test_heterograph.py 8.11 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225

import dgl
import dgl.function as fn
from collections import Counter
import numpy as np
import scipy.sparse as ssp
import itertools
import backend as F
import networkx as nx

def create_test_heterograph():
    # test heterograph from the docstring, plus a user -- wishes -- game relation
    mg = nx.MultiDiGraph([
        ('user', 'user', 'follows'),
        ('user', 'game', 'plays'),
        ('user', 'game', 'wishes'),
        ('developer', 'game', 'develops')])

    plays_spmat = ssp.coo_matrix(([1, 1, 1, 1], ([0, 1, 2, 1], [0, 0, 1, 1])))
    g = dgl.DGLHeteroGraph((mg, {
        ('user', 'follows', 'user'): [(0, 1), (1, 2)],
        ('user', 'plays', 'game'): plays_spmat,
        ('user', 'wishes', 'game'): [(0, 1), (2, 0)],
        ('developer', 'develops', 'game'): [(0, 0), (1, 1)],
        }))

    return g

def test_query():
    g = create_test_heterograph()

    ntypes = ['user', 'game', 'developer']
    etypes = [
        ('user', 'follows', 'user'),
        ('user', 'plays', 'game'),
        ('user', 'wishes', 'game'),
        ('developer', 'develops', 'game')]
    edges = {
        ('user', 'follows', 'user'): ([0, 1], [1, 2]),
        ('user', 'plays', 'game'): ([0, 1, 1, 2], [0, 0, 1, 1]),
        ('user', 'wishes', 'game'): ([0, 2], [1, 0]),
        ('developer', 'develops', 'game'): ([0, 1], [0, 1]),
        }
    # edges that does not exist in the graph
    negative_edges = {
        ('user', 'follows', 'user'): ([0, 1], [0, 1]),
        ('user', 'plays', 'game'): ([0, 2], [1, 0]),
        ('user', 'wishes', 'game'): ([0, 1], [0, 1]),
        ('developer', 'develops', 'game'): ([0, 1], [1, 0]),
        }

    # node & edge types
    assert set(ntypes) == set(g.all_node_types)
    assert set(etypes) == set(g.all_edge_types)

    # metagraph
    mg = g.metagraph
    assert set(g.all_node_types) == set(mg.nodes)
    etype_triplets = [(u, v, e) for u, v, e in mg.edges(keys=True)]
    assert set([
        ('user', 'user', 'follows'),
        ('user', 'game', 'plays'),
        ('user', 'game', 'wishes'),
        ('developer', 'game', 'develops')]) == set(etype_triplets)

    # number of nodes
    assert [g.number_of_nodes(ntype) for ntype in ntypes] == [3, 2, 2]

    # number of edges
    assert [g.number_of_edges(etype) for etype in etypes] == [2, 4, 2, 2]

    # has_node & has_nodes
    for ntype in ntypes:
        n = g.number_of_nodes(ntype)
        for i in range(n):
            assert g.has_node(ntype, i)
        assert not g.has_node(ntype, n)
        assert np.array_equal(
            F.asnumpy(g.has_nodes(ntype, [0, n])).astype('int32'), [1, 0])

    for etype in etypes:
        srcs, dsts = edges[etype]
        for src, dst in zip(srcs, dsts):
            assert g.has_edge_between(etype, src, dst)
        assert F.asnumpy(g.has_edges_between(etype, srcs, dsts)).all()

        srcs, dsts = negative_edges[etype]
        for src, dst in zip(srcs, dsts):
            assert not g.has_edge_between(etype, src, dst)
        assert not F.asnumpy(g.has_edges_between(etype, srcs, dsts)).any()

        srcs, dsts = edges[etype]
        n_edges = len(srcs)

        # predecessors & in_edges & in_degree
        pred = [s for s, d in zip(srcs, dsts) if d == 0]
        assert set(F.asnumpy(g.predecessors(etype, 0)).tolist()) == set(pred)
        u, v = g.in_edges(etype, [0])
        assert F.asnumpy(v).tolist() == [0] * len(pred)
        assert set(F.asnumpy(u).tolist()) == set(pred)
        assert g.in_degree(etype, 0) == len(pred)

        # successors & out_edges & out_degree
        succ = [d for s, d in zip(srcs, dsts) if s == 0]
        assert set(F.asnumpy(g.successors(etype, 0)).tolist()) == set(succ)
        u, v = g.out_edges(etype, [0])
        assert F.asnumpy(u).tolist() == [0] * len(succ)
        assert set(F.asnumpy(v).tolist()) == set(succ)
        assert g.out_degree(etype, 0) == len(succ)

