test_functional.py 57.3 KB
Newer Older
Tim Dettmers's avatar
Tim Dettmers committed
1
2
3
import math
import random
import time
Tim Dettmers's avatar
Tim Dettmers committed
4

5
import einops
Aarni Koskela's avatar
Aarni Koskela committed
6
import numpy as np
7
8
9
10
import pytest
import torch

import bitsandbytes as bnb
Tim Dettmers's avatar
Tim Dettmers committed
11
from bitsandbytes import functional as F
12
from bitsandbytes.cextension import HIP_ENVIRONMENT, ROCM_GPU_ARCH
Aarni Koskela's avatar
Aarni Koskela committed
13
14
15
16
from tests.helpers import (
    BOOLEAN_TUPLES,
    TRUE_FALSE,
    describe_dtype,
17
    get_available_devices,
Aarni Koskela's avatar
Aarni Koskela committed
18
19
    get_test_dims,
    id_formatter,
20
    is_supported_on_hpu,
Aarni Koskela's avatar
Aarni Koskela committed
21
)
Tim Dettmers's avatar
Tim Dettmers committed
22

Ruff's avatar
Ruff committed
23
torch.set_printoptions(precision=5, sci_mode=False, linewidth=120, edgeitems=20, threshold=10000)
Tim Dettmers's avatar
Tim Dettmers committed
24
25
k = 20

26

Tim Dettmers's avatar
Tim Dettmers committed
27
def assert_all_approx_close(a, b, rtol=1e-3, atol=1e-3, count=0, throw=True):
28
    idx = torch.isclose(a, b, rtol=rtol, atol=atol)
29
    sumval = (idx == 0).sum().item()
Tim Dettmers's avatar
Tim Dettmers committed
30
    if sumval > count:
Tim Dettmers's avatar
Tim Dettmers committed
31
32
        if throw:
            print(f"Too many values not close: assert {sumval} < {count}")
33
            torch.testing.assert_close(a, b, rtol=rtol, atol=atol)
Tim Dettmers's avatar
Tim Dettmers committed
34
35

    return sumval
Tim Dettmers's avatar
Tim Dettmers committed
36

37

Tim Dettmers's avatar
Tim Dettmers committed
38
39
class FFN(torch.nn.Module):
    def __init__(self, input_features, hidden_size, bias=True):
40
        super().__init__()
Tim Dettmers's avatar
Tim Dettmers committed
41
42
43
44
45
46
47
48
49
50
51
52
        self.fc1 = torch.nn.Linear(input_features, hidden_size, bias=bias)
        self.fc2 = torch.nn.Linear(hidden_size, input_features, bias=bias)

        with torch.no_grad():
            torch.nn.init.xavier_uniform_(self.fc1.weight)
            torch.nn.init.xavier_uniform_(self.fc2.weight)

    def forward(self, x):
        x = torch.relu(self.fc1(x))
        x = self.fc2(x)
        return x

53

54
class Timer:
Tim Dettmers's avatar
Tim Dettmers committed
55
56
57
58
59
    def __init__(self):
        self.starts = {}
        self.ends = {}
        self.agg = {}

60
    def tick(self, name="default"):
Tim Dettmers's avatar
Tim Dettmers committed
61
62
63
64
65
66
67
        if name not in self.starts:
            self.starts[name] = torch.cuda.Event(enable_timing=True)
            self.ends[name] = torch.cuda.Event(enable_timing=True)
            self.starts[name].record()
        else:
            ms = self.tock(name, evict=True, print_ms=False)

68
    def tock(self, name="default", evict=True, print_ms=True):
Tim Dettmers's avatar
Tim Dettmers committed
69
70
71
72
        if name in self.ends:
            self.ends[name].record()
            torch.cuda.synchronize()
            ms = self.starts[name].elapsed_time(self.ends[name])
73
74
            if name not in self.agg:
                self.agg[name] = 0.0
Tim Dettmers's avatar
Tim Dettmers committed
75
76
77
78
79
80
            self.agg[name] += ms
            if evict:
                self.starts.pop(name)
                self.ends.pop(name)

        if print_ms and name in self.agg:
81
            print(f"{name} took: {self.agg[name] / 1000.0:.5f}s")
Tim Dettmers's avatar
Tim Dettmers committed
82
83
84
85

        return self.agg[name]

    def reset(self):
86
        self.starts = {}
Tim Dettmers's avatar
Tim Dettmers committed
87
88
        self.ends = {}
        self.agg = {}
89
90
        print("Resetting benchmark data")

Tim Dettmers's avatar
Tim Dettmers committed
91

92
class Test8BitBlockwiseQuantizeFunctional:
93
    @pytest.mark.parametrize("device", get_available_devices())
94
95
    @pytest.mark.parametrize("dtype", [torch.float32, torch.float16, torch.bfloat16], ids=describe_dtype)
    @pytest.mark.parametrize("nested", TRUE_FALSE, ids=id_formatter("nested"))
96
97
98
99
    @pytest.mark.parametrize(
        "blocksize",
        [4096, 2048, 1024, 512, 256, 128, 64] if not HIP_ENVIRONMENT else [4096, 2048, 1024, 512, 256, 128],
    )
100
    @pytest.mark.parametrize("signed", TRUE_FALSE, ids=id_formatter("signed"))
101
    def test_dynamic_blockwise_quantization(self, device, dtype, nested, blocksize, signed):
102
103
        iters = 100

104
        if device == "cpu":
105
106
            iters = 10

107
108
109
110
            # This test is slow on CPU, so avoid atypical use cases.
            if nested:
                pytest.skip("Not a typical use case.")
            if blocksize != 256:
111
                pytest.skip("Only blocksize 256 is used in CPU/XPU")
112
            if dtype != torch.float32:
113
                pytest.skip("Only float32 is used in CPU/XPU")
114

115
116
        diffs = []
        reldiffs = []
117
        for i in range(iters):
118
            A1 = torch.randn(1024, 1024, device=device, dtype=dtype)
119
120
121
122
123
124
125
126
127
128
129
130
131
132
            C, S = F.quantize_blockwise(A1, blocksize=blocksize, nested=nested)
            A2 = F.dequantize_blockwise(C, S)
            diff = torch.abs(A1 - A2).float()
            reldiff = diff / torch.abs(A1.float() + 1e-8)
            diffs.append(diff.mean().item())
            reldiffs.append(reldiff.mean().item())
        abserr = sum(diffs) / len(diffs)
        relerr = sum(reldiffs) / len(reldiffs)
        assert abserr < 0.011
        assert relerr < 0.018
        assert A2.dtype == dtype

        diffs = []
        code = F.create_dynamic_map(signed=signed)
133
        for i in range(iters):
134
            A1 = torch.rand(1024, 1024, device=device, dtype=dtype)
135
136
137
138
139
140
141
142
143
144
            C, S = F.quantize_blockwise(A1, blocksize=blocksize, nested=nested, code=code)
            A2 = F.dequantize_blockwise(C, S)
            diff = torch.abs(A1 - A2).float()
            reldiff = diff / torch.abs(A1.float() + 1e-8)
            diffs.append(diff.mean().item())
            reldiffs.append(reldiff.mean().item())
            # torch.testing.assert_close(A1, A2, atol=1e-2, rtol=0)
        abserr = sum(diffs) / len(diffs)
        relerr = sum(reldiffs) / len(reldiffs)
        if signed:
145
            threshold_abserr = 0.0036 if device in ("cpu", "xpu") and (F.ipex_cpu or F.ipex_xpu) else 0.0035
146
            assert abserr < 0.0036
147
148
            assert relerr < 0.015
        else:
149
            assert abserr < 0.00175 if device in ("cpu", "xpu") and (F.ipex_cpu or F.ipex_xpu) else 0.0023
150
151
152
            assert relerr < 0.012
        assert A2.dtype == dtype

153
154
155
156
    @pytest.mark.skipif("cpu" not in get_available_devices(), reason="CPU is required")
    @pytest.mark.parametrize("hidden", [128])
    @pytest.mark.parametrize("blocksize", [4096, 16384])
    def test_blockwise_cpu_large(self, hidden, blocksize):
157
158
159
160
        diffs = []
        reldiffs = []
        batch = 128
        seq = 128
161
162
163
164
165
166
167
168
169
170
171
172
173
174

        for i in range(2):
            A1 = torch.randn(batch, seq, hidden, device="cpu")
            t0 = time.time()
            C, S = F.quantize_blockwise(A1, blocksize=blocksize)
            A2 = F.dequantize_blockwise(C, S, blocksize=blocksize)
            print(time.time() - t0)
            diff = torch.abs(A1 - A2)
            reldiff = diff / torch.abs(A1 + 1e-8)
            diffs.append(diff.mean().item())
            reldiffs.append(reldiff.mean().item())
            assert diffs[-1] < 0.011
        # print(sum(diffs)/len(diffs))
        # print(sum(reldiffs)/len(reldiffs))
175

