            {'plays' : (fn.copy_u('h', 'm'), fn.sum('m', 'y')),
             'wishes': (fn.copy_u('h', 'm'), fn.sum('m', 'y'))},
            'sum')
        y = g.nodes['game'].data['y']
        F.backward(y, F.ones(y.shape))
    print(F.grad(x))
    assert F.array_equal(F.grad(x), F.tensor([[2., 2., 2., 2., 2.],
                                              [2., 2., 2., 2., 2.],
                                              [2., 2., 2., 2., 2.]]))
1682

1683

nv-dlasalle's avatar
nv-dlasalle committed
1684
@parametrize_idtype
1685
def test_empty_heterograph(idtype):
1686
1687
1688
1689
1690
1691
1692
1693
    def assert_empty(g):
        assert g.number_of_nodes('user') == 0
        assert g.number_of_edges('plays') == 0
        assert g.number_of_nodes('game') == 0

    # empty src-dst pair
    assert_empty(dgl.heterograph({('user', 'plays', 'game'): ([], [])}))

1694
    g = dgl.heterograph({('user', 'follows', 'user'): ([], [])}, idtype=idtype, device=F.ctx())
1695
1696
    assert g.idtype == idtype
    assert g.device == F.ctx()
1697
1698
1699
1700
    assert g.number_of_nodes('user') == 0
    assert g.number_of_edges('follows') == 0

    # empty relation graph with others
1701
1702
    g = dgl.heterograph({('user', 'plays', 'game'): ([], []), ('developer', 'develops', 'game'):
        ([0, 1], [0, 1])}, idtype=idtype, device=F.ctx())
1703
1704
    assert g.idtype == idtype
    assert g.device == F.ctx()
1705
1706
1707
1708
1709
1710
    assert g.number_of_nodes('user') == 0
    assert g.number_of_edges('plays') == 0
    assert g.number_of_nodes('game') == 2
    assert g.number_of_edges('develops') == 2
    assert g.number_of_nodes('developer') == 2

nv-dlasalle's avatar
nv-dlasalle committed
1711
@parametrize_idtype
1712
def test_types_in_function(idtype):
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
    def mfunc1(edges):
        assert edges.canonical_etype == ('user', 'follow', 'user')
        return {}

    def rfunc1(nodes):
        assert nodes.ntype == 'user'
        return {}

    def filter_nodes1(nodes):
        assert nodes.ntype == 'user'
        return F.zeros((3,))

    def filter_edges1(edges):
        assert edges.canonical_etype == ('user', 'follow', 'user')
        return F.zeros((2,))

    def mfunc2(edges):
        assert edges.canonical_etype == ('user', 'plays', 'game')
        return {}

    def rfunc2(nodes):
        assert nodes.ntype == 'game'
        return {}

    def filter_nodes2(nodes):
        assert nodes.ntype == 'game'
        return F.zeros((3,))

    def filter_edges2(edges):
        assert edges.canonical_etype == ('user', 'plays', 'game')
        return F.zeros((2,))

1745
1746
    g = dgl.heterograph({('user', 'follow', 'user'): ((0, 1), (1, 2))},
                        idtype=idtype, device=F.ctx())
1747
1748
1749
1750
1751
1752
1753
1754
1755
    g.apply_nodes(rfunc1)
    g.apply_edges(mfunc1)
    g.update_all(mfunc1, rfunc1)
    g.send_and_recv([0, 1], mfunc1, rfunc1)
    g.push([0], mfunc1, rfunc1)
    g.pull([1], mfunc1, rfunc1)
    g.filter_nodes(filter_nodes1)
    g.filter_edges(filter_edges1)

1756
    g = dgl.heterograph({('user', 'plays', 'game'): ([0, 1], [1, 2])}, idtype=idtype, device=F.ctx())
1757
1758
1759
1760
1761
1762
1763
1764
1765
    g.apply_nodes(rfunc2, ntype='game')
    g.apply_edges(mfunc2)
    g.update_all(mfunc2, rfunc2)
    g.send_and_recv([0, 1], mfunc2, rfunc2)
    g.push([0], mfunc2, rfunc2)
    g.pull([1], mfunc2, rfunc2)
    g.filter_nodes(filter_nodes2, ntype='game')
    g.filter_edges(filter_edges2)

nv-dlasalle's avatar
nv-dlasalle committed
1766
@parametrize_idtype
1767
def test_stack_reduce(idtype):
1768
1769
1770
1771
1772
1773
    #edges = {
    #    'follows': ([0, 1], [1, 2]),
    #    'plays': ([0, 1, 2, 1], [0, 0, 1, 1]),
    #    'wishes': ([0, 2], [1, 0]),
    #    'develops': ([0, 1], [0, 1]),
    #}
1774
    g = create_test_heterograph(idtype)
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
    g.nodes['user'].data['h'] = F.randn((3, 200))
    def rfunc(nodes):
        return {'y': F.sum(nodes.mailbox['m'], 1)}
    def rfunc2(nodes):
        return {'y': F.max(nodes.mailbox['m'], 1)}
    def mfunc(edges):
        return {'m': edges.src['h']}
    g.multi_update_all(
            {'plays' : (mfunc, rfunc),
             'wishes': (mfunc, rfunc2)},
            'stack')
    assert g.nodes['game'].data['y'].shape == (g.number_of_nodes('game'), 2, 200)
    # only one type-wise update_all, stack still adds one dimension
    g.multi_update_all(
            {'plays' : (mfunc, rfunc)},
            'stack')
    assert g.nodes['game'].data['y'].shape == (g.number_of_nodes('game'), 1, 200)

nv-dlasalle's avatar
nv-dlasalle committed
1793
@parametrize_idtype
1794
def test_isolated_ntype(idtype):
1795
    g = dgl.heterograph({
1796
        ('A', 'AB', 'B'): ([0, 1, 2], [1, 2, 3])},
1797
1798
        num_nodes_dict={'A': 3, 'B': 4, 'C': 4},
        idtype=idtype, device=F.ctx())
1799
1800
1801
1802
1803
    assert g.number_of_nodes('A') == 3
    assert g.number_of_nodes('B') == 4
    assert g.number_of_nodes('C') == 4

    g = dgl.heterograph({
1804
        ('A', 'AC', 'C'): ([0, 1, 2], [1, 2, 3])},
1805
1806
        num_nodes_dict={'A': 3, 'B': 4, 'C': 4},
        idtype=idtype, device=F.ctx())
1807
1808
1809
1810
    assert g.number_of_nodes('A') == 3
    assert g.number_of_nodes('B') == 4
    assert g.number_of_nodes('C') == 4

1811
    G = dgl.graph(([0, 1, 2], [4, 5, 6]), num_nodes=11, idtype=idtype, device=F.ctx())
1812
1813
    G.ndata[dgl.NTYPE] = F.tensor([0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2], dtype=F.int64)
    G.edata[dgl.ETYPE] = F.tensor([0, 0, 0], dtype=F.int64)
1814
    g = dgl.to_heterogeneous(G, ['A', 'B', 'C'], ['AB'])
1815
1816
1817
1818
    assert g.number_of_nodes('A') == 3
    assert g.number_of_nodes('B') == 4
    assert g.number_of_nodes('C') == 4

1819

nv-dlasalle's avatar
nv-dlasalle committed
1820
@parametrize_idtype
1821
def test_ismultigraph(idtype):
1822
1823
    g1 = dgl.heterograph({('A', 'AB', 'B'): ([0, 0, 1, 2], [1, 2, 5, 5])},
                         {'A': 6, 'B': 6}, idtype=idtype, device=F.ctx())
1824
    assert g1.is_multigraph == False
1825
1826
    g2 = dgl.heterograph({('A', 'AC', 'C'): ([0, 0, 0, 1], [1, 1, 2, 5])},
                         {'A': 6, 'C': 6}, idtype=idtype, device=F.ctx())
1827
    assert g2.is_multigraph == True
1828
    g3 = dgl.graph(((0, 1), (1, 2)), num_nodes=6, idtype=idtype, device=F.ctx())
1829
    assert g3.is_multigraph == False
1830
    g4 = dgl.graph(([0, 0, 1], [1, 1, 2]), num_nodes=6, idtype=idtype, device=F.ctx())
1831
    assert g4.is_multigraph == True
1832
1833
1834
1835
    g = dgl.heterograph({
        ('A', 'AB', 'B'): ([0, 0, 1, 2], [1, 2, 5, 5]),
        ('A', 'AA', 'A'): ([0, 1], [1, 2])},
        {'A': 6, 'B': 6}, idtype=idtype, device=F.ctx())
1836
    assert g.is_multigraph == False
1837
1838
1839
1840
    g = dgl.heterograph({
        ('A', 'AB', 'B'): ([0, 0, 1, 2], [1, 2, 5, 5]),
        ('A', 'AC', 'C'): ([0, 0, 0, 1], [1, 1, 2, 5])},
        {'A': 6, 'B': 6, 'C': 6}, idtype=idtype, device=F.ctx())
1841
    assert g.is_multigraph == True
1842
1843
1844
1845
    g = dgl.heterograph({
        ('A', 'AB', 'B'): ([0, 0, 1, 2], [1, 2, 5, 5]),
        ('A', 'AA', 'A'): ([0, 0, 1], [1, 1, 2])},
        {'A': 6, 'B': 6}, idtype=idtype, device=F.ctx())
1846
    assert g.is_multigraph == True
1847
1848
1849
1850
    g = dgl.heterograph({
        ('A', 'AC', 'C'): ([0, 0, 0, 1], [1, 1, 2, 5]),
        ('A', 'AA', 'A'): ([0, 1], [1, 2])},
        {'A': 6, 'C': 6}, idtype=idtype, device=F.ctx())
1851
1852
    assert g.is_multigraph == True