        # edge_id & edge_ids
        for i, (src, dst) in enumerate(zip(srcs, dsts)):
            assert g.edge_id(etype, src, dst) == i
            assert F.asnumpy(g.edge_id(etype, src, dst, force_multi=True)).tolist() == [i]
        assert F.asnumpy(g.edge_ids(etype, srcs, dsts)).tolist() == list(range(n_edges))
        u, v, e = g.edge_ids(etype, srcs, dsts, force_multi=True)
        assert F.asnumpy(u).tolist() == srcs
        assert F.asnumpy(v).tolist() == dsts
        assert F.asnumpy(e).tolist() == list(range(n_edges))

        # find_edges
        u, v = g.find_edges(etype, list(range(n_edges)))
        assert F.asnumpy(u).tolist() == srcs
        assert F.asnumpy(v).tolist() == dsts

        # all_edges.  edges are already in srcdst order
        for order in ['srcdst', 'eid']:
            u, v, e = g.all_edges(etype, 'all', order)
            assert F.asnumpy(u).tolist() == srcs
            assert F.asnumpy(v).tolist() == dsts
            assert F.asnumpy(e).tolist() == list(range(n_edges))

        # in_degrees & out_degrees
        in_degrees = F.asnumpy(g.in_degrees(etype))
        out_degrees = F.asnumpy(g.out_degrees(etype))
        src_count = Counter(srcs)
        dst_count = Counter(dsts)
        utype, _, vtype = etype
        for i in range(g.number_of_nodes(utype)):
            assert out_degrees[i] == src_count[i]
        for i in range(g.number_of_nodes(vtype)):
            assert in_degrees[i] == dst_count[i]

def test_frame():
    g = create_test_heterograph()

    f1 = F.randn((3, 6))
    g.ndata['user']['h'] = f1       # ok
    f2 = g.ndata['user']['h']
    assert F.array_equal(f1, f2)
    assert F.array_equal(g.nodes['user'][0].data['h'], f1[0:1])

    f3 = F.randn((2, 4))
    g.edata['user', 'follows', 'user']['h'] = f3
    f4 = g.edata['user', 'follows', 'user']['h']
    assert F.array_equal(f3, f4)
    assert F.array_equal(g.edges['user', 'follows', 'user'][0].data['h'], f3[0:1])

def test_apply():
    def node_udf(nodes):
        return {'h': nodes.data['h'] * 2}
    def edge_udf(edges):
        return {'h': edges.data['h'] * 2 + edges.src['h']}

    g = create_test_heterograph()
    g.ndata['user']['h'] = F.ones((3, 5))
    g.apply_nodes({'user': node_udf})
    assert F.array_equal(g.ndata['user']['h'], F.ones((3, 5)) * 2)

    g.edata['user', 'plays', 'game']['h'] = F.ones((4, 5))
    g.apply_edges({('user', 'plays', 'game'): edge_udf})
    assert F.array_equal(g.edata['user', 'plays', 'game']['h'], F.ones((4, 5)) * 4)

def test_updates():
    def msg_func(edges):
        return {'m': edges.src['h']}
    def reduce_func(nodes):
        return {'y': F.sum(nodes.mailbox['m'], 1)}
    def apply_func(nodes):
        return {'y': nodes.data['y'] * 2}
    g = create_test_heterograph()
    x = F.randn((3, 5))
    g.ndata['user']['h'] = x

    for msg, red, apply in itertools.product(
            [fn.copy_u('h', 'm'), msg_func], [fn.sum('m', 'y'), reduce_func],
            [None, apply_func]):
        multiplier = 1 if apply is None else 2

        g['user', 'plays', 'game'].update_all(msg, red, apply)
        y = g.ndata['game']['y']
        assert F.array_equal(y[0], (x[0] + x[1]) * multiplier)
        assert F.array_equal(y[1], (x[1] + x[2]) * multiplier)
        del g.ndata['game']['y']

        g['user', 'plays', 'game'].send_and_recv(([0, 1, 2], [0, 1, 1]), msg, red, apply)
        y = g.ndata['game']['y']
        assert F.array_equal(y[0], x[0] * multiplier)
        assert F.array_equal(y[1], (x[1] + x[2]) * multiplier)
        del g.ndata['game']['y']

        g['user', 'plays', 'game'].send(([0, 1, 2], [0, 1, 1]), msg)
        g['user', 'plays', 'game'].recv([0, 1], red, apply)
        y = g.ndata['game']['y']
        assert F.array_equal(y[0], x[0] * multiplier)
        assert F.array_equal(y[1], (x[1] + x[2]) * multiplier)
        del g.ndata['game']['y']

        # pulls from destination (game) node 0
        g['user', 'plays', 'game'].pull(0, msg, red, apply)
        y = g.ndata['game']['y']
        assert F.array_equal(y[0], (x[0] + x[1]) * multiplier)
        del g.ndata['game']['y']

        # pushes from source (user) node 0
        g['user', 'plays', 'game'].push(0, msg, red, apply)
        y = g.ndata['game']['y']
        assert F.array_equal(y[0], x[0] * multiplier)
        del g.ndata['game']['y']

if __name__ == '__main__':
    test_query()
    test_frame()
    test_apply()
    test_updates()