176
    @pytest.mark.parametrize("device", get_available_devices())
177
    @pytest.mark.parametrize("bits", range(2, 9), ids=id_formatter("bits"))
Matthew Douglas's avatar
Matthew Douglas committed
178
    @pytest.mark.parametrize("method", ["linear", "fp8", "dynamic"])
179
    def test_few_bit_quant(self, device, bits, method):
180
        if bits != 8 and (device == "cpu" or (device == "xpu" and F.ipex_xpu)):
181
            pytest.skip("CPU/XPU implementation only supports 8 bits")
182

183
184
185
186
        abserrs = []
        relerrs = []
        code = None
        if method == "linear":
187
            code = F.create_linear_map(True, total_bits=bits).to(device)
188
189
190
        elif method == "fp8":
            ebits = math.ceil(bits / 2)
            pbits = bits - ebits - 1
191
            code = F.create_fp8_map(True, ebits, pbits, bits).to(device)
192
        elif method == "dynamic":
193
            code = F.create_dynamic_map(True, bits - 0, bits).to(device)
Matthew Douglas's avatar
Matthew Douglas committed
194

195
196
197
198
199
200
201
        # for some data types we have no zero
        # for some data types we have one zero
        # for some data types we have two zeros
        assert torch.unique(code).numel() in [2**bits, 2**bits - 1], f"bits: {bits}, method: {method}"
        # print(method, (code==0).sum())
        assert code.numel() == 256
        for i in range(10):
202
            values = torch.randn(1, 32, device=device)
203
204
205
206
207
208
209
210
211
212
            values /= values.abs().max()
            # values[values.abs() < 1e-6] += 1e-5

            q1 = []
            v1 = []
            for v in values[0]:
                idx = torch.abs(v - code).argmin()
                q1.append(idx.item())
                v1.append(code[idx].item())

213
214
            q1 = torch.tensor(q1, device=device)
            v1 = torch.tensor(v1, device=device)
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229

            q2, S2 = F.quantize_blockwise(values, code=code)
            v2 = F.dequantize_blockwise(q2, S2)

            idx = torch.isclose(q1.int(), q2.int())
            err2 = torch.abs(v2 - values)
            abserrs.append(err2.mean().item())
            relerrs.append((err2 / (1e-10 + values).abs()).mean().item())
            if idx.sum():
                # some weird cases
                err1 = torch.abs(v1 - values).mean()
                # assert err2.mean() <= err1
            else:
                torch.testing.assert_close(q1, q2)

230
231
232
233
234
235
    @pytest.mark.parametrize("device", get_available_devices())
    def test_fp8_quant(self, device):
        # TODO
        if device == "cpu":
            pytest.skip("CPU implementation segfaults")

236
237
        for e_bits in range(1, 7):
            p_bits = 7 - e_bits
238
            code = F.create_fp8_map(True, e_bits, p_bits).to(device)
239
240
241
242

            abserr = []
            relerr = []
            for i in range(100):
243
                A1 = torch.randn(1024, 1024, device=device)
244
245
246
247
248
249
250
251
252
253
254
255
256
                C, SC = F.quantize_blockwise(A1, code=code)
                A2 = F.dequantize_blockwise(C, SC)
                diff = torch.abs(A1 - A2)
                reldiff = diff / torch.abs(A1 + 1e-8)
                abserr.append(diff.mean().item())
                relerr.append(reldiff.mean().item())
                # assert diff < 0.0075
            # print(sum(abserr)/len(abserr))
            # print(sum(relerr)/len(relerr))

            abserr = []
            relerr = []
            for i in range(100):
257
                A1 = torch.rand(1024, 1024, device=device)
258
259
260
261
262
263
264
265
266
267
268
269
270
                C, SC = F.quantize_blockwise(A1, code=code)
                A2 = F.dequantize_blockwise(C, SC)
                diff = torch.abs(A1 - A2)
                reldiff = diff / torch.abs(A1 + 1e-8)
                abserr.append(diff.mean().item())
                relerr.append(reldiff.mean().item())
                # assert diff < 0.0075
            # print(sum(abserr)/len(abserr))
            # print(sum(relerr)/len(relerr))

            abserr = []
            relerr = []
            for i in range(100):
271
                A1 = torch.randn(1024, 1024, device=device)
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
                C, SC = F.quantize_blockwise(A1)
                A2 = F.dequantize_blockwise(C, SC)
                diff = torch.abs(A1 - A2)
                reldiff = diff / torch.abs(A1 + 1e-8)
                abserr.append(diff.mean().item())
                relerr.append(reldiff.mean().item())
                # assert diff < 0.0075
            # print(3, sum(abserr)/len(abserr))
            # print(3, sum(relerr)/len(relerr))

    @pytest.mark.benchmark
    def test_bench_dequantization(self):
        a = torch.rand(1024, 1024, device="cuda").half()
        code = F.create_fp8_map(True, 3, 0, 4).cuda()
        qa, SA = F.quantize_blockwise(a, code=code)
        print(qa.max())

        max_theoretical_mu = 1024 * 1024 * 2 / 1024**3 / 672 * 1000 * 1000
        # print(max_theoretical_mu)

        torch.cuda.synchronize()
        t0 = time.time()
        for i in range(100):
            qa, SA = F.quantize_blockwise(a)
        torch.cuda.synchronize()
        # print((time.time()-t0)/1e6)
Tim Dettmers's avatar
Tim Dettmers committed
298
299


300
301
302
def test_stable_embedding():
    layer = bnb.nn.StableEmbedding(1024, 1024)
    layer.reset_parameters()
Tim Dettmers's avatar
Tim Dettmers committed
303
304


Tim Dettmers's avatar
Tim Dettmers committed
305
306
def quant(x):
    max1 = torch.abs(x).max()
307
    x = torch.round(x / max1 * 127)
Tim Dettmers's avatar
Tim Dettmers committed
308
309
    return max1, x.to(torch.int8)

310

Tim Dettmers's avatar
Tim Dettmers committed
311
def dequant(c, maxC):
312
313
    return c.float() * (maxC / 127)

Tim Dettmers's avatar
Tim Dettmers committed
314
315

def mm_dequant(maxA, maxB, C):
316
317
    return C.float() * (maxA / 127) * (maxB / 127)

Tim Dettmers's avatar
Tim Dettmers committed
318
319
320

def quant_multi(x, dim):
    max1 = torch.amax(torch.abs(x), dim=dim, keepdim=True)
321
322
    max1[max1 == 0] = 1.0
    x = torch.round(x / max1 * 127)
Tim Dettmers's avatar
Tim Dettmers committed
323
324
    return max1, x.to(torch.int8)

325

Tim Dettmers's avatar
Tim Dettmers committed
326
def quant_multi_chunk(x, dim, chunk_size=32):
327
328
329
    if dim == 1:
        x_chunked = einops.rearrange(x, "(c a) b -> c a b", c=chunk_size)
        max1 = torch.amax(torch.abs(x_chunked), dim=dim + 1, keepdim=True)
Tim Dettmers's avatar
Tim Dettmers committed
330
331
        max1 = torch.tile(max1, (1, 1, x.shape[1]))
        max1 = max1.view(x.shape)
332
333
    elif dim == 0:
        x_chunked = einops.rearrange(x, "a (b c) -> a b c", c=chunk_size)
Tim Dettmers's avatar
Tim Dettmers committed
334
335
336
        max1 = torch.amax(torch.abs(x_chunked), dim=dim, keepdim=True)
        max1 = torch.tile(max1, (x.shape[0], 1, 1))
        max1 = max1.view(x.shape)
337
338
    max1[max1 == 0] = 1.0
    x = torch.round(x / max1 * 127)
Tim Dettmers's avatar
Tim Dettmers committed
339
340
    return max1, x.to(torch.int8)

341

Tim Dettmers's avatar
Tim Dettmers committed
342
def mean(xx):
343
344
    return sum(xx) / float(len(xx))

Tim Dettmers's avatar
Tim Dettmers committed
345

Aarni Koskela's avatar
Aarni Koskela committed
346
347
methods = {
    "linear": (
348
349
350
351
352
        lambda x, dim: quant(x),
        lambda x, dim: quant(x),
        dequant,
        dequant,
        mm_dequant,
Aarni Koskela's avatar
Aarni Koskela committed
353
354
355
    ),
    "vectorwise": (quant_multi, quant_multi, dequant, dequant, mm_dequant),
}
356
357


358
@pytest.mark.skipif(not torch.cuda.is_available(), reason="CUDA is required")
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
class TestIGEMMFunctional:
    @pytest.mark.parametrize("dim1", [1024 * 2], ids=id_formatter("dim1"))
    @pytest.mark.parametrize("dim2", [1024 * 16], ids=id_formatter("dim2"))
    @pytest.mark.parametrize("quant_methods", methods.values(), ids=methods.keys())
    @pytest.mark.parametrize("batched", TRUE_FALSE, ids=id_formatter("batched"))
    def test_approx_igemm(self, dim1, dim2, quant_methods, batched):
        dim1 = dim1 - (dim1 % 32)
        dim2 = dim2 - (dim2 % 32)
        errors = []
        relerrors = []
        # print("")
        for i in range(5):
            if batched:
                A = torch.normal(0, 0.5, size=(32, dim1, dim2 // 32), device="cuda")
                B = torch.normal(0, 0.5, size=(32, dim2 // 32, dim1), device="cuda")
                maxA, Ac = quant_methods[0](A, 2)
                maxB, Bc = quant_methods[1](B, 1)
            else:
                A = torch.normal(0, 0.5, size=(dim1, dim2), device="cuda")
                B = torch.normal(0, 0.5, size=(dim2, dim1), device="cuda")
                maxA, Ac = quant_methods[0](A, 1)
                maxB, Bc = quant_methods[1](B, 0)
            torch.testing.assert_close(quant_methods[2](maxA, Ac), A, atol=0.025, rtol=0.05)
            if batched:
                out2 = torch.bmm(A, B)
                C = torch.bmm(Ac.float(), Bc.float())
            else:
                out2 = torch.mm(A, B)
                C = F.igemm(Ac, Bc)
            out = quant_methods[4](maxA, maxB, C)
            std = out2.std()
            out /= std
            out2 /= std
            err = torch.abs(out - out2)
            relerr = err / torch.abs(out2)
            errors.append(err.mean().item())
            relerrors.append(relerr.mean().item())
        # print(mean(errors))
        # print(mean(relerrors))