nv-dlasalle's avatar
nv-dlasalle committed
1853
@parametrize_idtype
1854
def test_bipartite(idtype):
1855
1856
    g1 = dgl.heterograph({('A', 'AB', 'B'): ([0, 0, 1], [1, 2, 5])},
                         idtype=idtype, device=F.ctx())
1857
1858
1859
1860
1861
1862
1863
    assert g1.is_unibipartite
    assert len(g1.ntypes) == 2
    assert g1.etypes == ['AB']
    assert g1.srctypes == ['A']
    assert g1.dsttypes == ['B']
    assert g1.number_of_nodes('A') == 2
    assert g1.number_of_nodes('B') == 6
1864
1865
1866
1867
    assert g1.number_of_src_nodes('A') == 2
    assert g1.number_of_src_nodes() == 2
    assert g1.number_of_dst_nodes('B') == 6
    assert g1.number_of_dst_nodes() == 6
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
    assert g1.number_of_edges() == 3
    g1.srcdata['h'] = F.randn((2, 5))
    assert F.array_equal(g1.srcnodes['A'].data['h'], g1.srcdata['h'])
    assert F.array_equal(g1.nodes['A'].data['h'], g1.srcdata['h'])
    assert F.array_equal(g1.nodes['SRC/A'].data['h'], g1.srcdata['h'])
    g1.dstdata['h'] = F.randn((6, 3))
    assert F.array_equal(g1.dstnodes['B'].data['h'], g1.dstdata['h'])
    assert F.array_equal(g1.nodes['B'].data['h'], g1.dstdata['h'])
    assert F.array_equal(g1.nodes['DST/B'].data['h'], g1.dstdata['h'])

    # more complicated bipartite
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
    g2 = dgl.heterograph({
        ('A', 'AB', 'B'): ([0, 0, 1], [1, 2, 5]),
        ('A', 'AC', 'C'): ([1, 0], [0, 0])
    }, idtype=idtype, device=F.ctx())

    assert g2.is_unibipartite
    assert g2.srctypes == ['A']
    assert set(g2.dsttypes) == {'B', 'C'}
    assert g2.number_of_nodes('A') == 2
    assert g2.number_of_nodes('B') == 6
    assert g2.number_of_nodes('C') == 1
    assert g2.number_of_src_nodes('A') == 2
    assert g2.number_of_src_nodes() == 2
    assert g2.number_of_dst_nodes('B') == 6
    assert g2.number_of_dst_nodes('C') == 1
    g2.srcdata['h'] = F.randn((2, 5))
    assert F.array_equal(g2.srcnodes['A'].data['h'], g2.srcdata['h'])
    assert F.array_equal(g2.nodes['A'].data['h'], g2.srcdata['h'])
    assert F.array_equal(g2.nodes['SRC/A'].data['h'], g2.srcdata['h'])

    g3 = dgl.heterograph({
        ('A', 'AB', 'B'): ([0, 0, 1], [1, 2, 5]),
        ('A', 'AC', 'C'): ([1, 0], [0, 0]),
        ('A', 'AA', 'A'): ([0, 1], [0, 1])
    }, idtype=idtype, device=F.ctx())
    assert not g3.is_unibipartite
1905

1906
1907
1908
1909
1910
1911
1912
    g4 = dgl.heterograph({
        ('A', 'AB', 'B'): ([0, 0, 1], [1, 2, 5]),
        ('C', 'CA', 'A'): ([1, 0], [0, 0])
    }, idtype=idtype, device=F.ctx())

    assert not g4.is_unibipartite

nv-dlasalle's avatar
nv-dlasalle committed
1913
@parametrize_idtype
1914
def test_dtype_cast(idtype):
1915
    g = dgl.graph(([0, 1, 0, 2], [0, 1, 1, 0]), idtype=idtype, device=F.ctx())
1916
    assert g.idtype == idtype
1917
1918
    g.ndata["feat"] = F.tensor([3, 4, 5])
    g.edata["h"] = F.tensor([3, 4, 5, 6])
1919
    if idtype == "int32":
1920
        g_cast = g.long()
1921
        assert g_cast.idtype == F.int64
1922
1923
    else:
        g_cast = g.int()
1924
1925
        assert g_cast.idtype == F.int32
    test_utils.check_graph_equal(g, g_cast, check_idtype=False)
1926

1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
def test_float_cast():
    for t in [F.float16, F.float32, F.float64]:
        idtype = F.int32
        g = dgl.heterograph({
            ('user', 'follows', 'user'): (F.tensor([0, 1, 1, 2, 2, 3], dtype=idtype),
                                        F.tensor([0, 0, 1, 1, 2, 2], dtype=idtype)),
            ('user', 'plays', 'game'): (F.tensor([0, 1, 1], dtype=idtype),
                                        F.tensor([0, 0, 1], dtype=idtype))},
            idtype=idtype, device=F.ctx())
        uvalues = [1, 2, 3, 4]
        gvalues = [5, 6]
        fvalues = [7, 8, 9, 10, 11, 12]
        pvalues = [13, 14, 15]
        dataNamesTypes = [
            ('a',F.float16),
            ('b',F.float32),
            ('c',F.float64),
            ('d',F.int32),
            ('e',F.int64)]
        for name,type in dataNamesTypes:
            g.nodes['user'].data[name] = F.copy_to(F.tensor(uvalues, dtype=type), ctx=F.ctx())
        for name,type in dataNamesTypes:
            g.nodes['game'].data[name] = F.copy_to(F.tensor(gvalues, dtype=type), ctx=F.ctx())
        for name,type in dataNamesTypes:
            g.edges['follows'].data[name] = F.copy_to(F.tensor(fvalues, dtype=type), ctx=F.ctx())
        for name,type in dataNamesTypes:
            g.edges['plays'].data[name] = F.copy_to(F.tensor(pvalues, dtype=type), ctx=F.ctx())

        if t == F.float16:
            g = dgl.transforms.functional.to_half(g)
        if t == F.float32:
            g = dgl.transforms.functional.to_float(g)
        if t == F.float64:
            g = dgl.transforms.functional.to_double(g)

        for name,origType in dataNamesTypes:
            # integer tensors shouldn't be converted
            reqType = t if (origType in [F.float16,F.float32,F.float64]) else origType

            values = g.nodes['user'].data[name]
            assert values.dtype == reqType
            assert len(values) == len(uvalues)
            assert F.allclose(values, F.tensor(uvalues), 0, 0)

            values = g.nodes['game'].data[name]
            assert values.dtype == reqType
            assert len(values) == len(gvalues)
            assert F.allclose(values, F.tensor(gvalues), 0, 0)

            values = g.edges['follows'].data[name]
            assert values.dtype == reqType
            assert len(values) == len(fvalues)
            assert F.allclose(values, F.tensor(fvalues), 0, 0)

            values = g.edges['plays'].data[name]
            assert values.dtype == reqType
            assert len(values) == len(pvalues)
            assert F.allclose(values, F.tensor(pvalues), 0, 0)

nv-dlasalle's avatar
nv-dlasalle committed
1986
@parametrize_idtype
1987
def test_format(idtype):
1988
    # single relation
1989
    g = dgl.graph(([0, 1, 0, 2], [0, 1, 1, 0]), idtype=idtype, device=F.ctx())
1990
1991
1992
    assert g.formats()['created'] == ['coo']
    g1 = g.formats(['coo', 'csr', 'csc'])
    assert len(g1.formats()['created']) + len(g1.formats()['not created']) == 3
1993
    g1.create_formats_()
1994
1995
    assert len(g1.formats()['created']) == 3
    assert g.formats()['created'] == ['coo']
1996
1997
1998

