test_functional.py 55.1 KB
Newer Older
Tim Dettmers's avatar
Tim Dettmers committed
1
2
3
import math
import random
import time
Tim Dettmers's avatar
Tim Dettmers committed
4

5
import einops
Aarni Koskela's avatar
Aarni Koskela committed
6
import numpy as np
7
8
9
10
import pytest
import torch

import bitsandbytes as bnb
Tim Dettmers's avatar
Tim Dettmers committed
11
from bitsandbytes import functional as F
Aarni Koskela's avatar
Aarni Koskela committed
12
13
14
15
from tests.helpers import (
    BOOLEAN_TUPLES,
    TRUE_FALSE,
    describe_dtype,
16
    get_available_devices,
Aarni Koskela's avatar
Aarni Koskela committed
17
18
19
    get_test_dims,
    id_formatter,
)
Tim Dettmers's avatar
Tim Dettmers committed
20

Ruff's avatar
Ruff committed
21
torch.set_printoptions(precision=5, sci_mode=False, linewidth=120, edgeitems=20, threshold=10000)
Tim Dettmers's avatar
Tim Dettmers committed
22
23
k = 20

24

Tim Dettmers's avatar
Tim Dettmers committed
25
def assert_all_approx_close(a, b, rtol=1e-3, atol=1e-3, count=0, throw=True):
26
    idx = torch.isclose(a, b, rtol=rtol, atol=atol)
27
    sumval = (idx == 0).sum().item()
Tim Dettmers's avatar
Tim Dettmers committed
28
    if sumval > count:
Tim Dettmers's avatar
Tim Dettmers committed
29
30
        if throw:
            print(f"Too many values not close: assert {sumval} < {count}")
31
            torch.testing.assert_close(a, b, rtol=rtol, atol=atol)
Tim Dettmers's avatar
Tim Dettmers committed
32
33

    return sumval
Tim Dettmers's avatar
Tim Dettmers committed
34

35

Tim Dettmers's avatar
Tim Dettmers committed
36
37
class FFN(torch.nn.Module):
    def __init__(self, input_features, hidden_size, bias=True):
38
        super().__init__()
Tim Dettmers's avatar
Tim Dettmers committed
39
40
41
42
43
44
45
46
47
48
49
50
        self.fc1 = torch.nn.Linear(input_features, hidden_size, bias=bias)
        self.fc2 = torch.nn.Linear(hidden_size, input_features, bias=bias)

        with torch.no_grad():
            torch.nn.init.xavier_uniform_(self.fc1.weight)
            torch.nn.init.xavier_uniform_(self.fc2.weight)

    def forward(self, x):
        x = torch.relu(self.fc1(x))
        x = self.fc2(x)
        return x

51

52
class Timer:
Tim Dettmers's avatar
Tim Dettmers committed
53
54
55
56
57
    def __init__(self):
        self.starts = {}
        self.ends = {}
        self.agg = {}

58
    def tick(self, name="default"):
Tim Dettmers's avatar
Tim Dettmers committed
59
60
61
62
63
64
65
        if name not in self.starts:
            self.starts[name] = torch.cuda.Event(enable_timing=True)
            self.ends[name] = torch.cuda.Event(enable_timing=True)
            self.starts[name].record()
        else:
            ms = self.tock(name, evict=True, print_ms=False)

66
    def tock(self, name="default", evict=True, print_ms=True):
Tim Dettmers's avatar
Tim Dettmers committed
67
68
69
70
        if name in self.ends:
            self.ends[name].record()
            torch.cuda.synchronize()
            ms = self.starts[name].elapsed_time(self.ends[name])
71
72
            if name not in self.agg:
                self.agg[name] = 0.0
Tim Dettmers's avatar
Tim Dettmers committed
73
74
75
76
77
78
            self.agg[name] += ms
            if evict:
                self.starts.pop(name)
                self.ends.pop(name)

        if print_ms and name in self.agg:
79
            print(f"{name} took: {self.agg[name] / 1000.0:.5f}s")
Tim Dettmers's avatar
Tim Dettmers committed
80
81
82
83

        return self.agg[name]

    def reset(self):
84
        self.starts = {}
Tim Dettmers's avatar
Tim Dettmers committed
85
86
        self.ends = {}
        self.agg = {}
87
88
        print("Resetting benchmark data")

Tim Dettmers's avatar
Tim Dettmers committed
89

90
class Test8BitBlockwiseQuantizeFunctional:
91
    @pytest.mark.parametrize("device", get_available_devices())
92
93
94
95
    @pytest.mark.parametrize("dtype", [torch.float32, torch.float16, torch.bfloat16], ids=describe_dtype)
    @pytest.mark.parametrize("nested", TRUE_FALSE, ids=id_formatter("nested"))
    @pytest.mark.parametrize("blocksize", [4096, 2048, 1024, 512, 256, 128, 64])
    @pytest.mark.parametrize("signed", TRUE_FALSE, ids=id_formatter("signed"))
96
    def test_dynamic_blockwise_quantization(self, device, dtype, nested, blocksize, signed):
97
98
        iters = 100

99
        if device == "cpu":
100
101
            iters = 10

102
103
104
105
            # This test is slow on CPU, so avoid atypical use cases.
            if nested:
                pytest.skip("Not a typical use case.")
            if blocksize != 256:
106
                pytest.skip("Only blocksize 256 is used in CPU/XPU")
107
            if dtype != torch.float32:
108
                pytest.skip("Only float32 is used in CPU/XPU")
109