Matthew Douglas's avatar
Matthew Douglas committed
399
400
401
    @pytest.mark.parametrize("hidden_dim", [32, 256], ids=id_formatter("hidden_dim"))
    @pytest.mark.parametrize("batch_dim", [16, 256], ids=id_formatter("batch_dim"))
    @pytest.mark.parametrize("seq_dim", [16, 256], ids=id_formatter("seq_dim"))
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
    @pytest.mark.parametrize("transpose", BOOLEAN_TUPLES, ids=id_formatter("transpose"))
    def test_igemm(self, hidden_dim, batch_dim, transpose, seq_dim):
        hidden_dim = hidden_dim - (hidden_dim % 32)
        batch_dim = batch_dim - (batch_dim % 16)
        seq_dim = seq_dim - (seq_dim % 16)
        for i in range(k):
            shapeA = (batch_dim, hidden_dim) if not transpose[0] else (hidden_dim, batch_dim)
            shapeB = (
                (32 * random.randint(1, 4), hidden_dim) if transpose[1] else (hidden_dim, 32 * random.randint(1, 4))
            )
            A = torch.randint(-128, 127, size=shapeA, device="cuda").to(torch.int8)
            B = torch.randint(-128, 127, size=shapeB, device="cuda").to(torch.int8)
            if not transpose[0] and not transpose[1]:
                out2 = torch.matmul(A.float(), B.float())
                out = F.igemm(A, B)
            elif not transpose[0] and transpose[1]:
                out2 = torch.matmul(A.float(), B.t().float())
                out = F.igemm(A, B.t())
            elif transpose[0] and not transpose[1]:
                out2 = torch.matmul(A.t().float(), B.float())
                out = F.igemm(A.t(), B)
            elif transpose[0] and transpose[1]:
                out2 = torch.matmul(A.t().float(), B.t().float())
                out = F.igemm(A.t(), B.t())

            torch.testing.assert_close(out.float(), out2)

        for i in range(k):
            shapeA = (batch_dim, seq_dim, hidden_dim)
            shapeB = (
                (32 * random.randint(1, 4), hidden_dim) if transpose[1] else (hidden_dim, 32 * random.randint(1, 4))
            )
            A = torch.randint(-128, 127, size=shapeA, device="cuda").to(torch.int8)
            B = torch.randint(-128, 127, size=shapeB, device="cuda").to(torch.int8)
            if not transpose[0] and not transpose[1]:
                out2 = torch.matmul(A.float(), B.float())
                out = F.igemm(A, B)
            elif not transpose[0] and transpose[1]:
                out2 = torch.matmul(A.float(), B.t().float())
                out = F.igemm(A, B.t())

            torch.testing.assert_close(out.float(), out2)

Matthew Douglas's avatar
Matthew Douglas committed
445
446
447
    @pytest.mark.parametrize("seq_dim", [32, 256, 512], ids=id_formatter("seq_dim"))
    @pytest.mark.parametrize("hidden_dim", [64, 1024, 4096], ids=id_formatter("hidden_dim"))
    @pytest.mark.parametrize("batch_dim", [2, 8, 16], ids=id_formatter("batch_dim"))
448
449
450
451
452
453
454
455
456
457
458
459
460
    def test_dim3_igemm(self, seq_dim, hidden_dim, batch_dim):
        seq_dim = seq_dim - (seq_dim % 32)
        hidden_dim = hidden_dim - (hidden_dim % 32)
        batch_dim = batch_dim - (batch_dim % 2)
        for i in range(25):
            A = torch.randint(-128, 127, size=(batch_dim, seq_dim, hidden_dim), device="cuda").to(torch.int8)
            B = torch.randint(-128, 127, size=(batch_dim, seq_dim, 1024), device="cuda").to(torch.int8)
            out2 = torch.einsum("bsi, bso->io", A.float(), B.float())
            iout = torch.empty(A.shape[2], B.shape[2], dtype=torch.int32, device=A.device)
            out = F.igemm(A, B, out=iout)

            torch.testing.assert_close(out.float(), out2)

Matthew Douglas's avatar
Matthew Douglas committed
461
462
463
    @pytest.mark.parametrize("seq_dim", [32, 512], ids=id_formatter("seq_dim"))
    @pytest.mark.parametrize("hidden_dim", [32, 1024 * 4], ids=id_formatter("hidden_dim"))
    @pytest.mark.parametrize("batch_dim", [2, 16], ids=id_formatter("batch_dim"))
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
    @pytest.mark.parametrize("transpose", TRUE_FALSE, ids=id_formatter("transpose"))
    def test_minmax_igemm(self, seq_dim, hidden_dim, batch_dim, transpose):
        def min_max(x):
            maxA = torch.amax(x, dim=2, keepdim=True)
            minA = torch.amin(x, dim=2, keepdim=True)
            scale = (maxA - minA) / 2.0
            return (127 * (x - minA - scale) / scale).to(torch.int8), minA, scale

        seq_dim = seq_dim - (seq_dim % 16)
        hidden_dim = hidden_dim - (hidden_dim % 16)
        batch_dim = batch_dim - (batch_dim % 2)
        errs = []
        relerrs = []
        errs2 = []
        relerrs2 = []
        for i in range(k):
            A = torch.normal(0.0, 0.5, size=(batch_dim, seq_dim, hidden_dim), device="cuda")
            if transpose:
                B = torch.normal(0, 0.5, size=(256, hidden_dim), device="cuda")
            else:
                B = torch.normal(0, 0.5, size=(hidden_dim, 256), device="cuda")
            Ac, minA, scale = min_max(A)
            if transpose:
                maxB, Bc = quant_multi(B, dim=(1 if transpose else 0))
                out = F.igemm(Ac, Bc.t())
                out2 = torch.matmul(A, B.t())
                offset = B.t().sum(0) * (minA + scale)
                out = out.float()
                out = (out * maxB.t() * scale / (127 * 127)) + offset

                maxA, Ac = quant_multi(A, dim=2)
                out3 = F.igemm(Ac, Bc.t())
                out3 = mm_dequant(maxA, maxB.t(), out3)
            else:
                maxB, Bc = quant_multi(B, dim=0)
                offset = B.sum(0) * (minA + scale)
                out = F.igemm(Ac, Bc)
                out2 = torch.matmul(A, B)
                out = out.float()
                out = (out * maxB * scale / (127 * 127)) + offset

                maxA, Ac = quant_multi(A, dim=2)
                out3 = F.igemm(Ac, Bc)
                out3 = mm_dequant(maxA, maxB, out3)

            std = out2.std()
            out2 /= std
            out /= std
            out3 /= std

            err = torch.abs(out - out2)
            relerr = err / (torch.abs(out2) + 1e-7)

            err2 = torch.abs(out3 - out2)
            relerr2 = err2 / (torch.abs(out2) + 1e-7)

            errs.append(err.mean().item())
            relerrs.append(relerr.mean().item())
            errs2.append(err2.mean().item())
            relerrs2.append(relerr2.mean().item())
        # print(mean(errs))
        # print(mean(relerrs))
        # print(mean(errs2))
        # print(mean(relerrs2))
        assert mean(errs) < 0.015
Matthew Douglas's avatar
Matthew Douglas committed
529
530
531
532
533
534
535

        # There's a higher relerr on L40S with torch 2.4+cu118.
        is_sm89 = torch.cuda.get_device_capability() == (8, 9)
        if torch.version.cuda == "11.8" and is_sm89 and torch.__version__ < (2, 5):
            assert mean(relerrs) < 0.41
        else:
            assert mean(relerrs) < 0.3
536