    # multiple relation
    g = dgl.heterograph({
1999
2000
2001
2002
        ('user', 'follows', 'user'): ([0, 1], [1, 2]),
        ('user', 'plays', 'game'): ([0, 1, 1, 2], [0, 0, 1, 1]),
        ('developer', 'develops', 'game'): ([0, 1], [0, 1])
        }, idtype=idtype, device=F.ctx())
2003
2004
    user_feat = F.randn((g['follows'].number_of_src_nodes(), 5))
    g['follows'].srcdata['h'] = user_feat
2005
    g1 = g.formats('csc')
2006
2007
2008
    # test frame
    assert F.array_equal(g1['follows'].srcdata['h'], user_feat)
    # test each relation graph
2009
2010
    assert g1.formats()['created'] == ['csc']
    assert len(g1.formats()['not created']) == 0
2011

2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
    # in_degrees
    g = dgl.rand_graph(100, 2340).to(F.ctx())
    ind_arr = []
    for vid in range(0, 100):
        ind_arr.append(g.in_degrees(vid))
    in_degrees = g.in_degrees()
    g = g.formats('coo')
    for vid in range(0, 100):
        assert g.in_degrees(vid) == ind_arr[vid]
    assert F.array_equal(in_degrees, g.in_degrees())

nv-dlasalle's avatar
nv-dlasalle committed
2023
@parametrize_idtype
2024
def test_edges_order(idtype):
2025
2026
2027
2028
    # (0, 2), (1, 2), (0, 1), (0, 1), (2, 1)
    g = dgl.graph((
        np.array([0, 1, 0, 0, 2]),
        np.array([2, 2, 1, 1, 1])
2029
    ), idtype=idtype, device=F.ctx())
2030

2031
    print(g.formats())
2032
    src, dst = g.all_edges(order='srcdst')
2033
2034
    assert F.array_equal(src, F.tensor([0, 0, 0, 1, 2], dtype=idtype))
    assert F.array_equal(dst, F.tensor([1, 1, 2, 2, 1], dtype=idtype))
2035

nv-dlasalle's avatar
nv-dlasalle committed
2036
@parametrize_idtype
2037
def test_reverse(idtype):
2038
2039
    g = dgl.heterograph({
        ('user', 'follows', 'user'): ([0, 1, 2, 4, 3 ,1, 3], [1, 2, 3, 2, 0, 0, 1]),
2040
    }, idtype=idtype, device=F.ctx())
2041
    gidx = g._graph
2042
    r_gidx = gidx.reverse()
2043
2044
2045
2046
2047

    assert gidx.number_of_nodes(0) == r_gidx.number_of_nodes(0)
    assert gidx.number_of_edges(0) == r_gidx.number_of_edges(0)
    g_s, g_d, _ = gidx.edges(0)
    rg_s, rg_d, _ = r_gidx.edges(0)
2048
2049
    assert F.array_equal(g_s, rg_d)
    assert F.array_equal(g_d, rg_s)
2050
2051

    # force to start with 'csr'
2052
2053
    gidx = gidx.formats('csr')
    gidx = gidx.formats(['coo', 'csr', 'csc'])
2054
    r_gidx = gidx.reverse()
2055
2056
    assert 'csr' in gidx.formats()['created']
    assert 'csc' in r_gidx.formats()['created']
2057
2058
2059
2060
    assert gidx.number_of_nodes(0) == r_gidx.number_of_nodes(0)
    assert gidx.number_of_edges(0) == r_gidx.number_of_edges(0)
    g_s, g_d, _ = gidx.edges(0)
    rg_s, rg_d, _ = r_gidx.edges(0)
2061
2062
    assert F.array_equal(g_s, rg_d)
    assert F.array_equal(g_d, rg_s)
2063
2064

    # force to start with 'csc'
2065
2066
    gidx = gidx.formats('csc')
    gidx = gidx.formats(['coo', 'csr', 'csc'])
2067
    r_gidx = gidx.reverse()
2068
2069
    assert 'csc' in gidx.formats()['created']
    assert 'csr' in r_gidx.formats()['created']
2070
2071
2072
2073
    assert gidx.number_of_nodes(0) == r_gidx.number_of_nodes(0)
    assert gidx.number_of_edges(0) == r_gidx.number_of_edges(0)
    g_s, g_d, _ = gidx.edges(0)
    rg_s, rg_d, _ = r_gidx.edges(0)
2074
2075
    assert F.array_equal(g_s, rg_d)
    assert F.array_equal(g_d, rg_s)
2076
2077
2078
2079
2080

    g = dgl.heterograph({
        ('user', 'follows', 'user'): ([0, 1, 2, 4, 3 ,1, 3], [1, 2, 3, 2, 0, 0, 1]),
        ('user', 'plays', 'game'): ([0, 0, 2, 3, 3, 4, 1], [1, 0, 1, 0, 1, 0, 0]),
        ('developer', 'develops', 'game'): ([0, 1, 1, 2], [0, 0, 1, 1]),
2081
        }, idtype=idtype, device=F.ctx())
2082
    gidx = g._graph
2083
2084
2085
2086
2087
2088
2089
2090
    r_gidx = gidx.reverse()

    # metagraph
    mg = gidx.metagraph
    r_mg = r_gidx.metagraph
    for etype in range(3):
        assert mg.find_edge(etype) == r_mg.find_edge(etype)[::-1]

2091
2092
2093
2094
2095
2096
2097
2098
2099
    # three node types and three edge types
    assert gidx.number_of_nodes(0) == r_gidx.number_of_nodes(0)
    assert gidx.number_of_nodes(1) == r_gidx.number_of_nodes(1)
    assert gidx.number_of_nodes(2) == r_gidx.number_of_nodes(2)
    assert gidx.number_of_edges(0) == r_gidx.number_of_edges(0)
    assert gidx.number_of_edges(1) == r_gidx.number_of_edges(1)
    assert gidx.number_of_edges(2) == r_gidx.number_of_edges(2)
    g_s, g_d, _ = gidx.edges(0)
    rg_s, rg_d, _ = r_gidx.edges(0)
2100
2101
    assert F.array_equal(g_s, rg_d)
    assert F.array_equal(g_d, rg_s)
2102
2103
    g_s, g_d, _ = gidx.edges(1)
    rg_s, rg_d, _ = r_gidx.edges(1)
2104
2105
    assert F.array_equal(g_s, rg_d)
    assert F.array_equal(g_d, rg_s)
2106
2107
    g_s, g_d, _ = gidx.edges(2)
    rg_s, rg_d, _ = r_gidx.edges(2)
2108
2109
    assert F.array_equal(g_s, rg_d)
    assert F.array_equal(g_d, rg_s)
2110
2111

    # force to start with 'csr'
2112
2113
    gidx = gidx.formats('csr')
    gidx = gidx.formats(['coo', 'csr', 'csc'])
2114
    r_gidx = gidx.reverse()
2115
    # three node types and three edge types
2116
2117
    assert 'csr' in gidx.formats()['created']
    assert 'csc' in r_gidx.formats()['created']
2118
2119
2120
2121
2122
2123
2124
2125
    assert gidx.number_of_nodes(0) == r_gidx.number_of_nodes(0)
    assert gidx.number_of_nodes(1) == r_gidx.number_of_nodes(1)
    assert gidx.number_of_nodes(2) == r_gidx.number_of_nodes(2)
    assert gidx.number_of_edges(0) == r_gidx.number_of_edges(0)
    assert gidx.number_of_edges(1) == r_gidx.number_of_edges(1)
    assert gidx.number_of_edges(2) == r_gidx.number_of_edges(2)
    g_s, g_d, _ = gidx.edges(0)
    rg_s, rg_d, _ = r_gidx.edges(0)
2126
2127
    assert F.array_equal(g_s, rg_d)
    assert F.array_equal(g_d, rg_s)
2128
2129
    g_s, g_d, _ = gidx.edges(1)
    rg_s, rg_d, _ = r_gidx.edges(1)
2130
2131
    assert F.array_equal(g_s, rg_d)
    assert F.array_equal(g_d, rg_s)
2132
2133
    g_s, g_d, _ = gidx.edges(2)
    rg_s, rg_d, _ = r_gidx.edges(2)
2134
2135
    assert F.array_equal(g_s, rg_d)
    assert F.array_equal(g_d, rg_s)
2136
2137