110
111
        diffs = []
        reldiffs = []
112
        for i in range(iters):
113
            A1 = torch.randn(1024, 1024, device=device, dtype=dtype)
114
115
116
117
118
119
120
121
122
123
124
125
126
127
            C, S = F.quantize_blockwise(A1, blocksize=blocksize, nested=nested)
            A2 = F.dequantize_blockwise(C, S)
            diff = torch.abs(A1 - A2).float()
            reldiff = diff / torch.abs(A1.float() + 1e-8)
            diffs.append(diff.mean().item())
            reldiffs.append(reldiff.mean().item())
        abserr = sum(diffs) / len(diffs)
        relerr = sum(reldiffs) / len(reldiffs)
        assert abserr < 0.011
        assert relerr < 0.018
        assert A2.dtype == dtype

        diffs = []
        code = F.create_dynamic_map(signed=signed)
128
        for i in range(iters):
129
            A1 = torch.rand(1024, 1024, device=device, dtype=dtype)
130
131
132
133
134
135
136
137
138
139
            C, S = F.quantize_blockwise(A1, blocksize=blocksize, nested=nested, code=code)
            A2 = F.dequantize_blockwise(C, S)
            diff = torch.abs(A1 - A2).float()
            reldiff = diff / torch.abs(A1.float() + 1e-8)
            diffs.append(diff.mean().item())
            reldiffs.append(reldiff.mean().item())
            # torch.testing.assert_close(A1, A2, atol=1e-2, rtol=0)
        abserr = sum(diffs) / len(diffs)
        relerr = sum(reldiffs) / len(reldiffs)
        if signed:
140
            threshold_abserr = 0.0036 if device in ("cpu", "xpu") and (F.ipex_cpu or F.ipex_xpu) else 0.0035
141
            assert abserr < 0.0036
142
143
            assert relerr < 0.015
        else:
144
            assert abserr < 0.00175 if device in ("cpu", "xpu") and (F.ipex_cpu or F.ipex_xpu) else 0.0023
145
146
147
            assert relerr < 0.012
        assert A2.dtype == dtype

148
149
150
151
    @pytest.mark.skipif("cpu" not in get_available_devices(), reason="CPU is required")
    @pytest.mark.parametrize("hidden", [128])
    @pytest.mark.parametrize("blocksize", [4096, 16384])
    def test_blockwise_cpu_large(self, hidden, blocksize):
152
153
154
155
        diffs = []
        reldiffs = []
        batch = 128
        seq = 128
156
157
158
159
160
161
162
163
164
165
166
167
168
169

        for i in range(2):
            A1 = torch.randn(batch, seq, hidden, device="cpu")
            t0 = time.time()
            C, S = F.quantize_blockwise(A1, blocksize=blocksize)
            A2 = F.dequantize_blockwise(C, S, blocksize=blocksize)
            print(time.time() - t0)
            diff = torch.abs(A1 - A2)
            reldiff = diff / torch.abs(A1 + 1e-8)
            diffs.append(diff.mean().item())
            reldiffs.append(reldiff.mean().item())
            assert diffs[-1] < 0.011
        # print(sum(diffs)/len(diffs))
        # print(sum(reldiffs)/len(reldiffs))
170

171
    @pytest.mark.parametrize("device", get_available_devices())
172
    @pytest.mark.parametrize("bits", range(2, 9), ids=id_formatter("bits"))
Matthew Douglas's avatar
Matthew Douglas committed
173
    @pytest.mark.parametrize("method", ["linear", "fp8", "dynamic"])
174
    def test_few_bit_quant(self, device, bits, method):
175
        if bits != 8 and (device == "cpu" or (device == "xpu" and F.ipex_xpu)):
176
            pytest.skip("CPU/XPU implementation only supports 8 bits")
177

178
179
180
181
        abserrs = []
        relerrs = []
        code = None
        if method == "linear":
182
            code = F.create_linear_map(True, total_bits=bits).to(device)
183
184
185
        elif method == "fp8":
            ebits = math.ceil(bits / 2)
            pbits = bits - ebits - 1
186
            code = F.create_fp8_map(True, ebits, pbits, bits).to(device)
187
        elif method == "dynamic":
188
            code = F.create_dynamic_map(True, bits - 0, bits).to(device)
Matthew Douglas's avatar
Matthew Douglas committed
189

190
191
192
193
194
195
196
        # for some data types we have no zero
        # for some data types we have one zero
        # for some data types we have two zeros
        assert torch.unique(code).numel() in [2**bits, 2**bits - 1], f"bits: {bits}, method: {method}"
        # print(method, (code==0).sum())
        assert code.numel() == 256
        for i in range(10):
197
            values = torch.randn(1, 32, device=device)
198
199
200
201
202
203
204
205
206
207
            values /= values.abs().max()
            # values[values.abs() < 1e-6] += 1e-5

            q1 = []
            v1 = []
            for v in values[0]:
                idx = torch.abs(v - code).argmin()
                q1.append(idx.item())
                v1.append(code[idx].item())

208
209
            q1 = torch.tensor(q1, device=device)
            v1 = torch.tensor(v1, device=device)
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224

            q2, S2 = F.quantize_blockwise(values, code=code)
            v2 = F.dequantize_blockwise(q2, S2)

            idx = torch.isclose(q1.int(), q2.int())
            err2 = torch.abs(v2 - values)
            abserrs.append(err2.mean().item())
            relerrs.append((err2 / (1e-10 + values).abs()).mean().item())
            if idx.sum():
                # some weird cases
                err1 = torch.abs(v1 - values).mean()
                # assert err2.mean() <= err1
            else:
                torch.testing.assert_close(q1, q2)

225
226
227
228
229
230
    @pytest.mark.parametrize("device", get_available_devices())
    def test_fp8_quant(self, device):
        # TODO
        if device == "cpu":
            pytest.skip("CPU implementation segfaults")