Matthew Douglas's avatar
Matthew Douglas committed
537
538
539
540
    @pytest.mark.parametrize("dim1", [1, 64], ids=id_formatter("dim1"))
    @pytest.mark.parametrize("dim2", [32, 128], ids=id_formatter("dim2"))
    @pytest.mark.parametrize("dim3", [32, 256], ids=id_formatter("dim3"))
    @pytest.mark.parametrize("dim4", [32, 256], ids=id_formatter("dim4"))
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
    @pytest.mark.parametrize("transpose", BOOLEAN_TUPLES, ids=id_formatter("transpose"))
    def test_ibmm(self, dim1, dim2, dim3, dim4, transpose):
        dim2 = dim2 - (dim2 % 16)
        dim3 = dim3 - (dim3 % 16)
        dim4 = dim4 - (dim4 % 16)
        for i in range(k):
            shapeA = (dim1, dim3, dim2) if transpose[0] else (dim1, dim2, dim3)
            shapeB = (dim1, dim4, dim3) if transpose[1] else (dim1, dim3, dim4)
            A = torch.randint(-128, 127, size=shapeA, device="cuda").to(torch.int8)
            B = torch.randint(-128, 127, size=shapeB, device="cuda").to(torch.int8)

            if not transpose[0] and not transpose[1]:
                out2 = torch.bmm(A.float(), B.float())
                out = F.igemm(A, B)
            elif not transpose[0] and transpose[1]:
                out2 = torch.bmm(A.float(), B.permute([0, 2, 1]).float())
                out = F.igemm(A, B.permute([0, 2, 1]))
            elif transpose[0] and not transpose[1]:
                out2 = torch.bmm(A.permute([0, 2, 1]).float(), B.float())
                out = F.igemm(A.permute([0, 2, 1]), B)
            elif transpose[0] and transpose[1]:
                out2 = torch.bmm(A.permute([0, 2, 1]).float(), B.permute([0, 2, 1]).float())
                out = F.igemm(A.permute([0, 2, 1]), B.permute([0, 2, 1]))
            torch.testing.assert_close(out.float(), out2.float())


class TestLLMInt8Functional:
Matthew Douglas's avatar
Matthew Douglas committed
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
    @staticmethod
    def vectorwise_mm_dequant(xq, S1, S2, dtype=torch.half):
        """Reference implementation for the F.int8_mm_dequant function."""
        C = 127.0

        x = xq.float()
        if len(S1.shape) == 3 and len(x.shape) == 2:
            S1 = S1.squeeze(0)
        if len(S2.shape) == 3 and len(x.shape) == 2:
            S2 = S2.squeeze(0)
        if len(S1.shape) == 2:
            x *= S1 / C
        else:
            x *= S1 / C
        x *= S2 / C
        return x.to(dtype)

    @staticmethod
    def vectorwise_quant(x, dim=1):
        """Reference implementation"""
        max1 = torch.amax(torch.abs(x), dim=dim, keepdim=True)
        xq = torch.round(x * (127.0 / max1)).to(torch.int8)
        return xq, max1

592
    @pytest.mark.parametrize("device", get_available_devices())
593
594
595
596
597
598
    @pytest.mark.parametrize("dim1", [128], ids=id_formatter("dim1"))
    @pytest.mark.parametrize("dim2", [256], ids=id_formatter("dim2"))
    @pytest.mark.parametrize("dim3", [499, 512], ids=id_formatter("dim3"))
    @pytest.mark.parametrize("dim4", [512], ids=id_formatter("dim4"))
    @pytest.mark.parametrize("dims", (2, 3), ids=id_formatter("dims"))
    @pytest.mark.parametrize("ldb", (0,), ids=id_formatter("ldb"))
599
    def test_int8_linear_matmul(self, device, dim1, dim2, dim3, dim4, dims, ldb):
600
601
        for i in range(k):
            if dims == 2:
602
                A = torch.randint(-128, 127, size=(dim1, dim3), dtype=torch.int8, device=device)
603
            elif dims == 3:
604
605
                A = torch.randint(-128, 127, size=(dim1, dim2, dim3), dtype=torch.int8, device=device)
            B = torch.randint(-128, 127, size=(dim4, dim3), dtype=torch.int8, device=device)
606
607
608
609
610
            C1 = torch.matmul(A.float(), B.t().float())

            C2 = F.int8_linear_matmul(A, B)
            torch.testing.assert_close(C1, C2.float())

611
    @pytest.mark.parametrize("device", get_available_devices())
612
613
614
615
616
    @pytest.mark.parametrize("dim1", [32], ids=id_formatter("dim1"))
    @pytest.mark.parametrize("dim2", [32], ids=id_formatter("dim2"))
    @pytest.mark.parametrize("dim3", [32], ids=id_formatter("dim3"))
    @pytest.mark.parametrize("dim4", [32], ids=id_formatter("dim4"))
    @pytest.mark.parametrize("dims", (2,), ids=id_formatter("dims"))
617
    def test_int8_linear_matmul_half(self, device, dim1, dim2, dim3, dim4, dims):
618
619
        for i in range(k):
            if dims == 2:
620
                A = torch.normal(0, 0.5, size=(dim1, dim3), device=device).half()
621
            elif dims == 3:
622
623
                A = torch.normal(0, 0.5, size=(dim1, dim2, dim3), device=device).half()
            B = torch.randn((dim4, dim3), device=device).half()
624
625
626
627
628
            torch.nn.init.xavier_uniform_(B)
            C1 = torch.matmul(A, B.t())

            A = A.view(-1, A.shape[-1])

629
            CA, statsA, _ = F.int8_vectorwise_quant(A)
630
631
632
633
634
            CB, statsB, _ = F.int8_vectorwise_quant(B)
            output = F.int8_mm_dequant(F.int8_linear_matmul(CA, CB), statsA, statsB)

            torch.testing.assert_close(C1.view(-1, C1.shape[-1]), output, atol=0.025, rtol=0.05)

635
    @pytest.mark.parametrize("device", get_available_devices())
636
637
638
639
    @pytest.mark.parametrize("dim1", (64, 256), ids=id_formatter("dim1"))
    @pytest.mark.parametrize("dim4", (64, 1024), ids=id_formatter("dim4"))
    @pytest.mark.parametrize("dims", (2,), ids=id_formatter("dims"))
    @pytest.mark.parametrize("has_bias", TRUE_FALSE, ids=id_formatter("has_bias"))
640
    def test_dequant_mm(self, device, dim1, dim4, dims, has_bias):
641
642
        inner = 128
        bias = None
Ruff's avatar
Ruff committed
643
        if has_bias:
644
            bias = torch.randn(dim4, device=device, dtype=torch.float16)
645
646

        for i in range(1):
647
648
            A = torch.randn(dim1, inner, device=device)
            B = torch.randn(dim4, inner, device=device)
649
650
651
652
            C1 = torch.matmul(A.half(), B.t().half())
            if has_bias:
                C1 += bias

Matthew Douglas's avatar
Matthew Douglas committed
653
654
            A1, maxA = self.vectorwise_quant(A, dim=1)
            B1, maxB = self.vectorwise_quant(B, dim=1)
655
656
657

            C2 = F.int8_linear_matmul(A1, B1)

Matthew Douglas's avatar
Matthew Douglas committed
658
            C4 = self.vectorwise_mm_dequant(C2.float(), maxA, maxB.t())
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
            if has_bias:
                C4 += bias

            # TODO: is something wrong here? If so, the problem goes deeper
            # n = C1.numel()
            # p = 0.06
            std = C1.std(0).view(1, -1)
            C1 /= std
            C4 /= std
            # assert_all_approx_close(C1, C4, atol=0.02, rtol=0.1, count=int(n*0.06))
            # assert (count / n < p), f"error in more than {p} of elements: {count}/{n}={count/n}"

            C5 = F.int8_mm_dequant(C2, maxA, maxB, bias=bias)
            C5 /= std
            torch.testing.assert_close(C5, C4, atol=0.015, rtol=0.1)
            n = C5.numel()
            assert_all_approx_close(C1, C4, atol=0.015, rtol=0.1, count=int(0.01 * n))

    @pytest.mark.parametrize("dim1", [1 * 1024], ids=id_formatter("dim1"))
    @pytest.mark.parametrize("dim2", [1 * 1024], ids=id_formatter("dim2"))
    @pytest.mark.parametrize("dims", (2,), ids=id_formatter("dims"))
    @pytest.mark.parametrize("threshold", [0.0, 3.0], ids=id_formatter("decomp"))
681
    @pytest.mark.deprecated
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
    def test_colrow_absmax(self, dim1, dim2, dims, threshold):
        for i in range(k):
            A = torch.randn(dim1, dim2, device="cuda").half()

            assert dims == 2

            row_stats1, _ = torch.abs(A.float()).max(1)
            col_stats1, _ = torch.abs(A.float()).max(0)

            if threshold > 0.0:
                A_truncated = A.clone()
                A_truncated[torch.abs(A_truncated) >= threshold] = 0.0
                row_stats1_trunc, _ = torch.abs(A_truncated.float()).max(1)
                col_stats1_trunc, _ = torch.abs(A_truncated.float()).max(0)

                row_stats2, col_stats2, nnz_block_ptr2 = F.get_colrow_absmax(A, threshold=threshold)

                nnz_rows1_counts = (torch.abs(A) >= threshold).sum(1).flatten()
                nnz_block_ptr1 = torch.zeros(
                    nnz_rows1_counts.shape[0] + 1,
                    dtype=nnz_rows1_counts.dtype,
                    device=nnz_rows1_counts.device,
                )
                nnz_block_ptr1[1:] = nnz_rows1_counts.cumsum(0)

                torch.testing.assert_close(col_stats1_trunc, col_stats2)
                torch.testing.assert_close(row_stats1_trunc, row_stats2)
                # torch.testing.assert_close(nnz_block_ptr1, nnz_block_ptr2)
            else:
                row_stats2, col_stats2, nnz_block_ptr2 = F.get_colrow_absmax(A, threshold=0.0)
                assert nnz_block_ptr2 is None
                torch.testing.assert_close(col_stats1, col_stats2)
                torch.testing.assert_close(row_stats1, row_stats2)