    # force to start with 'csc'
2138
2139
    gidx = gidx.formats('csc')
    gidx = gidx.formats(['coo', 'csr', 'csc'])
2140
    r_gidx = gidx.reverse()
2141
    # three node types and three edge types
2142
2143
    assert 'csc' in gidx.formats()['created']
    assert 'csr' in r_gidx.formats()['created']
2144
2145
2146
2147
2148
2149
2150
2151
    assert gidx.number_of_nodes(0) == r_gidx.number_of_nodes(0)
    assert gidx.number_of_nodes(1) == r_gidx.number_of_nodes(1)
    assert gidx.number_of_nodes(2) == r_gidx.number_of_nodes(2)
    assert gidx.number_of_edges(0) == r_gidx.number_of_edges(0)
    assert gidx.number_of_edges(1) == r_gidx.number_of_edges(1)
    assert gidx.number_of_edges(2) == r_gidx.number_of_edges(2)
    g_s, g_d, _ = gidx.edges(0)
    rg_s, rg_d, _ = r_gidx.edges(0)
2152
2153
    assert F.array_equal(g_s, rg_d)
    assert F.array_equal(g_d, rg_s)
2154
2155
    g_s, g_d, _ = gidx.edges(1)
    rg_s, rg_d, _ = r_gidx.edges(1)
2156
2157
    assert F.array_equal(g_s, rg_d)
    assert F.array_equal(g_d, rg_s)
2158
2159
    g_s, g_d, _ = gidx.edges(2)
    rg_s, rg_d, _ = r_gidx.edges(2)
2160
2161
2162
    assert F.array_equal(g_s, rg_d)
    assert F.array_equal(g_d, rg_s)

nv-dlasalle's avatar
nv-dlasalle committed
2163
@parametrize_idtype
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
def test_clone(idtype):
    g = dgl.graph(([0, 1], [1, 2]), idtype=idtype, device=F.ctx())
    g.ndata['h'] = F.copy_to(F.tensor([1, 1, 1], dtype=idtype), ctx=F.ctx())
    g.edata['h'] = F.copy_to(F.tensor([1, 1], dtype=idtype), ctx=F.ctx())

    new_g = g.clone()
    assert g.number_of_nodes() == new_g.number_of_nodes()
    assert g.number_of_edges() == new_g.number_of_edges()
    assert g.device == new_g.device
    assert g.idtype == new_g.idtype
    assert F.array_equal(g.ndata['h'], new_g.ndata['h'])
    assert F.array_equal(g.edata['h'], new_g.edata['h'])
    # data change
    new_g.ndata['h'] = F.copy_to(F.tensor([2, 2, 2], dtype=idtype), ctx=F.ctx())
    assert (F.array_equal(g.ndata['h'], new_g.ndata['h']) == False)
    g.edata['h'] = F.copy_to(F.tensor([2, 2], dtype=idtype), ctx=F.ctx())
    assert (F.array_equal(g.edata['h'], new_g.edata['h']) == False)
    # graph structure change
    g.add_nodes(1)
    assert g.number_of_nodes() != new_g.number_of_nodes()
    new_g.add_edges(1, 1)
    assert g.number_of_edges() != new_g.number_of_edges()

    # zero data graph
2188
    g = dgl.graph(([], []), num_nodes=0, idtype=idtype, device=F.ctx())
2189
2190
2191
2192
2193
    new_g = g.clone()
    assert g.number_of_nodes() == new_g.number_of_nodes()
    assert g.number_of_edges() == new_g.number_of_edges()

    # heterograph
2194
    g = create_test_heterograph3(idtype)
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
    g.edges['plays'].data['h'] = F.copy_to(F.tensor([1, 2, 3, 4], dtype=idtype), ctx=F.ctx())
    new_g = g.clone()
    assert g.number_of_nodes('user') == new_g.number_of_nodes('user')
    assert g.number_of_nodes('game') == new_g.number_of_nodes('game')
    assert g.number_of_nodes('developer') == new_g.number_of_nodes('developer')
    assert g.number_of_edges('plays') == new_g.number_of_edges('plays')
    assert g.number_of_edges('develops') == new_g.number_of_edges('develops')
    assert F.array_equal(g.nodes['user'].data['h'], new_g.nodes['user'].data['h'])
    assert F.array_equal(g.nodes['game'].data['h'], new_g.nodes['game'].data['h'])
    assert F.array_equal(g.edges['plays'].data['h'], new_g.edges['plays'].data['h'])
    assert g.device == new_g.device
    assert g.idtype == new_g.idtype
    u, v = g.edges(form='uv', order='eid', etype='plays')
    nu, nv = new_g.edges(form='uv', order='eid', etype='plays')
    assert F.array_equal(u, nu)
    assert F.array_equal(v, nv)
    # graph structure change
    u = F.tensor([0, 4], dtype=idtype)
    v = F.tensor([2, 6], dtype=idtype)
    g.add_edges(u, v, etype='plays')
    u, v = g.edges(form='uv', order='eid', etype='plays')
    assert u.shape[0] != nu.shape[0]
    assert v.shape[0] != nv.shape[0]
    assert g.nodes['user'].data['h'].shape[0] != new_g.nodes['user'].data['h'].shape[0]
    assert g.nodes['game'].data['h'].shape[0] != new_g.nodes['game'].data['h'].shape[0]
    assert g.edges['plays'].data['h'].shape[0] != new_g.edges['plays'].data['h'].shape[0]


nv-dlasalle's avatar
nv-dlasalle committed
2223
@parametrize_idtype
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
def test_add_edges(idtype):
    # homogeneous graph
    g = dgl.graph(([0, 1], [1, 2]), idtype=idtype, device=F.ctx())
    u = 0
    v = 1
    g.add_edges(u, v)
    assert g.device == F.ctx()
    assert g.number_of_nodes() == 3
    assert g.number_of_edges() == 3
    u = [0]
    v = [1]
    g.add_edges(u, v)
    assert g.device == F.ctx()
    assert g.number_of_nodes() == 3
    assert g.number_of_edges() == 4
    u = F.tensor(u, dtype=idtype)
    v = F.tensor(v, dtype=idtype)
    g.add_edges(u, v)
    assert g.device == F.ctx()
    assert g.number_of_nodes() == 3
    assert g.number_of_edges() == 5
    u, v = g.edges(form='uv', order='eid')
    assert F.array_equal(u, F.tensor([0, 1, 0, 0, 0], dtype=idtype))
    assert F.array_equal(v, F.tensor([1, 2, 1, 1, 1], dtype=idtype))

    # node id larger than current max node id
    g = dgl.graph(([0, 1], [1, 2]), idtype=idtype, device=F.ctx())
    u = F.tensor([0, 1], dtype=idtype)
    v = F.tensor([2, 3], dtype=idtype)
    g.add_edges(u, v)
    assert g.number_of_nodes() == 4
    assert g.number_of_edges() == 4
    u, v = g.edges(form='uv', order='eid')
    assert F.array_equal(u, F.tensor([0, 1, 0, 1], dtype=idtype))
    assert F.array_equal(v, F.tensor([1, 2, 2, 3], dtype=idtype))

    # has data
    g = dgl.graph(([0, 1], [1, 2]), idtype=idtype, device=F.ctx())
    g.ndata['h'] = F.copy_to(F.tensor([1, 1, 1], dtype=idtype), ctx=F.ctx())
    g.edata['h'] = F.copy_to(F.tensor([1, 1], dtype=idtype), ctx=F.ctx())
    u = F.tensor([0, 1], dtype=idtype)
    v = F.tensor([2, 3], dtype=idtype)
    e_feat = {'h' : F.copy_to(F.tensor([2, 2], dtype=idtype), ctx=F.ctx()),
              'hh' : F.copy_to(F.tensor([2, 2], dtype=idtype), ctx=F.ctx())}
    g.add_edges(u, v, e_feat)
    assert g.number_of_nodes() == 4
    assert g.number_of_edges() == 4
    u, v = g.edges(form='uv', order='eid')
    assert F.array_equal(u, F.tensor([0, 1, 0, 1], dtype=idtype))
    assert F.array_equal(v, F.tensor([1, 2, 2, 3], dtype=idtype))
    assert F.array_equal(g.ndata['h'], F.tensor([1, 1, 1, 0], dtype=idtype))
    assert F.array_equal(g.edata['h'], F.tensor([1, 1, 2, 2], dtype=idtype))
    assert F.array_equal(g.edata['hh'], F.tensor([0, 0, 2, 2], dtype=idtype))

    # zero data graph
2279
    g = dgl.graph(([], []), num_nodes=0, idtype=idtype, device=F.ctx())
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
    u = F.tensor([0, 1], dtype=idtype)
    v = F.tensor([2, 2], dtype=idtype)
    e_feat = {'h' : F.copy_to(F.tensor([2, 2], dtype=idtype), ctx=F.ctx()),
              'hh' : F.copy_to(F.tensor([2, 2], dtype=idtype), ctx=F.ctx())}
    g.add_edges(u, v, e_feat)
    assert g.number_of_nodes() == 3
    assert g.number_of_edges() == 2
    u, v = g.edges(form='uv', order='eid')
    assert F.array_equal(u, F.tensor([0, 1], dtype=idtype))
    assert F.array_equal(v, F.tensor([2, 2], dtype=idtype))
    assert F.array_equal(g.edata['h'], F.tensor([2, 2], dtype=idtype))
    assert F.array_equal(g.edata['hh'], F.tensor([2, 2], dtype=idtype))