231
232
        for e_bits in range(1, 7):
            p_bits = 7 - e_bits
233
            code = F.create_fp8_map(True, e_bits, p_bits).to(device)
234
235
236
237

            abserr = []
            relerr = []
            for i in range(100):
238
                A1 = torch.randn(1024, 1024, device=device)
239
240
241
242
243
244
245
246
247
248
249
250
251
                C, SC = F.quantize_blockwise(A1, code=code)
                A2 = F.dequantize_blockwise(C, SC)
                diff = torch.abs(A1 - A2)
                reldiff = diff / torch.abs(A1 + 1e-8)
                abserr.append(diff.mean().item())
                relerr.append(reldiff.mean().item())
                # assert diff < 0.0075
            # print(sum(abserr)/len(abserr))
            # print(sum(relerr)/len(relerr))

            abserr = []
            relerr = []
            for i in range(100):
252
                A1 = torch.rand(1024, 1024, device=device)
253
254
255
256
257
258
259
260
261
262
263
264
265
                C, SC = F.quantize_blockwise(A1, code=code)
                A2 = F.dequantize_blockwise(C, SC)
                diff = torch.abs(A1 - A2)
                reldiff = diff / torch.abs(A1 + 1e-8)
                abserr.append(diff.mean().item())
                relerr.append(reldiff.mean().item())
                # assert diff < 0.0075
            # print(sum(abserr)/len(abserr))
            # print(sum(relerr)/len(relerr))

            abserr = []
            relerr = []
            for i in range(100):
266
                A1 = torch.randn(1024, 1024, device=device)
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
                C, SC = F.quantize_blockwise(A1)
                A2 = F.dequantize_blockwise(C, SC)
                diff = torch.abs(A1 - A2)
                reldiff = diff / torch.abs(A1 + 1e-8)
                abserr.append(diff.mean().item())
                relerr.append(reldiff.mean().item())
                # assert diff < 0.0075
            # print(3, sum(abserr)/len(abserr))
            # print(3, sum(relerr)/len(relerr))

    @pytest.mark.benchmark
    def test_bench_dequantization(self):
        a = torch.rand(1024, 1024, device="cuda").half()
        code = F.create_fp8_map(True, 3, 0, 4).cuda()
        qa, SA = F.quantize_blockwise(a, code=code)
        print(qa.max())

        max_theoretical_mu = 1024 * 1024 * 2 / 1024**3 / 672 * 1000 * 1000
        # print(max_theoretical_mu)

        torch.cuda.synchronize()
        t0 = time.time()
        for i in range(100):
            qa, SA = F.quantize_blockwise(a)
        torch.cuda.synchronize()
        # print((time.time()-t0)/1e6)
Tim Dettmers's avatar
Tim Dettmers committed
293
294


295
296
297
def test_stable_embedding():
    layer = bnb.nn.StableEmbedding(1024, 1024)
    layer.reset_parameters()
Tim Dettmers's avatar
Tim Dettmers committed
298
299


Tim Dettmers's avatar
Tim Dettmers committed
300
301
def quant(x):
    max1 = torch.abs(x).max()
302
    x = torch.round(x / max1 * 127)
Tim Dettmers's avatar
Tim Dettmers committed
303
304
    return max1, x.to(torch.int8)

305

Tim Dettmers's avatar
Tim Dettmers committed
306
def dequant(c, maxC):
307
308
    return c.float() * (maxC / 127)

Tim Dettmers's avatar
Tim Dettmers committed
309
310

def mm_dequant(maxA, maxB, C):
311
312
    return C.float() * (maxA / 127) * (maxB / 127)

Tim Dettmers's avatar
Tim Dettmers committed
313
314
315

def quant_multi(x, dim):
    max1 = torch.amax(torch.abs(x), dim=dim, keepdim=True)
316
317
    max1[max1 == 0] = 1.0
    x = torch.round(x / max1 * 127)
Tim Dettmers's avatar
Tim Dettmers committed
318
319
    return max1, x.to(torch.int8)

320

Tim Dettmers's avatar
Tim Dettmers committed
321
def quant_multi_chunk(x, dim, chunk_size=32):
322
323
324
    if dim == 1:
        x_chunked = einops.rearrange(x, "(c a) b -> c a b", c=chunk_size)
        max1 = torch.amax(torch.abs(x_chunked), dim=dim + 1, keepdim=True)
Tim Dettmers's avatar
Tim Dettmers committed
325
326
        max1 = torch.tile(max1, (1, 1, x.shape[1]))
        max1 = max1.view(x.shape)
327
328
    elif dim == 0:
        x_chunked = einops.rearrange(x, "a (b c) -> a b c", c=chunk_size)
Tim Dettmers's avatar
Tim Dettmers committed
329
330
331
        max1 = torch.amax(torch.abs(x_chunked), dim=dim, keepdim=True)
        max1 = torch.tile(max1, (x.shape[0], 1, 1))
        max1 = max1.view(x.shape)
332
333
    max1[max1 == 0] = 1.0
    x = torch.round(x / max1 * 127)
Tim Dettmers's avatar
Tim Dettmers committed
334
335
    return max1, x.to(torch.int8)

336

Tim Dettmers's avatar
Tim Dettmers committed
337
def mean(xx):
338
339
    return sum(xx) / float(len(xx))

Tim Dettmers's avatar
Tim Dettmers committed
340

Aarni Koskela's avatar
Aarni Koskela committed
341
342
methods = {
    "linear": (
343
344
345
346
347
        lambda x, dim: quant(x),
        lambda x, dim: quant(x),
        dequant,
        dequant,
        mm_dequant,
Aarni Koskela's avatar
Aarni Koskela committed
348
349
350
    ),
    "vectorwise": (quant_multi, quant_multi, dequant, dequant, mm_dequant),
}
351
352