    @pytest.mark.parametrize("dim1", [2048, 4096], ids=id_formatter("dim1"))
    @pytest.mark.parametrize("dim2", [512, 1024], ids=id_formatter("dim2"))
718
    @pytest.mark.deprecated
719
720
721
    def test_int8_double_quant(self, dim1, dim2):
        for i in range(k):
            A = torch.randn(dim1, dim2, device="cuda").half()
Matthew Douglas's avatar
Matthew Douglas committed
722
723
            out_col1, Scol = self.vectorwise_quant(A, dim=0)
            out_row1, Srow = self.vectorwise_quant(A, dim=1)
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738

            CA, CAt, statsA, statsAt, _ = F.int8_double_quant(A)

            # max difference is 1 due to rounding differences
            torch.testing.assert_close(CA, out_row1, atol=1, rtol=0)
            torch.testing.assert_close(CAt, out_col1, atol=1, rtol=0)

            n = CAt.numel()
            num_not_close_rows = (torch.isclose(CA, out_row1, atol=1) == 0).sum().item()
            num_not_close_cols = (torch.isclose(CAt, out_col1, atol=1) == 0).sum().item()

            # allow for 1:500 error due to rounding differences
            min_error = 1 / 500
            if num_not_close_cols > (min_error * n):
                print(
739
                    f"Min error exceeded {num_not_close_cols} elements are different. Error: {num_not_close_cols / n:.4f}"
740
741
742
743
                )
                assert False
            if num_not_close_rows > (min_error * n):
                print(
744
                    f"Min error exceeded {num_not_close_rows} elements are different. Error: {num_not_close_rows / n:.4f}"
745
746
747
748
749
750
                )
                assert False

            torch.testing.assert_close(Srow.flatten().float(), statsA)
            torch.testing.assert_close(Scol.flatten().float(), statsAt)

751
    @pytest.mark.parametrize("device", get_available_devices())
752
753
754
755
756
757
758
759
    @pytest.mark.parametrize(
        ("dim1", "dim4", "inner"),
        (
            pytest.param(dim1, dim4, inner, id=f"{dim1=},{dim4=},{inner=}")
            for (dim1, dim4, inner) in zip(
                (1, 8, 2048, 4096),
                (2, 128, 2048, 4096),
                (4, 256, 512, 4096),
760
            )
761
762
        ),
    )
763
    def test_integrated_int8_linear_matmul(self, device, dim1, dim4, inner):
764
765
766
        if device == "cpu" and inner > 2048:
            pytest.skip("Slow on CPU")

767
        for i in range(k):
768
769
            A = torch.randn(dim1, inner, device=device).half()
            B = torch.randn(dim4, inner, device=device).half()
770
771
772
773
774

            out1 = torch.matmul(A.half(), B.t().half())

            C1a, stats1a, _ = F.int8_vectorwise_quant(A)
            C2a, stats2a, _ = F.int8_vectorwise_quant(B)
Matthew Douglas's avatar
Matthew Douglas committed
775
776
            A1, maxA = self.vectorwise_quant(A, dim=1)
            B1, maxB = self.vectorwise_quant(B, dim=1)
777
778
779
780
781
782
783
784
785
786

            torch.testing.assert_close(maxA.flatten().float(), stats1a)
            torch.testing.assert_close(maxB.flatten().float(), stats2a)
            torch.testing.assert_close(C1a, A1, rtol=0, atol=1)
            torch.testing.assert_close(C2a, B1, rtol=0, atol=1)

            out2 = F.int8_linear_matmul(A1, B1)

            C2 = F.int8_linear_matmul(A1, B1)

Matthew Douglas's avatar
Matthew Douglas committed
787
            out3 = self.vectorwise_mm_dequant(C2.float(), maxA, maxB.t())
788
789
790
791
792

            err1 = torch.abs(out1 - out2).mean().item()
            err2 = torch.abs(out1 - out3).mean().item()
            assert err2 <= err1 * 1.025

793
    @pytest.mark.parametrize("device", get_available_devices())
794
795
    @pytest.mark.parametrize("dim1", [512, 2048], ids=id_formatter("dim1"))
    @pytest.mark.parametrize("dim2", [1024, 4096], ids=id_formatter("dim2"))
796
    def test_coo_double_quant(self, device, dim1, dim2):
797
798
        threshold = 2.00
        for i in range(k):
799
            A = torch.randn(dim1, dim2, device=device).half()
800
801
802
803
804
805
806
807
808
809
810
811
812

            idx = torch.abs(A) >= threshold
            CA, statsA, outlier_cols = F.int8_vectorwise_quant(A, threshold=threshold)

            if outlier_cols is not None:
                A1 = A * idx
                A2 = torch.zeros_like(A) + A1
                torch.testing.assert_close(A1, A2)

                A[:, outlier_cols] = 0
                A2 = (CA.float() * statsA.unsqueeze(1) / 127).half()
                torch.testing.assert_close(A, A2, rtol=0.05, atol=1.5e-2)

813
    @pytest.mark.parametrize("device", get_available_devices())
814
815
    @pytest.mark.parametrize("dim1", [512, 2048], ids=id_formatter("dim1"))
    @pytest.mark.parametrize("dim2", [1024, 4096], ids=id_formatter("dim2"))
816
    def test_coo_int8_vectorwise_quant(self, device, dim1, dim2):
817
818
        threshold = 3.00
        for i in range(k):
819
            A = torch.randn(dim1, dim2, device=device).half()
820
821
822
823
824
825
826
827
828
829

            idx = torch.abs(A) >= threshold
            CA, statsA, outlier_cols = F.int8_vectorwise_quant(A, threshold=threshold)

            if outlier_cols is not None:
                A2 = (CA.float() * statsA.unsqueeze(1) / 127).half()
                A[:, outlier_cols] = 0
                torch.testing.assert_close(A * (idx == 0), A2, rtol=0.05, atol=1.5e-2)


830
@pytest.mark.skipif(HIP_ENVIRONMENT, reason="this test is not supported on ROCm yet")
831
@pytest.mark.skipif(not torch.cuda.is_available(), reason="CUDA is required")
832
class TestSpMMFunctional:
Matthew Douglas's avatar
Matthew Douglas committed
833
834
    @pytest.mark.parametrize("dim1", [256, 1024], ids=id_formatter("dim1"))
    @pytest.mark.parametrize("dim2", [128, 512], ids=id_formatter("dim2"))
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
    @pytest.mark.parametrize("transposed_B", TRUE_FALSE, ids=id_formatter("transposed_B"))
    def test_spmm_coo(self, dim1, dim2, transposed_B):
        threshold = 1.5
        dim3 = torch.randint(32, 128, size=(1,)).item()
        # dim3 = 17
        for i in range(k):
            A = torch.randn(dim1, dim2).cuda().half()
            if transposed_B:
                B = torch.randn(dim3, dim2).cuda().half()
            else:
                B = torch.randn(dim2, dim3).cuda().half()

            idx = torch.abs(A) >= threshold
            nnz = (idx == 1).sum().item()
            rows, cols = torch.where(idx)
            values = A[idx]
            cooA = F.COOSparseTensor(A.shape[0], A.shape[1], nnz, rows.int(), cols.int(), values)
            A2 = A * idx

            if transposed_B:
                out2 = F.spmm_coo(cooA, B.t())
                out1 = torch.matmul(A2, B.t())
            else:
                out2 = F.spmm_coo(cooA, B)
                out1 = torch.matmul(A2, B)

            assert_all_approx_close(out1, out2, rtol=0.01, atol=3.0e-2, count=30)

    @pytest.mark.benchmark
    def test_spmm_bench(self):
        batch = 2
        model = 1024 * 1
        hidden = model * 4
        seq = 1024
        dim1 = batch * seq
        dim2 = model
        dim3 = hidden
        threshold = 4
873
        A = torch.randn(dim1, dim2, device="cuda").half()
874
875
876
        B = torch.randn(dim2, dim3, device="cuda").half()
        for i in range(10):
            C1 = bnb.matmul(A, B.t())
Tim Dettmers's avatar
Tim Dettmers committed
877

878
879
880
881
882
883
        torch.cuda.synchronize()
        t0 = time.time()
        for i in range(k):
            C1 = bnb.matmul(A, B.t())
        torch.cuda.synchronize()
        t8 = time.time() - t0
Tim Dettmers's avatar
Tim Dettmers committed
884

885
886
887
888
889
890
        idx = torch.abs(A) >= threshold
        nnz = (idx == 1).sum().item()
        print(nnz / idx.numel())
        rows, cols = torch.where(idx)
        values = A[idx]
        cooA = F.COOSparseTensor(A.shape[0], A.shape[1], nnz, rows.int(), cols.int(), values)
Tim Dettmers's avatar
Tim Dettmers committed
891