    # bipartite graph
2294
2295
    g = dgl.heterograph({('user', 'plays', 'game'): ([0, 1], [1, 2])},
                        idtype=idtype, device=F.ctx())
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
    u = 0
    v = 1
    g.add_edges(u, v)
    assert g.device == F.ctx()
    assert g.number_of_nodes('user') == 2
    assert g.number_of_nodes('game') == 3
    assert g.number_of_edges() == 3
    u = [0]
    v = [1]
    g.add_edges(u, v)
    assert g.device == F.ctx()
    assert g.number_of_nodes('user') == 2
    assert g.number_of_nodes('game') == 3
    assert g.number_of_edges() == 4
    u = F.tensor(u, dtype=idtype)
    v = F.tensor(v, dtype=idtype)
    g.add_edges(u, v)
    assert g.device == F.ctx()
    assert g.number_of_nodes('user') == 2
    assert g.number_of_nodes('game') == 3
    assert g.number_of_edges() == 5
    u, v = g.edges(form='uv')
    assert F.array_equal(u, F.tensor([0, 1, 0, 0, 0], dtype=idtype))
    assert F.array_equal(v, F.tensor([1, 2, 1, 1, 1], dtype=idtype))

    # node id larger than current max node id
2322
2323
    g = dgl.heterograph({('user', 'plays', 'game'): ([0, 1], [1, 2])},
                        idtype=idtype, device=F.ctx())
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
    u = F.tensor([0, 2], dtype=idtype)
    v = F.tensor([2, 3], dtype=idtype)
    g.add_edges(u, v)
    assert g.device == F.ctx()
    assert g.number_of_nodes('user') == 3
    assert g.number_of_nodes('game') == 4
    assert g.number_of_edges() == 4
    u, v = g.edges(form='uv', order='eid')
    assert F.array_equal(u, F.tensor([0, 1, 0, 2], dtype=idtype))
    assert F.array_equal(v, F.tensor([1, 2, 2, 3], dtype=idtype))

    # has data
2336
2337
2338
2339
2340
    g = dgl.heterograph({
        ('user', 'plays', 'game'): ([0, 1], [1, 2])
    }, idtype=idtype, device=F.ctx())
    g.nodes['user'].data['h'] = F.copy_to(F.tensor([1, 1], dtype=idtype), ctx=F.ctx())
    g.nodes['game'].data['h'] = F.copy_to(F.tensor([2, 2, 2], dtype=idtype), ctx=F.ctx())
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
    g.edata['h'] = F.copy_to(F.tensor([1, 1], dtype=idtype), ctx=F.ctx())
    u = F.tensor([0, 2], dtype=idtype)
    v = F.tensor([2, 3], dtype=idtype)
    e_feat = {'h' : F.copy_to(F.tensor([2, 2], dtype=idtype), ctx=F.ctx()),
              'hh' : F.copy_to(F.tensor([2, 2], dtype=idtype), ctx=F.ctx())}
    g.add_edges(u, v, e_feat)
    assert g.number_of_nodes('user') == 3
    assert g.number_of_nodes('game') == 4
    assert g.number_of_edges() == 4
    u, v = g.edges(form='uv', order='eid')
    assert F.array_equal(u, F.tensor([0, 1, 0, 2], dtype=idtype))
    assert F.array_equal(v, F.tensor([1, 2, 2, 3], dtype=idtype))
    assert F.array_equal(g.nodes['user'].data['h'], F.tensor([1, 1, 0], dtype=idtype))
    assert F.array_equal(g.nodes['game'].data['h'], F.tensor([2, 2, 2, 0], dtype=idtype))
    assert F.array_equal(g.edata['h'], F.tensor([1, 1, 2, 2], dtype=idtype))
    assert F.array_equal(g.edata['hh'], F.tensor([0, 0, 2, 2], dtype=idtype))

    # heterogeneous graph
2359
    g = create_test_heterograph3(idtype)
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
    u = F.tensor([0, 2], dtype=idtype)
    v = F.tensor([2, 3], dtype=idtype)
    g.add_edges(u, v, etype='plays')
    assert g.number_of_nodes('user') == 3
    assert g.number_of_nodes('game') == 4
    assert g.number_of_nodes('developer') == 2
    assert g.number_of_edges('plays') == 6
    assert g.number_of_edges('develops') == 2
    u, v = g.edges(form='uv', order='eid', etype='plays')
    assert F.array_equal(u, F.tensor([0, 1, 1, 2, 0, 2], dtype=idtype))
    assert F.array_equal(v, F.tensor([0, 0, 1, 1, 2, 3], dtype=idtype))
    assert F.array_equal(g.nodes['user'].data['h'], F.tensor([1, 1, 1], dtype=idtype))
    assert F.array_equal(g.nodes['game'].data['h'], F.tensor([2, 2, 0, 0], dtype=idtype))
    assert F.array_equal(g.edges['plays'].data['h'], F.tensor([1, 1, 1, 1, 0, 0], dtype=idtype))

    # add with feature
    e_feat = {'h': F.copy_to(F.tensor([2, 2], dtype=idtype), ctx=F.ctx())}
    u = F.tensor([0, 2], dtype=idtype)
    v = F.tensor([2, 3], dtype=idtype)
    g.nodes['game'].data['h'] =  F.copy_to(F.tensor([2, 2, 1, 1], dtype=idtype), ctx=F.ctx())
    g.add_edges(u, v, data=e_feat, etype='develops')
    assert g.number_of_nodes('user') == 3
    assert g.number_of_nodes('game') == 4
    assert g.number_of_nodes('developer') == 3
    assert g.number_of_edges('plays') == 6
    assert g.number_of_edges('develops') == 4
    u, v = g.edges(form='uv', order='eid', etype='develops')
    assert F.array_equal(u, F.tensor([0, 1, 0, 2], dtype=idtype))
    assert F.array_equal(v, F.tensor([0, 1, 2, 3], dtype=idtype))
    assert F.array_equal(g.nodes['developer'].data['h'], F.tensor([3, 3, 0], dtype=idtype))
    assert F.array_equal(g.nodes['game'].data['h'], F.tensor([2, 2, 1, 1], dtype=idtype))
    assert F.array_equal(g.edges['develops'].data['h'], F.tensor([0, 0, 2, 2], dtype=idtype))

nv-dlasalle's avatar
nv-dlasalle committed
2393
@parametrize_idtype
2394
2395
2396
2397
2398
2399
2400
2401
2402
def test_add_nodes(idtype):
    # homogeneous Graphs
    g = dgl.graph(([0, 1], [1, 2]), idtype=idtype, device=F.ctx())
    g.ndata['h'] = F.copy_to(F.tensor([1,1,1], dtype=idtype), ctx=F.ctx())
    g.add_nodes(1)
    assert g.number_of_nodes() == 4
    assert F.array_equal(g.ndata['h'], F.tensor([1, 1, 1, 0], dtype=idtype))

    # zero node graph
2403
    g = dgl.graph(([], []), num_nodes=3, idtype=idtype, device=F.ctx())
2404
2405
2406
2407
2408
2409
    g.ndata['h'] = F.copy_to(F.tensor([1,1,1], dtype=idtype), ctx=F.ctx())
    g.add_nodes(1, data={'h' : F.copy_to(F.tensor([2],  dtype=idtype), ctx=F.ctx())})
    assert g.number_of_nodes() == 4
    assert F.array_equal(g.ndata['h'], F.tensor([1, 1, 1, 2], dtype=idtype))

    # bipartite graph
2410
2411
    g = dgl.heterograph({('user', 'plays', 'game'): ([0, 1], [1, 2])},
                        idtype=idtype, device=F.ctx())
2412
2413
2414
2415
2416
2417
2418
    g.add_nodes(2, data={'h' : F.copy_to(F.tensor([2, 2],  dtype=idtype), ctx=F.ctx())}, ntype='user')
    assert g.number_of_nodes('user') == 4
    assert F.array_equal(g.nodes['user'].data['h'], F.tensor([0, 0, 2, 2], dtype=idtype))
    g.add_nodes(2, ntype='game')
    assert g.number_of_nodes('game') == 5

    # heterogeneous graph
2419
    g = create_test_heterograph3(idtype)
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
    g.add_nodes(1, ntype='user')
    g.add_nodes(2, data={'h' : F.copy_to(F.tensor([2, 2],  dtype=idtype), ctx=F.ctx())}, ntype='game')
    g.add_nodes(0, ntype='developer')
    assert g.number_of_nodes('user') == 4
    assert g.number_of_nodes('game') == 4
    assert g.number_of_nodes('developer') == 2
    assert F.array_equal(g.nodes['user'].data['h'], F.tensor([1, 1, 1, 0], dtype=idtype))
    assert F.array_equal(g.nodes['game'].data['h'], F.tensor([2, 2, 2, 2], dtype=idtype))