353
@pytest.mark.skipif(not torch.cuda.is_available(), reason="CUDA is required")
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
class TestIGEMMFunctional:
    @pytest.mark.parametrize("dim1", [1024 * 2], ids=id_formatter("dim1"))
    @pytest.mark.parametrize("dim2", [1024 * 16], ids=id_formatter("dim2"))
    @pytest.mark.parametrize("quant_methods", methods.values(), ids=methods.keys())
    @pytest.mark.parametrize("batched", TRUE_FALSE, ids=id_formatter("batched"))
    def test_approx_igemm(self, dim1, dim2, quant_methods, batched):
        dim1 = dim1 - (dim1 % 32)
        dim2 = dim2 - (dim2 % 32)
        errors = []
        relerrors = []
        # print("")
        for i in range(5):
            if batched:
                A = torch.normal(0, 0.5, size=(32, dim1, dim2 // 32), device="cuda")
                B = torch.normal(0, 0.5, size=(32, dim2 // 32, dim1), device="cuda")
                maxA, Ac = quant_methods[0](A, 2)
                maxB, Bc = quant_methods[1](B, 1)
            else:
                A = torch.normal(0, 0.5, size=(dim1, dim2), device="cuda")
                B = torch.normal(0, 0.5, size=(dim2, dim1), device="cuda")
                maxA, Ac = quant_methods[0](A, 1)
                maxB, Bc = quant_methods[1](B, 0)
            torch.testing.assert_close(quant_methods[2](maxA, Ac), A, atol=0.025, rtol=0.05)
            if batched:
                out2 = torch.bmm(A, B)
                C = torch.bmm(Ac.float(), Bc.float())
            else:
                out2 = torch.mm(A, B)
                C = F.igemm(Ac, Bc)
            out = quant_methods[4](maxA, maxB, C)
            std = out2.std()
            out /= std
            out2 /= std
            err = torch.abs(out - out2)
            relerr = err / torch.abs(out2)
            errors.append(err.mean().item())
            relerrors.append(relerr.mean().item())
        # print(mean(errors))
        # print(mean(relerrors))

Matthew Douglas's avatar
Matthew Douglas committed
394
395
396
    @pytest.mark.parametrize("hidden_dim", [32, 256], ids=id_formatter("hidden_dim"))
    @pytest.mark.parametrize("batch_dim", [16, 256], ids=id_formatter("batch_dim"))
    @pytest.mark.parametrize("seq_dim", [16, 256], ids=id_formatter("seq_dim"))
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
    @pytest.mark.parametrize("transpose", BOOLEAN_TUPLES, ids=id_formatter("transpose"))
    def test_igemm(self, hidden_dim, batch_dim, transpose, seq_dim):
        hidden_dim = hidden_dim - (hidden_dim % 32)
        batch_dim = batch_dim - (batch_dim % 16)
        seq_dim = seq_dim - (seq_dim % 16)
        for i in range(k):
            shapeA = (batch_dim, hidden_dim) if not transpose[0] else (hidden_dim, batch_dim)
            shapeB = (
                (32 * random.randint(1, 4), hidden_dim) if transpose[1] else (hidden_dim, 32 * random.randint(1, 4))
            )
            A = torch.randint(-128, 127, size=shapeA, device="cuda").to(torch.int8)
            B = torch.randint(-128, 127, size=shapeB, device="cuda").to(torch.int8)
            if not transpose[0] and not transpose[1]:
                out2 = torch.matmul(A.float(), B.float())
                out = F.igemm(A, B)
            elif not transpose[0] and transpose[1]:
                out2 = torch.matmul(A.float(), B.t().float())
                out = F.igemm(A, B.t())
            elif transpose[0] and not transpose[1]:
                out2 = torch.matmul(A.t().float(), B.float())
                out = F.igemm(A.t(), B)
            elif transpose[0] and transpose[1]:
                out2 = torch.matmul(A.t().float(), B.t().float())
                out = F.igemm(A.t(), B.t())

            torch.testing.assert_close(out.float(), out2)

        for i in range(k):
            shapeA = (batch_dim, seq_dim, hidden_dim)
            shapeB = (
                (32 * random.randint(1, 4), hidden_dim) if transpose[1] else (hidden_dim, 32 * random.randint(1, 4))
            )
            A = torch.randint(-128, 127, size=shapeA, device="cuda").to(torch.int8)
            B = torch.randint(-128, 127, size=shapeB, device="cuda").to(torch.int8)
            if not transpose[0] and not transpose[1]:
                out2 = torch.matmul(A.float(), B.float())
                out = F.igemm(A, B)
            elif not transpose[0] and transpose[1]:
                out2 = torch.matmul(A.float(), B.t().float())
                out = F.igemm(A, B.t())

            torch.testing.assert_close(out.float(), out2)

Matthew Douglas's avatar
Matthew Douglas committed
440
441
442
    @pytest.mark.parametrize("seq_dim", [32, 256, 512], ids=id_formatter("seq_dim"))
    @pytest.mark.parametrize("hidden_dim", [64, 1024, 4096], ids=id_formatter("hidden_dim"))
    @pytest.mark.parametrize("batch_dim", [2, 8, 16], ids=id_formatter("batch_dim"))
443
444
445
446
447
448
449
450
451
452
453
454
455
    def test_dim3_igemm(self, seq_dim, hidden_dim, batch_dim):
        seq_dim = seq_dim - (seq_dim % 32)
        hidden_dim = hidden_dim - (hidden_dim % 32)
        batch_dim = batch_dim - (batch_dim % 2)
        for i in range(25):
            A = torch.randint(-128, 127, size=(batch_dim, seq_dim, hidden_dim), device="cuda").to(torch.int8)
            B = torch.randint(-128, 127, size=(batch_dim, seq_dim, 1024), device="cuda").to(torch.int8)
            out2 = torch.einsum("bsi, bso->io", A.float(), B.float())
            iout = torch.empty(A.shape[2], B.shape[2], dtype=torch.int32, device=A.device)
            out = F.igemm(A, B, out=iout)

            torch.testing.assert_close(out.float(), out2)