892
893
        for i in range(10):
            out2 = F.spmm_coo(cooA, B)
Tim Dettmers's avatar
Tim Dettmers committed
894

895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
        torch.cuda.synchronize()
        t0 = time.time()
        for i in range(k):
            out2 = F.spmm_coo(cooA, B)
        torch.cuda.synchronize()
        tsp = time.time() - t0
        print(tsp, t8)
        print(tsp / t8)

    @pytest.mark.parametrize("dim1", [1 * 2048], ids=id_formatter("dim1"))
    @pytest.mark.parametrize("dim2", [12288], ids=id_formatter("dim2"))
    @pytest.mark.parametrize("dtype", [torch.float16], ids=describe_dtype)
    @pytest.mark.parametrize("out_func", ["zeros", "ones"], ids=id_formatter("out_func"))
    def test_spmm_coo_very_sparse(self, dim1, dim2, dtype, out_func):
        out_func = getattr(torch, out_func)

        threshold = 3.3
        # threshold = 2.8
        # threshold = 0.0
        A = torch.randn(dim1, dim2, device="cuda").half()
        if dtype == torch.float16:
            B = torch.randn(dim2, dim2 * 4, device="cuda").half()
            torch.nn.init.xavier_uniform_(B)
Tim Dettmers's avatar
Tim Dettmers committed
918
        else:
919
920
            B = torch.randn(dim2, dim2 * 4, device="cuda").half()
            torch.nn.init.xavier_uniform_(B)
Matthew Douglas's avatar
Matthew Douglas committed
921
922
923

            SB = torch.abs(B).max().float()
            B = torch.round(B / SB * 127).to(torch.int8)
Tim Dettmers's avatar
Tim Dettmers committed
924

925
926
927
928
929
930
931
932
933
934
935
936
        print("")
        idx = torch.abs(A) >= threshold
        nnz = (idx == 1).sum().item()
        rows, cols = torch.where(idx)
        values = A[idx]
        cooA = F.COOSparseTensor(A.shape[0], A.shape[1], nnz, rows.int(), cols.int(), values)
        A2 = A * idx
        out1 = torch.matmul(A2.half(), B.half())
        out = out_func(out1.shape, dtype=torch.float16, device=out1.device)
        out1 += out.clone()
        out2 = F.spmm_coo_very_sparse(cooA, B, out=out)
        # print(B)
937
938
        # print(out1)
        # print(out2)
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
        p = 200 / (2048 * 12288 * 4)
        n = out1.numel()
        count = math.ceil(p * n)
        std = out1.std()
        out1 /= std
        out2 /= std
        assert_all_approx_close(out1, out2.half(), rtol=0.01, atol=3.0e-2, count=count)
        # assert_all_approx_close(out1, out2.half(), rtol=0.05, atol=0.01, count=count)

        idx_col = torch.randint(0, A2.shape[-1], size=(15,))

        # torch.testing.assert_close(out1, out2.half(), rtol=0.05, atol=0.001)

        # Bt = torch.randn(dim2*4, dim2, device='cuda').half()
        # torch.cuda.synchronize()
        # t0 = time.time()
        # print(A2.shape, B.shape)
        # for i in range(100):
        #   #out3 = F.spmm_coo(cooA, Bt.t())
        #   #out2 = F.spmm_coo(cooA, B)
        #   #out2 = F.spmm_coo_very_sparse(cooA, B)
        #   #out1 = torch.matmul(A, Bt.t())

        # torch.cuda.synchronize()
        # print(time.time() - t0)

    @pytest.mark.parametrize("dim1", [1 * 2048])
    @pytest.mark.parametrize("dim2", [2048])
    @pytest.mark.parametrize("dtype", [torch.int8])
    def test_spmm_coo_dequant(self, dim1, dim2, dtype):
        threshold = 6.0
        # threshold = 2.8
        # threshold = 0.0
972
        A = torch.randn(dim1, dim2, device="cuda").half()
973
974
975
        B = torch.empty(dim2, dim2 * 4, device="cuda", dtype=torch.float16)
        torch.nn.init.xavier_uniform_(B)
        Bt = B.t().contiguous()
Tim Dettmers's avatar
Tim Dettmers committed
976

977
        CB, CBt, statsB, statsBt, coo_tensor = F.int8_double_quant(B)
978

979
        rowidx = torch.randint(0, A.shape[-1], size=(15,))
Tim Dettmers's avatar
Tim Dettmers committed
980

981
        A[:, rowidx] = 8.0
Tim Dettmers's avatar
Tim Dettmers committed
982
983
984
985
986

        idx = torch.abs(A) >= threshold
        nnz = (idx == 1).sum().item()
        rows, cols = torch.where(idx)
        values = A[idx]
Ruff's avatar
Ruff committed
987
        cooA = F.COOSparseTensor(A.shape[0], A.shape[1], nnz, rows.int(), cols.int(), values)
988
989
        A2 = A * idx
        out2 = F.spmm_coo_very_sparse(cooA, CBt, dequant_stats=statsBt)
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
        out1 = torch.matmul(A2, B.half())
        out3 = F.spmm_coo_very_sparse(cooA, CBt.half())
        out3 = out3 * statsBt.half() / 127

        values, counts = torch.unique(cooA.rowidx, return_counts=True)
        offset = counts.cumsum(0).int()
        max_count, max_idx = torch.sort(counts, descending=True)
        print(torch.median(max_count.float()))

        torch.testing.assert_close(out2, out3, rtol=0.05, atol=0.001)

        p = 200 / (2048 * 12288 * 4)
        n = out1.numel()
        count = math.ceil(p * n)
        assert_all_approx_close(out1, out2, rtol=0.01, atol=3.0e-2, count=count)

        # torch.cuda.synchronize()
        # t0 = time.time()
        # for i in range(100):
        #   out2 = F.spmm_coo_very_sparse(cooA, B)
        # torch.cuda.synchronize()
        # print('fp16', time.time() - t0)

        torch.cuda.synchronize()
        t0 = time.time()
        for i in range(100):
            out2 = F.spmm_coo(cooA, B)
        torch.cuda.synchronize()
        print("cusparse fp16", time.time() - t0)
1019

1020
1021
1022
1023
1024
1025
        torch.cuda.synchronize()
        t0 = time.time()
        for i in range(100):
            out2 = F.spmm_coo_very_sparse(cooA, CBt)
        torch.cuda.synchronize()
        print("int8", time.time() - t0)
1026

1027
1028
1029
1030
1031
1032
        torch.cuda.synchronize()
        t0 = time.time()
        for i in range(100):
            out2 = F.spmm_coo_very_sparse(cooA, CBt, dequant_stats=statsBt)
        torch.cuda.synchronize()
        print("int8+dequant", time.time() - t0)
1033

1034
1035
1036
1037
1038
1039
        torch.cuda.synchronize()
        t0 = time.time()
        for i in range(100):
            out2 = torch.matmul(A, B)
        torch.cuda.synchronize()
        print("matmul", time.time() - t0)
1040

1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
        torch.cuda.synchronize()
        t0 = time.time()
        for i in range(100):
            out1 = bnb.matmul(A, Bt)
            out2 = F.spmm_coo_very_sparse(cooA, CBt, dequant_stats=statsBt)
            out = out1 + out2
        torch.cuda.synchronize()
        print("sparse+ matmul", time.time() - t0)

        torch.cuda.synchronize()
        t0 = time.time()
        for i in range(100):
            out1 = bnb.matmul(A, Bt)
            torch.matmul(A[:, rowidx], Bt.t()[rowidx], out=out1)
        torch.cuda.synchronize()
        print("partial matmul", time.time() - t0)
1057

1058
1059
1060
1061
1062
1063
        torch.cuda.synchronize()
        t0 = time.time()
        for i in range(100):
            out1 = bnb.matmul(A, Bt)
        torch.cuda.synchronize()
        print("partial matmul", time.time() - t0)
1064

1065

1066
@pytest.mark.skipif(not torch.cuda.is_available(), reason="CUDA is required")
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
class TestSparseTensorFunctional:
    def test_coo2csr(self):
        threshold = 1
        A = torch.randn(128, 128).half().cuda()
        idx = torch.abs(A) >= threshold
        nnz = (idx == 1).sum().item()
        rows, cols = torch.where(idx)
        values = A[idx]
        cooA = F.COOSparseTensor(A.shape[0], A.shape[1], nnz, rows.int(), cols.int(), values)
        A2 = A * idx
        csrA = F.coo2csr(cooA)
        counts = csrA.rowptr[1:] - csrA.rowptr[:-1]
        assert counts.numel() == A.shape[0]
1080

1081
1082
1083
        torch.testing.assert_close(counts.long(), (A2 != 0).sum(1))
        idx = A2 != 0
        torch.testing.assert_close(A2[idx], csrA.values)
Tim Dettmers's avatar
Tim Dettmers committed
1084

1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
    def test_coo2csc(self):
        threshold = 1
        A = torch.randn(128, 128).half().cuda()
        idx = torch.abs(A) >= threshold
        nnz = (idx == 1).sum().item()
        rows, cols = torch.where(idx)
        values = A[idx]
        cooA = F.COOSparseTensor(A.shape[0], A.shape[1], nnz, rows.int(), cols.int(), values)
        A2 = A * idx
        cscA = F.coo2csc(cooA)
        counts = cscA.colptr[1:] - cscA.colptr[:-1]
        assert counts.numel() == A.shape[1]
Tim Dettmers's avatar
Tim Dettmers committed
1097