@unittest.skipIf(dgl.backend.backend_name == "mxnet", reason="MXNet has error with (0,) shape tensor.")
nv-dlasalle's avatar
nv-dlasalle committed
2430
@parametrize_idtype
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
def test_remove_edges(idtype):
    # homogeneous Graphs
    g = dgl.graph(([0, 1], [1, 2]), idtype=idtype, device=F.ctx())
    e = 0
    g.remove_edges(e)
    assert g.number_of_edges() == 1
    u, v = g.edges(form='uv', order='eid')
    assert F.array_equal(u, F.tensor([1], dtype=idtype))
    assert F.array_equal(v, F.tensor([2], dtype=idtype))
    g = dgl.graph(([0, 1], [1, 2]), idtype=idtype, device=F.ctx())
    e = [0]
    g.remove_edges(e)
    assert g.number_of_edges() == 1
    u, v = g.edges(form='uv', order='eid')
    assert F.array_equal(u, F.tensor([1], dtype=idtype))
    assert F.array_equal(v, F.tensor([2], dtype=idtype))
    e = F.tensor([0], dtype=idtype)
    g.remove_edges(e)
    assert g.number_of_edges() == 0

    # has node data
    g = dgl.graph(([0, 1], [1, 2]), idtype=idtype, device=F.ctx())
    g.ndata['h'] = F.copy_to(F.tensor([1, 2, 3], dtype=idtype), ctx=F.ctx())
    g.remove_edges(1)
    assert g.number_of_edges() == 1
    assert F.array_equal(g.ndata['h'], F.tensor([1, 2, 3], dtype=idtype))

    # has edge data
    g = dgl.graph(([0, 1], [1, 2]), idtype=idtype, device=F.ctx())
    g.edata['h'] = F.copy_to(F.tensor([1, 2], dtype=idtype), ctx=F.ctx())
    g.remove_edges(0)
    assert g.number_of_edges() == 1
    assert F.array_equal(g.edata['h'], F.tensor([2], dtype=idtype))

    # invalid eid
    assert_fail = False
    try:
        g.remove_edges(1)
    except:
        assert_fail = True
    assert assert_fail

    # bipartite graph
2474
2475
2476
    g = dgl.heterograph({
        ('user', 'plays', 'game'): ([0, 1], [1, 2])
    }, idtype=idtype, device=F.ctx())
2477
2478
2479
2480
2481
2482
    e = 0
    g.remove_edges(e)
    assert g.number_of_edges() == 1
    u, v = g.edges(form='uv', order='eid')
    assert F.array_equal(u, F.tensor([1], dtype=idtype))
    assert F.array_equal(v, F.tensor([2], dtype=idtype))
2483
2484
    g = dgl.heterograph(
        {('user', 'plays', 'game'): ([0, 1], [1, 2])}, idtype=idtype, device=F.ctx())
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
    e = [0]
    g.remove_edges(e)
    assert g.number_of_edges() == 1
    u, v = g.edges(form='uv', order='eid')
    assert F.array_equal(u, F.tensor([1], dtype=idtype))
    assert F.array_equal(v, F.tensor([2], dtype=idtype))
    e = F.tensor([0], dtype=idtype)
    g.remove_edges(e)
    assert g.number_of_edges() == 0

    # has data
2496
2497
2498
2499
    g = dgl.heterograph(
        {('user', 'plays', 'game'): ([0, 1], [1, 2])}, idtype=idtype, device=F.ctx())
    g.nodes['user'].data['h'] = F.copy_to(F.tensor([1, 1], dtype=idtype), ctx=F.ctx())
    g.nodes['game'].data['h'] = F.copy_to(F.tensor([2, 2, 2], dtype=idtype), ctx=F.ctx())
2500
2501
2502
2503
2504
2505
2506
2507
    g.edata['h'] = F.copy_to(F.tensor([1, 2], dtype=idtype), ctx=F.ctx())
    g.remove_edges(1)
    assert g.number_of_edges() == 1
    assert F.array_equal(g.nodes['user'].data['h'], F.tensor([1, 1], dtype=idtype))
    assert F.array_equal(g.nodes['game'].data['h'], F.tensor([2, 2, 2], dtype=idtype))
    assert F.array_equal(g.edata['h'], F.tensor([1], dtype=idtype))

    # heterogeneous graph
2508
    g = create_test_heterograph3(idtype)
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
    g.edges['plays'].data['h'] = F.copy_to(F.tensor([1, 2, 3, 4], dtype=idtype), ctx=F.ctx())
    g.remove_edges(1, etype='plays')
    assert g.number_of_edges('plays') == 3
    u, v = g.edges(form='uv', order='eid', etype='plays')
    assert F.array_equal(u, F.tensor([0, 1, 2], dtype=idtype))
    assert F.array_equal(v, F.tensor([0, 1, 1], dtype=idtype))
    assert F.array_equal(g.edges['plays'].data['h'], F.tensor([1, 3, 4], dtype=idtype))
    # remove all edges of 'develops'
    g.remove_edges([0, 1], etype='develops')
    assert g.number_of_edges('develops') == 0
    assert F.array_equal(g.nodes['user'].data['h'], F.tensor([1, 1, 1], dtype=idtype))
    assert F.array_equal(g.nodes['game'].data['h'], F.tensor([2, 2], dtype=idtype))
    assert F.array_equal(g.nodes['developer'].data['h'], F.tensor([3, 3], dtype=idtype))

nv-dlasalle's avatar
nv-dlasalle committed
2523
@parametrize_idtype
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
def test_remove_nodes(idtype):
    # homogeneous Graphs
    g = dgl.graph(([0, 1], [1, 2]), idtype=idtype, device=F.ctx())
    n = 0
    g.remove_nodes(n)
    assert g.number_of_nodes() == 2
    assert g.number_of_edges() == 1
    u, v = g.edges(form='uv', order='eid')
    assert F.array_equal(u, F.tensor([0], dtype=idtype))
    assert F.array_equal(v, F.tensor([1], dtype=idtype))
    g = dgl.graph(([0, 1], [1, 2]), idtype=idtype, device=F.ctx())
    n = [1]
    g.remove_nodes(n)
    assert g.number_of_nodes() == 2
    assert g.number_of_edges() == 0
    g = dgl.graph(([0, 1], [1, 2]), idtype=idtype, device=F.ctx())
    n = F.tensor([2], dtype=idtype)
    g.remove_nodes(n)
    assert g.number_of_nodes() == 2
    assert g.number_of_edges() == 1
    u, v = g.edges(form='uv', order='eid')
    assert F.array_equal(u, F.tensor([0], dtype=idtype))
    assert F.array_equal(v, F.tensor([1], dtype=idtype))

    # invalid nid
    assert_fail = False
    try:
        g.remove_nodes(3)
    except:
        assert_fail = True
    assert assert_fail

    # has node and edge data
    g = dgl.graph(([0, 0, 2], [0, 1, 2]), idtype=idtype, device=F.ctx())
    g.ndata['hv'] = F.copy_to(F.tensor([1, 2, 3], dtype=idtype), ctx=F.ctx())
    g.edata['he'] = F.copy_to(F.tensor([1, 2, 3], dtype=idtype), ctx=F.ctx())
    g.remove_nodes(F.tensor([0], dtype=idtype))
    assert g.number_of_nodes() == 2
    assert g.number_of_edges() == 1
    u, v = g.edges(form='uv', order='eid')
    assert F.array_equal(u, F.tensor([1], dtype=idtype))
    assert F.array_equal(v, F.tensor([1], dtype=idtype))
    assert F.array_equal(g.ndata['hv'], F.tensor([2, 3], dtype=idtype))
    assert F.array_equal(g.edata['he'], F.tensor([3], dtype=idtype))

    # node id larger than current max node id
2570
2571
    g = dgl.heterograph(
        {('user', 'plays', 'game'): ([0, 1], [1, 2])}, idtype=idtype, device=F.ctx())
2572
2573
2574
2575
2576
2577
2578
2579
    n = 0
    g.remove_nodes(n, ntype='user')
    assert g.number_of_nodes('user') == 1
    assert g.number_of_nodes('game') == 3
    assert g.number_of_edges() == 1
    u, v = g.edges(form='uv', order='eid')
    assert F.array_equal(u, F.tensor([0], dtype=idtype))
    assert F.array_equal(v, F.tensor([2], dtype=idtype))
2580
2581
    g = dgl.heterograph(
        {('user', 'plays', 'game'): ([0, 1], [1, 2])}, idtype=idtype, device=F.ctx())
2582
2583
2584
2585
2586
2587
2588
2589
    n = [1]
    g.remove_nodes(n, ntype='user')
    assert g.number_of_nodes('user') == 1
    assert g.number_of_nodes('game') == 3
    assert g.number_of_edges() == 1
    u, v = g.edges(form='uv', order='eid')
    assert F.array_equal(u, F.tensor([0], dtype=idtype))
    assert F.array_equal(v, F.tensor([1], dtype=idtype))
2590
2591
    g = dgl.heterograph(
        {('user', 'plays', 'game'): ([0, 1], [1, 2])}, idtype=idtype, device=F.ctx())
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
    n = F.tensor([0], dtype=idtype)
    g.remove_nodes(n, ntype='game')
    assert g.number_of_nodes('user') == 2
    assert g.number_of_nodes('game') == 2
    assert g.number_of_edges() == 2
    u, v = g.edges(form='uv', order='eid')
    assert F.array_equal(u, F.tensor([0, 1], dtype=idtype))
    assert F.array_equal(v, F.tensor([0 ,1], dtype=idtype))