Matthew Douglas's avatar
Matthew Douglas committed
456
457
458
    @pytest.mark.parametrize("seq_dim", [32, 512], ids=id_formatter("seq_dim"))
    @pytest.mark.parametrize("hidden_dim", [32, 1024 * 4], ids=id_formatter("hidden_dim"))
    @pytest.mark.parametrize("batch_dim", [2, 16], ids=id_formatter("batch_dim"))
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
    @pytest.mark.parametrize("transpose", TRUE_FALSE, ids=id_formatter("transpose"))
    def test_minmax_igemm(self, seq_dim, hidden_dim, batch_dim, transpose):
        def min_max(x):
            maxA = torch.amax(x, dim=2, keepdim=True)
            minA = torch.amin(x, dim=2, keepdim=True)
            scale = (maxA - minA) / 2.0
            return (127 * (x - minA - scale) / scale).to(torch.int8), minA, scale

        seq_dim = seq_dim - (seq_dim % 16)
        hidden_dim = hidden_dim - (hidden_dim % 16)
        batch_dim = batch_dim - (batch_dim % 2)
        errs = []
        relerrs = []
        errs2 = []
        relerrs2 = []
        for i in range(k):
            A = torch.normal(0.0, 0.5, size=(batch_dim, seq_dim, hidden_dim), device="cuda")
            if transpose:
                B = torch.normal(0, 0.5, size=(256, hidden_dim), device="cuda")
            else:
                B = torch.normal(0, 0.5, size=(hidden_dim, 256), device="cuda")
            Ac, minA, scale = min_max(A)
            if transpose:
                maxB, Bc = quant_multi(B, dim=(1 if transpose else 0))
                out = F.igemm(Ac, Bc.t())
                out2 = torch.matmul(A, B.t())
                offset = B.t().sum(0) * (minA + scale)
                out = out.float()
                out = (out * maxB.t() * scale / (127 * 127)) + offset

                maxA, Ac = quant_multi(A, dim=2)
                out3 = F.igemm(Ac, Bc.t())
                out3 = mm_dequant(maxA, maxB.t(), out3)
            else:
                maxB, Bc = quant_multi(B, dim=0)
                offset = B.sum(0) * (minA + scale)
                out = F.igemm(Ac, Bc)
                out2 = torch.matmul(A, B)
                out = out.float()
                out = (out * maxB * scale / (127 * 127)) + offset

                maxA, Ac = quant_multi(A, dim=2)
                out3 = F.igemm(Ac, Bc)
                out3 = mm_dequant(maxA, maxB, out3)

            std = out2.std()
            out2 /= std
            out /= std
            out3 /= std

            err = torch.abs(out - out2)
            relerr = err / (torch.abs(out2) + 1e-7)

            err2 = torch.abs(out3 - out2)
            relerr2 = err2 / (torch.abs(out2) + 1e-7)

            errs.append(err.mean().item())
            relerrs.append(relerr.mean().item())
            errs2.append(err2.mean().item())
            relerrs2.append(relerr2.mean().item())
        # print(mean(errs))
        # print(mean(relerrs))
        # print(mean(errs2))
        # print(mean(relerrs2))
        assert mean(errs) < 0.015
Matthew Douglas's avatar
Matthew Douglas committed
524
525
526
527
528
529
530

        # There's a higher relerr on L40S with torch 2.4+cu118.
        is_sm89 = torch.cuda.get_device_capability() == (8, 9)
        if torch.version.cuda == "11.8" and is_sm89 and torch.__version__ < (2, 5):
            assert mean(relerrs) < 0.41
        else:
            assert mean(relerrs) < 0.3
531

Matthew Douglas's avatar
Matthew Douglas committed
532
533
534
535
    @pytest.mark.parametrize("dim1", [1, 64], ids=id_formatter("dim1"))
    @pytest.mark.parametrize("dim2", [32, 128], ids=id_formatter("dim2"))
    @pytest.mark.parametrize("dim3", [32, 256], ids=id_formatter("dim3"))
    @pytest.mark.parametrize("dim4", [32, 256], ids=id_formatter("dim4"))
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
    @pytest.mark.parametrize("transpose", BOOLEAN_TUPLES, ids=id_formatter("transpose"))
    def test_ibmm(self, dim1, dim2, dim3, dim4, transpose):
        dim2 = dim2 - (dim2 % 16)
        dim3 = dim3 - (dim3 % 16)
        dim4 = dim4 - (dim4 % 16)
        for i in range(k):
            shapeA = (dim1, dim3, dim2) if transpose[0] else (dim1, dim2, dim3)
            shapeB = (dim1, dim4, dim3) if transpose[1] else (dim1, dim3, dim4)
            A = torch.randint(-128, 127, size=shapeA, device="cuda").to(torch.int8)
            B = torch.randint(-128, 127, size=shapeB, device="cuda").to(torch.int8)

            if not transpose[0] and not transpose[1]:
                out2 = torch.bmm(A.float(), B.float())
                out = F.igemm(A, B)
            elif not transpose[0] and transpose[1]:
                out2 = torch.bmm(A.float(), B.permute([0, 2, 1]).float())
                out = F.igemm(A, B.permute([0, 2, 1]))
            elif transpose[0] and not transpose[1]:
                out2 = torch.bmm(A.permute([0, 2, 1]).float(), B.float())
                out = F.igemm(A.permute([0, 2, 1]), B)
            elif transpose[0] and transpose[1]:
                out2 = torch.bmm(A.permute([0, 2, 1]).float(), B.permute([0, 2, 1]).float())
                out = F.igemm(A.permute([0, 2, 1]), B.permute([0, 2, 1]))
            torch.testing.assert_close(out.float(), out2.float())