1098
1099
1100
1101
        torch.testing.assert_close(counts.long(), (A2 != 0).sum(0))
        # torch uses row-major -> use transpose to transfer to col-major
        idx = A2.t() != 0
        torch.testing.assert_close(A2.t()[idx], cscA.values)
Tim Dettmers's avatar
Tim Dettmers committed
1102

Tim Dettmers's avatar
Tim Dettmers committed
1103

1104
class TestQuantize4BitFunctional:
1105
    @pytest.mark.parametrize("device", get_available_devices())
1106
1107
    @pytest.mark.parametrize("dtype", [torch.float32, torch.float16, torch.bfloat16], ids=describe_dtype)
    @pytest.mark.parametrize("quant_type", ["fp4", "nf4"])
1108
1109
1110
1111
    @pytest.mark.parametrize(
        "blocksize",
        [64, 128, 256, 512, 1024, 2048, 4096] if not HIP_ENVIRONMENT else [128, 256, 512, 1024, 2048, 4096],
    )
1112
    def test_4bit_quant(self, device, dtype, quant_type, blocksize):
1113
1114
1115
        if device == "hpu" and not is_supported_on_hpu(quant_type, dtype):
            pytest.skip("This configuration is not supported on HPU.")

1116
        A1 = torch.randn(1024, 1024, device=device, dtype=dtype)
1117
1118
        qa, SA = F.quantize_4bit(A1, blocksize=blocksize, quant_type=quant_type)
        A2 = F.dequantize_4bit(qa, SA, blocksize=blocksize, quant_type=quant_type)
1119

1120
1121
1122
        err = (A1 - A2).abs().float()
        relerr = (err / (A1.abs().float() + 1e-8)).mean()
        err = err.mean()
1123

1124
        assert A2.dtype == dtype
1125

1126
1127
        # With larger block sizes, we can expect this to blow up.
        # At blocksize>=1024, don't even bother looking at relerr.
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
        #
        # Actually, the above is not true anymore after fixing the integer packing bug.
        # The following values were taken from averaging 1k samples per test configuration after fixing the bug.
        error_dict = dict()
        error_dict["fp4"] = dict()
        error_dict["nf4"] = dict()
        error_dict["fp4"]["err"] = {
            64: 0.096545,
            128: 0.102947,
            256: 0.108685,
            512: 0.114087,
            1024: 0.119312,
            2048: 0.124460,
            4096: 0.129573,
        }
        error_dict["fp4"]["rel_err"] = {
            64: 0.260130,
            128: 0.275734,
            256: 0.289842,
            512: 0.302852,
            1024: 0.314982,
            2048: 0.326402,
            4096: 0.337228,
        }

        error_dict["nf4"]["err"] = {
            64: 0.072792,
            128: 0.076835,
            256: 0.080326,
            512: 0.083535,
            1024: 0.086603,
            2048: 0.089592,
            4096: 0.092537,
        }
        error_dict["nf4"]["rel_err"] = {
            64: 0.203299,
            128: 0.215252,
            256: 0.226044,
            512: 0.236021,
            1024: 0.245365,
            2048: 0.254146,
            4096: 0.262457,
        }

        assert err < error_dict[quant_type]["err"][blocksize] + 1e-3
        assert relerr < error_dict[quant_type]["rel_err"][blocksize] + 1e-3
1174

1175
    @pytest.mark.parametrize("device", get_available_devices())
1176
    @pytest.mark.parametrize("quant_type", ["fp4", "nf4"])
1177
    @pytest.mark.parametrize("blocksize", [64, 128] if not HIP_ENVIRONMENT else [128], ids=id_formatter("blocksize"))
1178
1179
1180
1181
1182
    @pytest.mark.parametrize("dtype", [torch.float32, torch.float16], ids=describe_dtype)
    def test_4bit_compressed_stats(self, device, quant_type, blocksize, dtype):
        if device == "hpu" and not is_supported_on_hpu(quant_type, dtype):
            pytest.skip("FP4 quantization is not supported on HPU.")

Matthew Douglas's avatar
Matthew Douglas committed
1183
1184
1185
        errs1 = []
        errs2 = []
        for i in range(10):
1186
            A1 = torch.randn(1024, 1024, device=device, dtype=dtype)
Matthew Douglas's avatar
Matthew Douglas committed
1187
1188
1189
1190
            q2, SA2 = F.quantize_4bit(A1, blocksize=blocksize, quant_type=quant_type)
            q3, SA3 = F.quantize_4bit(A1, blocksize=blocksize, compress_statistics=True, quant_type=quant_type)
            A2 = F.dequantize_4bit(q2, SA2, quant_type=quant_type)
            A3 = F.dequantize_4bit(q3, SA3, quant_type=quant_type)
1191

Matthew Douglas's avatar
Matthew Douglas committed
1192
1193
1194
            err = (A1 - A2).abs().float()
            relerr = (err / (A1.abs().float() + 1e-15)).mean()
            err = err.mean()
1195

Matthew Douglas's avatar
Matthew Douglas committed
1196
            errs1.append(err.item())
1197

Matthew Douglas's avatar
Matthew Douglas committed
1198
1199
            assert err.item() < 0.11
            assert relerr.item() < 0.28
1200

Matthew Douglas's avatar
Matthew Douglas committed
1201
1202
1203
            err = (A1 - A3).abs().float()
            relerr = (err / (A1.abs().float() + 1e-15)).mean()
            err = err.mean()
1204

Matthew Douglas's avatar
Matthew Douglas committed
1205
            errs2.append(err.item())
1206

Matthew Douglas's avatar
Matthew Douglas committed
1207
1208
            assert err.item() < 0.11
            assert relerr.item() < 0.28
1209
1210
1211

    # @pytest.mark.parametrize("quant_type", ['fp4', 'nf4'])
    @pytest.mark.parametrize("quant_type", ["nf4"])
1212
    @pytest.mark.skipif(not torch.cuda.is_available(), reason="CUDA is required")
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
    @pytest.mark.benchmark
    def test_bench_4bit_dequant(self, quant_type):
        blocksize = 256
        a = torch.rand(1024 * 12 * 4, 1024 * 12, device="cuda").half()
        qa, SA = F.quantize_4bit(a, blocksize=blocksize, quant_type=quant_type)

        input_size = a.numel() / 2
        output_size = a.numel() * 2
        num_bytes = input_size + output_size
        GB = num_bytes / 1e9
        max_theoretical_s = GB / 768
        # print(max_theoretical_s*1e6)
        b = torch.randn(128, 1024 * 12, device="cuda").half()

        iters = 100
        torch.cuda.synchronize()
        t0 = time.time()
        for i in range(iters):
            F.dequantize_4bit(qa, SA, blocksize=blocksize, quant_type=quant_type)
            # b.copy_(a)
        torch.cuda.synchronize()
        # print((time.time()-t0)/iters*1e6)

        # torch.cuda.synchronize()
        # t0 = time.time()
        # for i in range(iters):
        #    torch.matmul(b, a.t())
        # torch.cuda.synchronize()
        # print((time.time()-t0)/iters*1e6)

1243
1244
1245
    @pytest.mark.skipif(
        HIP_ENVIRONMENT, reason="gemv 4bit tests are partially enabled on MI300, others being fixed for warpsize 64"
    )
1246
    @pytest.mark.parametrize("device", get_available_devices())
1247
1248
1249
1250
1251
1252
1253
1254
1255
    @pytest.mark.parametrize("double_quant", TRUE_FALSE, ids=lambda double_quant: f"DQ_{double_quant}")
    @pytest.mark.parametrize("storage_type", ["nf4", "fp4"])
    @pytest.mark.parametrize("kind", ["fc1", "fc2", "attn", "attn_packed"])
    @pytest.mark.parametrize("dtype", [torch.float16, torch.bfloat16, torch.float32], ids=describe_dtype)
    @pytest.mark.parametrize(
        "quant_storage",
        [torch.uint8, torch.float16, torch.bfloat16, torch.float32],
        ids=describe_dtype,
    )
Matthew Douglas's avatar
Matthew Douglas committed
1256
    @pytest.mark.parametrize("dim", [128, 256, 512, 1024], ids=id_formatter("dim"))
1257
    def test_gemv_4bit(self, device, dim, dtype, storage_type, quant_storage, double_quant, kind):
1258
1259
1260
        if device == "hpu" and not is_supported_on_hpu(storage_type, dtype, quant_storage):
            pytest.skip("This configuration is not supported on HPU.")