    # heterogeneous graph
2602
    g = create_test_heterograph3(idtype)
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
    g.edges['plays'].data['h'] = F.copy_to(F.tensor([1, 2, 3, 4], dtype=idtype), ctx=F.ctx())
    g.remove_nodes(0, ntype='game')
    assert g.number_of_nodes('user') == 3
    assert g.number_of_nodes('game') == 1
    assert g.number_of_nodes('developer') == 2
    assert g.number_of_edges('plays') == 2
    assert g.number_of_edges('develops') == 1
    assert F.array_equal(g.nodes['user'].data['h'], F.tensor([1, 1, 1], dtype=idtype))
    assert F.array_equal(g.nodes['game'].data['h'], F.tensor([2], dtype=idtype))
    assert F.array_equal(g.nodes['developer'].data['h'], F.tensor([3, 3], dtype=idtype))
    u, v = g.edges(form='uv', order='eid', etype='plays')
    assert F.array_equal(u, F.tensor([1, 2], dtype=idtype))
    assert F.array_equal(v, F.tensor([0, 0], dtype=idtype))
    assert F.array_equal(g.edges['plays'].data['h'], F.tensor([3, 4], dtype=idtype))
    u, v = g.edges(form='uv', order='eid', etype='develops')
    assert F.array_equal(u, F.tensor([1], dtype=idtype))
    assert F.array_equal(v, F.tensor([0], dtype=idtype))
2620

nv-dlasalle's avatar
nv-dlasalle committed
2621
@parametrize_idtype
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
def test_frame(idtype):
    g = dgl.graph(([0, 1, 2], [1, 2, 3]), idtype=idtype, device=F.ctx())
    g.ndata['h'] = F.copy_to(F.tensor([0, 1, 2, 3], dtype=idtype), ctx=F.ctx())
    g.edata['h'] = F.copy_to(F.tensor([0, 1, 2], dtype=idtype), ctx=F.ctx())

    # remove nodes
    sg = dgl.remove_nodes(g, [3])
    # check for lazy update
    assert F.array_equal(sg._node_frames[0]._columns['h'].storage, g.ndata['h'])
    assert F.array_equal(sg._edge_frames[0]._columns['h'].storage, g.edata['h'])
    assert sg.ndata['h'].shape[0] == 3
    assert sg.edata['h'].shape[0] == 2
    # update after read
    assert F.array_equal(sg._node_frames[0]._columns['h'].storage, F.tensor([0, 1, 2], dtype=idtype))
    assert F.array_equal(sg._edge_frames[0]._columns['h'].storage, F.tensor([0, 1], dtype=idtype))

    ng = dgl.add_nodes(sg, 1)
    assert ng.ndata['h'].shape[0] == 4
    assert F.array_equal(ng._node_frames[0]._columns['h'].storage, F.tensor([0, 1, 2, 0], dtype=idtype))
    ng = dgl.add_edges(ng, [3], [1])
    assert ng.edata['h'].shape[0] == 3
    assert F.array_equal(ng._edge_frames[0]._columns['h'].storage, F.tensor([0, 1, 0], dtype=idtype))

    # multi level lazy update
    sg = dgl.remove_nodes(g, [3])
    assert F.array_equal(sg._node_frames[0]._columns['h'].storage, g.ndata['h'])
    assert F.array_equal(sg._edge_frames[0]._columns['h'].storage, g.edata['h'])
    ssg = dgl.remove_nodes(sg, [1])
    assert F.array_equal(ssg._node_frames[0]._columns['h'].storage, g.ndata['h'])
    assert F.array_equal(ssg._edge_frames[0]._columns['h'].storage, g.edata['h'])
    # ssg is changed
    assert ssg.ndata['h'].shape[0] == 2
    assert ssg.edata['h'].shape[0] == 0
    assert F.array_equal(ssg._node_frames[0]._columns['h'].storage, F.tensor([0, 2], dtype=idtype))
    # sg still in lazy model
    assert F.array_equal(sg._node_frames[0]._columns['h'].storage, g.ndata['h'])
    assert F.array_equal(sg._edge_frames[0]._columns['h'].storage, g.edata['h'])

@unittest.skipIf(dgl.backend.backend_name == "tensorflow", reason="TensorFlow always create a new tensor")
@unittest.skipIf(F._default_context_str == 'cpu', reason="cpu do not have context change problem")
nv-dlasalle's avatar
nv-dlasalle committed
2662
@parametrize_idtype
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
def test_frame_device(idtype):
    g = dgl.graph(([0,1,2], [2,3,1]))
    g.ndata['h'] = F.copy_to(F.tensor([1,1,1,2], dtype=idtype), ctx=F.cpu())
    g.ndata['hh'] = F.copy_to(F.ones((4,3), dtype=idtype), ctx=F.cpu())
    g.edata['h'] = F.copy_to(F.tensor([1,2,3], dtype=idtype), ctx=F.cpu())

    g = g.to(F.ctx())
    # lazy device copy
    assert F.context(g._node_frames[0]._columns['h'].storage) == F.cpu()
    assert F.context(g._node_frames[0]._columns['hh'].storage) == F.cpu()
    print(g.ndata['h'])
    assert F.context(g._node_frames[0]._columns['h'].storage) == F.ctx()
    assert F.context(g._node_frames[0]._columns['hh'].storage) == F.cpu()
    assert F.context(g._edge_frames[0]._columns['h'].storage) == F.cpu()

    # lazy device copy in subgraph
    sg = dgl.node_subgraph(g, [0,1,2])
    assert F.context(sg._node_frames[0]._columns['h'].storage) == F.ctx()
    assert F.context(sg._node_frames[0]._columns['hh'].storage) == F.cpu()
    assert F.context(sg._edge_frames[0]._columns['h'].storage) == F.cpu()
    print(sg.ndata['hh'])
    assert F.context(sg._node_frames[0]._columns['hh'].storage) == F.ctx()
    assert F.context(sg._edge_frames[0]._columns['h'].storage) == F.cpu()

    # back to cpu
    sg = sg.to(F.cpu())
    assert F.context(sg._node_frames[0]._columns['h'].storage) == F.ctx()
    assert F.context(sg._node_frames[0]._columns['hh'].storage) == F.ctx()
    assert F.context(sg._edge_frames[0]._columns['h'].storage) == F.cpu()
    print(sg.ndata['h'])
    print(sg.ndata['hh'])
    print(sg.edata['h'])
    assert F.context(sg._node_frames[0]._columns['h'].storage) == F.cpu()
    assert F.context(sg._node_frames[0]._columns['hh'].storage) == F.cpu()
    assert F.context(sg._edge_frames[0]._columns['h'].storage) == F.cpu()

    # set some field
    sg = sg.to(F.ctx())
    assert F.context(sg._node_frames[0]._columns['h'].storage) == F.cpu()
    sg.ndata['h'][0] = 5
    assert F.context(sg._node_frames[0]._columns['h'].storage) == F.ctx()
    assert F.context(sg._node_frames[0]._columns['hh'].storage) == F.cpu()
    assert F.context(sg._edge_frames[0]._columns['h'].storage) == F.cpu()

    # add nodes
    ng = dgl.add_nodes(sg, 3)
    assert F.context(ng._node_frames[0]._columns['h'].storage) == F.ctx()
    assert F.context(ng._node_frames[0]._columns['hh'].storage) == F.ctx()
    assert F.context(ng._edge_frames[0]._columns['h'].storage) == F.cpu()

nv-dlasalle's avatar
nv-dlasalle committed
2713
@parametrize_idtype
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
def test_create_block(idtype):
    block = dgl.create_block(([0, 1, 2], [1, 2, 3]), idtype=idtype, device=F.ctx())
    assert block.num_src_nodes() == 3
    assert block.num_dst_nodes() == 4
    assert block.num_edges() == 3

    block = dgl.create_block(([], []), idtype=idtype, device=F.ctx())
    assert block.num_src_nodes() == 0
    assert block.num_dst_nodes() == 0
    assert block.num_edges() == 0

    block = dgl.create_block(([], []), 3, 4, idtype=idtype, device=F.ctx())
    assert block.num_src_nodes() == 3
    assert block.num_dst_nodes() == 4
    assert block.num_edges() == 0

    block = dgl.create_block(([0, 1, 2], [1, 2, 3]), 4, 5, idtype=idtype, device=F.ctx())
    assert block.num_src_nodes() == 4
    assert block.num_dst_nodes() == 5
    assert block.num_edges() == 3

    sx = F.randn((4, 5))
    dx = F.randn((5, 6))
    ex = F.randn((3, 4))
    block.srcdata['x'] = sx
    block.dstdata['x'] = dx
    block.edata['x'] = ex