class TestLLMInt8Functional:
Matthew Douglas's avatar
Matthew Douglas committed
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
    @staticmethod
    def vectorwise_mm_dequant(xq, S1, S2, dtype=torch.half):
        """Reference implementation for the F.int8_mm_dequant function."""
        C = 127.0

        x = xq.float()
        if len(S1.shape) == 3 and len(x.shape) == 2:
            S1 = S1.squeeze(0)
        if len(S2.shape) == 3 and len(x.shape) == 2:
            S2 = S2.squeeze(0)
        if len(S1.shape) == 2:
            x *= S1 / C
        else:
            x *= S1 / C
        x *= S2 / C
        return x.to(dtype)

    @staticmethod
    def vectorwise_quant(x, dim=1):
        """Reference implementation"""
        max1 = torch.amax(torch.abs(x), dim=dim, keepdim=True)
        xq = torch.round(x * (127.0 / max1)).to(torch.int8)
        return xq, max1

587
    @pytest.mark.parametrize("device", get_available_devices())
588
589
590
591
592
593
    @pytest.mark.parametrize("dim1", [128], ids=id_formatter("dim1"))
    @pytest.mark.parametrize("dim2", [256], ids=id_formatter("dim2"))
    @pytest.mark.parametrize("dim3", [499, 512], ids=id_formatter("dim3"))
    @pytest.mark.parametrize("dim4", [512], ids=id_formatter("dim4"))
    @pytest.mark.parametrize("dims", (2, 3), ids=id_formatter("dims"))
    @pytest.mark.parametrize("ldb", (0,), ids=id_formatter("ldb"))
594
    def test_int8_linear_matmul(self, device, dim1, dim2, dim3, dim4, dims, ldb):
595
596
        for i in range(k):
            if dims == 2:
597
                A = torch.randint(-128, 127, size=(dim1, dim3), dtype=torch.int8, device=device)
598
            elif dims == 3:
599
600
                A = torch.randint(-128, 127, size=(dim1, dim2, dim3), dtype=torch.int8, device=device)
            B = torch.randint(-128, 127, size=(dim4, dim3), dtype=torch.int8, device=device)
601
602
603
604
605
            C1 = torch.matmul(A.float(), B.t().float())

            C2 = F.int8_linear_matmul(A, B)
            torch.testing.assert_close(C1, C2.float())

606
    @pytest.mark.parametrize("device", get_available_devices())
607
608
609
610
611
    @pytest.mark.parametrize("dim1", [32], ids=id_formatter("dim1"))
    @pytest.mark.parametrize("dim2", [32], ids=id_formatter("dim2"))
    @pytest.mark.parametrize("dim3", [32], ids=id_formatter("dim3"))
    @pytest.mark.parametrize("dim4", [32], ids=id_formatter("dim4"))
    @pytest.mark.parametrize("dims", (2,), ids=id_formatter("dims"))
612
    def test_int8_linear_matmul_half(self, device, dim1, dim2, dim3, dim4, dims):
613
614
        for i in range(k):
            if dims == 2:
615
                A = torch.normal(0, 0.5, size=(dim1, dim3), device=device).half()
616
            elif dims == 3:
617
618
                A = torch.normal(0, 0.5, size=(dim1, dim2, dim3), device=device).half()
            B = torch.randn((dim4, dim3), device=device).half()
619
620
621
622
623
            torch.nn.init.xavier_uniform_(B)
            C1 = torch.matmul(A, B.t())

            A = A.view(-1, A.shape[-1])

624
            CA, statsA, _ = F.int8_vectorwise_quant(A)
625
626
627
628
629
            CB, statsB, _ = F.int8_vectorwise_quant(B)
            output = F.int8_mm_dequant(F.int8_linear_matmul(CA, CB), statsA, statsB)

            torch.testing.assert_close(C1.view(-1, C1.shape[-1]), output, atol=0.025, rtol=0.05)

630
    @pytest.mark.parametrize("device", get_available_devices())
631
632
633
634
    @pytest.mark.parametrize("dim1", (64, 256), ids=id_formatter("dim1"))
    @pytest.mark.parametrize("dim4", (64, 1024), ids=id_formatter("dim4"))
    @pytest.mark.parametrize("dims", (2,), ids=id_formatter("dims"))
    @pytest.mark.parametrize("has_bias", TRUE_FALSE, ids=id_formatter("has_bias"))
635
    def test_dequant_mm(self, device, dim1, dim4, dims, has_bias):
636
637
        inner = 128
        bias = None
Ruff's avatar
Ruff committed
638
        if has_bias:
639
            bias = torch.randn(dim4, device=device, dtype=torch.float16)
640
641

        for i in range(1):
642
643
            A = torch.randn(dim1, inner, device=device)
            B = torch.randn(dim4, inner, device=device)
644
645
646
647
            C1 = torch.matmul(A.half(), B.t().half())
            if has_bias:
                C1 += bias

Matthew Douglas's avatar
Matthew Douglas committed
648
649
            A1, maxA = self.vectorwise_quant(A, dim=1)
            B1, maxB = self.vectorwise_quant(B, dim=1)
650
651
652

            C2 = F.int8_linear_matmul(A1, B1)

Matthew Douglas's avatar
Matthew Douglas committed
653
            C4 = self.vectorwise_mm_dequant(C2.float(), maxA, maxB.t())
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
            if has_bias:
                C4 += bias