Matthew Douglas's avatar
Matthew Douglas committed
1261
1262
1263
1264
1265
1266
1267
1268
1269
        errs1 = []
        errs2 = []
        errs3 = []
        relerrs1 = []
        relerrs2 = []
        relerrs3 = []
        max_errs1 = []
        max_errs2 = []
        max_errs3 = []
1270

1271
1272
1273
1274
1275
        # Large number of iterations is excessive and slow on CPU.
        # Keep for CUDA for now.
        iters = 100 if device == "cuda" else 10

        for i in range(iters):
Matthew Douglas's avatar
Matthew Douglas committed
1276
            if kind == "fc1":
1277
1278
                A = torch.randn(1, dim, dtype=dtype, device=device)
                B = torch.randn(dim * 4, dim, dtype=dtype, device=device) / math.sqrt(dim)
Matthew Douglas's avatar
Matthew Douglas committed
1279
            elif kind == "fc2":
1280
1281
                A = torch.randn(1, 4 * dim, dtype=dtype, device=device)
                B = torch.randn(dim, 4 * dim, dtype=dtype, device=device) / math.sqrt(dim)
Matthew Douglas's avatar
Matthew Douglas committed
1282
            elif kind == "attn":
1283
1284
                A = torch.randn(1, dim, dtype=dtype, device=device)
                B = torch.randn(dim, dim, dtype=dtype, device=device) / math.sqrt(dim)
Matthew Douglas's avatar
Matthew Douglas committed
1285
            elif kind == "attn_packed":
1286
1287
                A = torch.randn(1, dim, dtype=dtype, device=device)
                B = torch.randn(dim * 3, dim, dtype=dtype, device=device) / math.sqrt(dim)
Matthew Douglas's avatar
Matthew Douglas committed
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358

            qB, state = F.quantize_4bit(
                B,
                quant_type=storage_type,
                compress_statistics=double_quant,
                quant_storage=quant_storage,
            )
            C3 = torch.matmul(A, B.t())
            C2 = F.gemv_4bit(A, qB.t(), state=state)
            A.requires_grad = True
            C1 = bnb.matmul_4bit(A, qB.t(), state)

            err1 = (C1 - C2).abs().float()
            err2 = (C3 - C2).abs().float()
            err3 = (C3 - C1).abs().float()

            mag1 = torch.abs(C1).float() + 1e-5
            mag2 = torch.abs(C3).float() + 1e-5
            mag3 = torch.abs(C3).float() + 1e-5

            relerr1 = err1 / mag1
            relerr2 = err2 / mag2
            relerr3 = err3 / mag3

            max_err1 = err1.max()
            max_err2 = err2.max()
            max_err3 = err3.max()

            errs1.append(err1.mean().item())
            errs2.append(err2.mean().item())
            errs3.append(err3.mean().item())

            relerrs1.append(relerr1.mean().item())
            relerrs2.append(relerr2.mean().item())
            relerrs3.append(relerr3.mean().item())

            max_errs1.append(max_err1.item())
            max_errs2.append(max_err2.item())
            max_errs3.append(max_err3.item())

            c = int(C1.numel() * 0.0014 * (dim / 256)) + 1

            c = assert_all_approx_close(C1, C2, 1e-5, 0.01, count=0, throw=False)
        err1 = sum(errs1) / len(errs1) / math.sqrt(dim)
        err2 = sum(errs2) / len(errs2) / math.sqrt(dim)
        err3 = sum(errs3) / len(errs3) / math.sqrt(dim)
        relerr1 = sum(relerrs1) / len(relerrs1) / math.sqrt(dim)
        relerr2 = sum(relerrs2) / len(relerrs2) / math.sqrt(dim)
        relerr3 = sum(relerrs3) / len(relerrs3) / math.sqrt(dim)
        maxerr1 = sum(max_errs1) / len(max_errs1) / math.sqrt(dim)
        maxerr2 = sum(max_errs2) / len(max_errs2) / math.sqrt(dim)
        maxerr3 = sum(max_errs3) / len(max_errs3) / math.sqrt(dim)
        absratio = err2 / err3
        relratio = relerr2 / relerr3
        maxratio = relerr2 / relerr3

        # for debugging if the tests fails
        #
        # print('='*80)
        # print(f'For matmul: {A.shape}, {B.shape}, {kind}, {dtype}, {storage_type}, double_quant={double_quant}:')
        # print(C1.flatten()[-20:])
        # print(C2.flatten()[-20:])
        # print(f'inference vs training abs: {err1}')
        # print(f'inference vs training rel: {relerr1}')
        # print(f'inference vs training max: {maxerr1}')
        # print(f'inference vs training vs torch err ratio abs: {absratio}')
        # print(f'inference vs training vs torch err ratio rel: {relratio}')
        # print(f'inference vs training vs torch err ratio max: {maxratio}')
        if dtype == torch.float16:
            if dim <= 512:
                assert err1 < 7e-5
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370

                # TODO(matthewdouglas): On T4, dim=128-fp16-fc2-fp4-DQ will have relerror ~ 0.00092727
                if (
                    device == "cuda"
                    and double_quant
                    and storage_type == "fp4"
                    and kind == "fc2"
                    and torch.cuda.get_device_capability() == (7, 5)
                ):
                    assert relerr1 < 0.00093
                else:
                    assert relerr1 < 0.0008
Matthew Douglas's avatar
Matthew Douglas committed
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
            else:
                assert err1 < 6e-5
                assert relerr1 < 2e-4
            assert absratio < 1.005 and absratio > 0.995
            assert relratio < 1.005 and relratio > 0.995
            assert maxratio < 1.005 and maxratio > 0.995
        elif dtype == torch.float32:
            if dim <= 512:
                assert err1 < 5e-8
                assert relerr1 < 1e-6
                assert maxerr1 < 1e-7
            else:
                assert err1 < 5e-8
                assert relerr1 < 8e-6
                assert maxerr1 < 1e-7
            assert absratio < 1.005 and absratio > 0.995
            assert relratio < 1.005 and relratio > 0.995
            assert maxratio < 1.005 and maxratio > 0.995
        elif dtype == torch.bfloat16:
            if dim <= 512:
                assert err1 < 6e-4
                assert relerr1 < 0.007
                assert maxerr1 < 0.015
            else:
                assert err1 < 2e-4
                assert relerr1 < 0.002
                assert maxerr1 < 0.0012
            assert absratio < 1.005 and absratio > 0.995
            assert relratio < 1.04 and relratio > 0.96
            assert maxratio < 1.02 and maxratio > 0.98
1401

1402
    @pytest.mark.parametrize("device", get_available_devices())
1403
1404
1405
    @pytest.mark.parametrize("storage_type", ["nf4", "fp4"], ids=["nf4", "fp4"])
    @pytest.mark.parametrize("dtype", [torch.float16, torch.bfloat16, torch.float32], ids=describe_dtype)
    @pytest.mark.parametrize("double_quant", [False], ids=["DQ_True"])
1406
1407
1408
1409
    @pytest.mark.skipif(
        HIP_ENVIRONMENT and ROCM_GPU_ARCH == "gfx90a",
        reason="this test is not supported on ROCm with gfx90a architecture yet",
    )
1410
    def test_gemv_eye_4bit(self, device, storage_type, dtype, double_quant):
Matthew Douglas's avatar
Matthew Douglas committed
1411
1412
1413
        if device == "cpu" and dtype == torch.bfloat16 and torch.__version__ < (2, 3):
            pytest.skip("eye doe not support bfloat16 on CPU in torch < 2.3")

1414
1415
1416
        if device == "hpu" and not is_supported_on_hpu(storage_type, dtype):
            pytest.skip("This configuration is not supported on HPU.")

1417
1418
1419
1420
1421
1422
        dims = 10
        torch.random.manual_seed(np.random.randint(0, 412424242))
        dims = get_test_dims(0, 8192, n=dims)
        dims = [dim + (64 - (dim % 64)) for dim in dims]
        # for dim in [576, 5120, 3520, 5184, 1280, 4992, 5312, 2048]:
        for dim in dims:
1423
1424
            A = torch.normal(0, 0.1, size=(1, 1, dim), dtype=dtype, device=device)
            B = torch.eye(dim, dtype=dtype, device=device)
1425
1426
1427
1428
1429
1430

            qB, state = F.quantize_4bit(B, quant_type=storage_type, compress_statistics=double_quant)
            C3 = torch.matmul(A, B.t())
            C2 = bnb.matmul_4bit(A, qB.t(), state)
            A.requires_grad = True
            C1 = bnb.matmul_4bit(A, qB.t(), state)
1431

1432
1433
1434
1435
1436
            torch.testing.assert_close(A, C3)
            torch.testing.assert_close(A, C1)
            torch.testing.assert_close(A, C2)
        # torch.testing.assert_close(A, C1, rtol=1e-5, atol=0.00001)
        # torch.testing.assert_close(A, C2, rtol=1e-5, atol=0.080)
1437
1438
1439
1440


def test_normal_map_tree():
    code = F.create_normal_map()
Ruff's avatar
Ruff committed
1441
    values = code[:8].tolist() + code[-8:].tolist()
1442
    num_pivots = 1
Ruff's avatar
Ruff committed
1443
1444
1445
1446
    # print(values)
    while num_pivots < 16:
        idx = list(range(16 // num_pivots // 2, 16, 16 // num_pivots))
        # print(idx)
1447
1448
1449
        num_pivots *= 2
        pivots = []
        for i in idx:
Ruff's avatar
Ruff committed
1450
1451
            pivots.append((values[i - 1] + values[i]) / 2)
        # print(pivots)