    g = dgl.block_to_graph(block)
    assert g.num_src_nodes() == 4
    assert g.num_dst_nodes() == 5
    assert g.num_edges() == 3
    assert g.srcdata['x'] is sx
    assert g.dstdata['x'] is dx
    assert g.edata['x'] is ex

    block = dgl.create_block({
        ('A', 'AB', 'B'): ([1, 2, 3], [2, 1, 0]),
        ('B', 'BA', 'A'): ([2, 3], [3, 4])},
        idtype=idtype, device=F.ctx())
    assert block.num_src_nodes('A') == 4
    assert block.num_src_nodes('B') == 4
    assert block.num_dst_nodes('B') == 3
    assert block.num_dst_nodes('A') == 5
    assert block.num_edges('AB') == 3
    assert block.num_edges('BA') == 2

    block = dgl.create_block({
        ('A', 'AB', 'B'): ([], []),
        ('B', 'BA', 'A'): ([], [])},
        idtype=idtype, device=F.ctx())
    assert block.num_src_nodes('A') == 0
    assert block.num_src_nodes('B') == 0
    assert block.num_dst_nodes('B') == 0
    assert block.num_dst_nodes('A') == 0
    assert block.num_edges('AB') == 0
    assert block.num_edges('BA') == 0

    block = dgl.create_block({
        ('A', 'AB', 'B'): ([], []),
        ('B', 'BA', 'A'): ([], [])},
        num_src_nodes={'A': 5, 'B': 5},
        num_dst_nodes={'A': 6, 'B': 4},
        idtype=idtype, device=F.ctx())
    assert block.num_src_nodes('A') == 5
    assert block.num_src_nodes('B') == 5
    assert block.num_dst_nodes('B') == 4
    assert block.num_dst_nodes('A') == 6
    assert block.num_edges('AB') == 0
    assert block.num_edges('BA') == 0

    block = dgl.create_block({
        ('A', 'AB', 'B'): ([1, 2, 3], [2, 1, 0]),
        ('B', 'BA', 'A'): ([2, 3], [3, 4])},
        num_src_nodes={'A': 5, 'B': 5},
        num_dst_nodes={'A': 6, 'B': 4},
        idtype=idtype, device=F.ctx())
    assert block.num_src_nodes('A') == 5
    assert block.num_src_nodes('B') == 5
    assert block.num_dst_nodes('B') == 4
    assert block.num_dst_nodes('A') == 6
    assert block.num_edges(('A', 'AB', 'B')) == 3
    assert block.num_edges(('B', 'BA', 'A')) == 2

    sax = F.randn((5, 3))
    sbx = F.randn((5, 4))
    dax = F.randn((6, 5))
    dbx = F.randn((4, 6))
    eabx = F.randn((3, 7))
    ebax = F.randn((2, 8))
    block.srcnodes['A'].data['x'] = sax
    block.srcnodes['B'].data['x'] = sbx
    block.dstnodes['A'].data['x'] = dax
    block.dstnodes['B'].data['x'] = dbx
    block.edges['AB'].data['x'] = eabx
    block.edges['BA'].data['x'] = ebax

    hg = dgl.block_to_graph(block)
    assert hg.num_nodes('A_src') == 5
    assert hg.num_nodes('B_src') == 5
    assert hg.num_nodes('A_dst') == 6
    assert hg.num_nodes('B_dst') == 4
    assert hg.num_edges(('A_src', 'AB', 'B_dst')) == 3
    assert hg.num_edges(('B_src', 'BA', 'A_dst')) == 2
    assert hg.nodes['A_src'].data['x'] is sax
    assert hg.nodes['B_src'].data['x'] is sbx
    assert hg.nodes['A_dst'].data['x'] is dax
    assert hg.nodes['B_dst'].data['x'] is dbx
    assert hg.edges['AB'].data['x'] is eabx
    assert hg.edges['BA'].data['x'] is ebax
2824

nv-dlasalle's avatar
nv-dlasalle committed
2825
@parametrize_idtype
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
@pytest.mark.parametrize('fmt', ['coo', 'csr', 'csc'])
def test_adj_sparse(idtype, fmt):
    if fmt == 'coo':
        A = ssp.random(10, 10, 0.2).tocoo()
        A.data = np.arange(20)
        row = F.tensor(A.row, idtype)
        col = F.tensor(A.col, idtype)
        g = dgl.graph((row, col))
    elif fmt == 'csr':
        A = ssp.random(10, 10, 0.2).tocsr()
        A.data = np.arange(20)
        indptr = F.tensor(A.indptr, idtype)
        indices = F.tensor(A.indices, idtype)
        g = dgl.graph(('csr', (indptr, indices, [])))
        with pytest.raises(DGLError):
            g2 = dgl.graph(('csr', (indptr[:-1], indices, [])), num_nodes=10)
    elif fmt == 'csc':
        A = ssp.random(10, 10, 0.2).tocsc()
        A.data = np.arange(20)
        indptr = F.tensor(A.indptr, idtype)
        indices = F.tensor(A.indices, idtype)
        g = dgl.graph(('csc', (indptr, indices, [])))
        with pytest.raises(DGLError):
            g2 = dgl.graph(('csr', (indptr[:-1], indices, [])), num_nodes=10)

    A_coo = A.tocoo()
    A_csr = A.tocsr()
    A_csc = A.tocsc()
    row, col = g.adj_sparse('coo')
    assert np.array_equal(F.asnumpy(row), A_coo.row)
    assert np.array_equal(F.asnumpy(col), A_coo.col)

    indptr, indices, eids = g.adj_sparse('csr')
    assert np.array_equal(F.asnumpy(indptr), A_csr.indptr)
    if fmt == 'csr':
        assert len(eids) == 0
        assert np.array_equal(F.asnumpy(indices), A_csr.indices)
    else:
        indices_sorted = F.zeros(len(indices), idtype)
        indices_sorted = F.scatter_row(indices_sorted, eids, indices)
        indices_sorted_np = np.zeros(len(indices), dtype=A_csr.indices.dtype)
        indices_sorted_np[A_csr.data] = A_csr.indices
        assert np.array_equal(F.asnumpy(indices_sorted), indices_sorted_np)

    indptr, indices, eids = g.adj_sparse('csc')
    assert np.array_equal(F.asnumpy(indptr), A_csc.indptr)
    if fmt == 'csc':
        assert len(eids) == 0
        assert np.array_equal(F.asnumpy(indices), A_csc.indices)
    else:
        indices_sorted = F.zeros(len(indices), idtype)
        indices_sorted = F.scatter_row(indices_sorted, eids, indices)
        indices_sorted_np = np.zeros(len(indices), dtype=A_csc.indices.dtype)
        indices_sorted_np[A_csc.data] = A_csc.indices
        assert np.array_equal(F.asnumpy(indices_sorted), indices_sorted_np)

2882

2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
def _test_forking_pickler_entry(g, q):
    q.put(g.formats())

@unittest.skipIf(dgl.backend.backend_name == "mxnet", reason="MXNet doesn't support spawning")
def test_forking_pickler():
    ctx = mp.get_context('spawn')
    g = dgl.graph(([0,1,2],[1,2,3]))
    g.create_formats_()
    q = ctx.Queue(1)
    proc = ctx.Process(target=_test_forking_pickler_entry, args=(g, q))
    proc.start()
    fmt = q.get()['created']
    proc.join()
    assert 'coo' in fmt
    assert 'csr' in fmt
    assert 'csc' in fmt


2901
if __name__ == '__main__':
2902
2903
2904
2905
2906
    # test_create()
    # test_query()
    # test_hypersparse()
    # test_adj("int32")
    # test_inc()
2907
    # test_view("int32")
2908
    # test_view1("int32")
2909
    # test_flatten(F.int32)
2910
2911
    # test_convert_bound()
    # test_convert()
2912
    # test_to_device("int32")
2913
    # test_transform("int32")
2914
2915
    # test_subgraph("int32")
    # test_subgraph_mask("int32")
2916
2917
2918
2919
2920
    # test_apply()
    # test_level1()
    # test_level2()
    # test_updates()
    # test_backward()
2921
    # test_empty_heterograph('int32')
2922
2923
2924
2925
    # test_types_in_function()
    # test_stack_reduce()
    # test_isolated_ntype()
    # test_bipartite()
2926
    # test_dtype_cast()
2927
    # test_float_cast()
2928
    # test_reverse("int32")
2929
    # test_format()
2930
2931
2932
2933
2934
    #test_add_edges(F.int32)
    #test_add_nodes(F.int32)
    #test_remove_edges(F.int32)
    #test_remove_nodes(F.int32)
    #test_clone(F.int32)
2935
2936
2937
    #test_frame(F.int32)
    #test_frame_device(F.int32)
    #test_empty_query(F.int32)
2938
    #test_create_block(F.int32)
2939
    pass