            # TODO: is something wrong here? If so, the problem goes deeper
            # n = C1.numel()
            # p = 0.06
            std = C1.std(0).view(1, -1)
            C1 /= std
            C4 /= std
            # assert_all_approx_close(C1, C4, atol=0.02, rtol=0.1, count=int(n*0.06))
            # assert (count / n < p), f"error in more than {p} of elements: {count}/{n}={count/n}"

            C5 = F.int8_mm_dequant(C2, maxA, maxB, bias=bias)
            C5 /= std
            torch.testing.assert_close(C5, C4, atol=0.015, rtol=0.1)
            n = C5.numel()
            assert_all_approx_close(C1, C4, atol=0.015, rtol=0.1, count=int(0.01 * n))

    @pytest.mark.parametrize("dim1", [1 * 1024], ids=id_formatter("dim1"))
    @pytest.mark.parametrize("dim2", [1 * 1024], ids=id_formatter("dim2"))
    @pytest.mark.parametrize("dims", (2,), ids=id_formatter("dims"))
    @pytest.mark.parametrize("threshold", [0.0, 3.0], ids=id_formatter("decomp"))
676
    @pytest.mark.deprecated
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
    def test_colrow_absmax(self, dim1, dim2, dims, threshold):
        for i in range(k):
            A = torch.randn(dim1, dim2, device="cuda").half()

            assert dims == 2

            row_stats1, _ = torch.abs(A.float()).max(1)
            col_stats1, _ = torch.abs(A.float()).max(0)

            if threshold > 0.0:
                A_truncated = A.clone()
                A_truncated[torch.abs(A_truncated) >= threshold] = 0.0
                row_stats1_trunc, _ = torch.abs(A_truncated.float()).max(1)
                col_stats1_trunc, _ = torch.abs(A_truncated.float()).max(0)

                row_stats2, col_stats2, nnz_block_ptr2 = F.get_colrow_absmax(A, threshold=threshold)

                nnz_rows1_counts = (torch.abs(A) >= threshold).sum(1).flatten()
                nnz_block_ptr1 = torch.zeros(
                    nnz_rows1_counts.shape[0] + 1,
                    dtype=nnz_rows1_counts.dtype,
                    device=nnz_rows1_counts.device,
                )
                nnz_block_ptr1[1:] = nnz_rows1_counts.cumsum(0)

                torch.testing.assert_close(col_stats1_trunc, col_stats2)
                torch.testing.assert_close(row_stats1_trunc, row_stats2)
                # torch.testing.assert_close(nnz_block_ptr1, nnz_block_ptr2)
            else:
                row_stats2, col_stats2, nnz_block_ptr2 = F.get_colrow_absmax(A, threshold=0.0)
                assert nnz_block_ptr2 is None
                torch.testing.assert_close(col_stats1, col_stats2)
                torch.testing.assert_close(row_stats1, row_stats2)

    @pytest.mark.parametrize("dim1", [2048, 4096], ids=id_formatter("dim1"))
    @pytest.mark.parametrize("dim2", [512, 1024], ids=id_formatter("dim2"))
713
    @pytest.mark.deprecated
714
715
716
    def test_int8_double_quant(self, dim1, dim2):
        for i in range(k):
            A = torch.randn(dim1, dim2, device="cuda").half()
Matthew Douglas's avatar
Matthew Douglas committed
717
718
            out_col1, Scol = self.vectorwise_quant(A, dim=0)
            out_row1, Srow = self.vectorwise_quant(A, dim=1)
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733

            CA, CAt, statsA, statsAt, _ = F.int8_double_quant(A)

            # max difference is 1 due to rounding differences
            torch.testing.assert_close(CA, out_row1, atol=1, rtol=0)
            torch.testing.assert_close(CAt, out_col1, atol=1, rtol=0)

            n = CAt.numel()
            num_not_close_rows = (torch.isclose(CA, out_row1, atol=1) == 0).sum().item()
            num_not_close_cols = (torch.isclose(CAt, out_col1, atol=1) == 0).sum().item()

            # allow for 1:500 error due to rounding differences
            min_error = 1 / 500
            if num_not_close_cols > (min_error * n):
                print(
734
                    f"Min error exceeded {num_not_close_cols} elements are different. Error: {num_not_close_cols / n:.4f}"
735
736
737
738
                )
                assert False
            if num_not_close_rows > (min_error * n):
                print(
739
                    f"Min error exceeded {num_not_close_rows} elements are different. Error: {num_not_close_rows / n:.4f}"
740
741
742
743
744
745
                )
                assert False

            torch.testing.assert_close(Srow.flatten().float(), statsA)
            torch.testing.assert_close(Scol.flatten().float(), statsAt)

746
    @pytest.mark.parametrize("device", get_available_devices())
747
748
749
750
751
752
753
754
    @pytest.mark.parametrize(
        ("dim1", "dim4", "inner"),
        (
            pytest.param(dim1, dim4, inner, id=f"{dim1=},{dim4=},{inner=}")
            for (dim1, dim4, inner) in zip(
                (1, 8, 2048, 4096),
                (2, 128, 2048, 4096),
                (4, 256, 512, 4096),
755
            )
756
757
        ),
    )
758
    def test_integrated_int8_linear_matmul(self, device, dim1, dim4, inner):
759
760
761
        if device == "cpu" and inner > 2048:
            pytest.skip("Slow on CPU")

762
        for i in range(k):
763
764
            A = torch.randn(dim1, inner, device=device).half()
            B = torch.randn(dim4, inner, device=device).half()
765
766
767
768
769

            out1 = torch.matmul(A.half(), B.t().half())

            C1a, stats1a, _ = F.int8_vectorwise_quant(A)
            C2a, stats2a, _ = F.int8_vectorwise_quant(B)
Matthew Douglas's avatar
Matthew Douglas committed
770
771
            A1, maxA = self.vectorwise_quant(A, dim=1)
            B1, maxB = self.vectorwise_quant(B, dim=1)
772
773
774
775
776
777
778
779
780
781

            torch.testing.assert_close(maxA.flatten().float(), stats1a)
            torch.testing.assert_close(maxB.flatten().float(), stats2a)
            torch.testing.assert_close(C1a, A1, rtol=0, atol=1)
            torch.testing.assert_close(C2a, B1, rtol=0, atol=1)

            out2 = F.int8_linear_matmul(A1, B1)

            C2 = F.int8_linear_matmul(A1, B1)

Matthew Douglas's avatar
Matthew Douglas committed
782
            out3 = self.vectorwise_mm_dequant(C2.float(), maxA, maxB.t())
783
784
785
786
787

            err1 = torch.abs(out1 - out2).mean().item()
            err2 = torch.abs(out1 - out3).mean().item()
            assert err2 <= err1 * 1.025

788
    @pytest.mark.parametrize("device", get_available_devices())
789
790
    @pytest.mark.parametrize("dim1", [512, 2048], ids=id_formatter("dim1"))
    @pytest.mark.parametrize("dim2", [1024, 4096], ids=id_formatter("dim2"))
791
    def test_coo_double_quant(self, device, dim1, dim2):
792
793
        threshold = 2.00
        for i in range(k):
794
            A = torch.randn(dim1, dim2, device=device).half()
795
796
797
798
799
800
801
802
803
804
805
806
807

            idx = torch.abs(A) >= threshold
            CA, statsA, outlier_cols = F.int8_vectorwise_quant(A, threshold=threshold)

            if outlier_cols is not None:
                A1 = A * idx
                A2 = torch.zeros_like(A) + A1
                torch.testing.assert_close(A1, A2)

                A[:, outlier_cols] = 0
                A2 = (CA.float() * statsA.unsqueeze(1) / 127).half()
                torch.testing.assert_close(A, A2, rtol=0.05, atol=1.5e-2)

808
    @pytest.mark.parametrize("device", get_available_devices())
809
810
    @pytest.mark.parametrize("dim1", [512, 2048], ids=id_formatter("dim1"))
    @pytest.mark.parametrize("dim2", [1024, 4096], ids=id_formatter("dim2"))
811
    def test_coo_int8_vectorwise_quant(self, device, dim1, dim2):
812
813
        threshold = 3.00
        for i in range(k):
814
            A = torch.randn(dim1, dim2, device=device).half()
815
816
817
818
819
820
821
822
823
824

            idx = torch.abs(A) >= threshold
            CA, statsA, outlier_cols = F.int8_vectorwise_quant(A, threshold=threshold)

            if outlier_cols is not None:
                A2 = (CA.float() * statsA.unsqueeze(1) / 127).half()
                A[:, outlier_cols] = 0
                torch.testing.assert_close(A * (idx == 0), A2, rtol=0.05, atol=1.5e-2)


825
@pytest.mark.skipif(not torch.cuda.is_available(), reason="CUDA is required")
826
class TestSpMMFunctional:
Matthew Douglas's avatar
Matthew Douglas committed
827
828
    @pytest.mark.parametrize("dim1", [256, 1024], ids=id_formatter("dim1"))
    @pytest.mark.parametrize("dim2", [128, 512], ids=id_formatter("dim2"))
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
    @pytest.mark.parametrize("transposed_B", TRUE_FALSE, ids=id_formatter("transposed_B"))
    def test_spmm_coo(self, dim1, dim2, transposed_B):
        threshold = 1.5
        dim3 = torch.randint(32, 128, size=(1,)).item()
        # dim3 = 17
        for i in range(k):
            A = torch.randn(dim1, dim2).cuda().half()
            if transposed_B:
                B = torch.randn(dim3, dim2).cuda().half()
            else:
                B = torch.randn(dim2, dim3).cuda().half()

            idx = torch.abs(A) >= threshold
            nnz = (idx == 1).sum().item()
            rows, cols = torch.where(idx)
            values = A[idx]
            cooA = F.COOSparseTensor(A.shape[0], A.shape[1], nnz, rows.int(), cols.int(), values)
            A2 = A * idx

            if transposed_B:
                out2 = F.spmm_coo(cooA, B.t())
                out1 = torch.matmul(A2, B.t())
            else:
                out2 = F.spmm_coo(cooA, B)
                out1 = torch.matmul(A2, B)

            assert_all_approx_close(out1, out2, rtol=0.01, atol=3.0e-2, count=30)

    @pytest.mark.benchmark
    def test_spmm_bench(self):
        batch = 2
        model = 1024 * 1
        hidden = model * 4
        seq = 1024
        dim1 = batch * seq
        dim2 = model
        dim3 = hidden
        threshold = 4
867
        A = torch.randn(dim1, dim2, device="cuda").half()
868
869
870
        B = torch.randn(dim2, dim3, device="cuda").half()
        for i in range(10):
            C1 = bnb.matmul(A, B.t())
Tim Dettmers's avatar
Tim Dettmers committed
871

872
873
874
875
876
877
        torch.cuda.synchronize()
        t0 = time.time()
        for i in range(k):
            C1 = bnb.matmul(A, B.t())
        torch.cuda.synchronize()
        t8 = time.time() - t0
Tim Dettmers's avatar
Tim Dettmers committed
878

879
880
881
882
883
884
        idx = torch.abs(A) >= threshold
        nnz = (idx == 1).sum().item()
        print(nnz / idx.numel())
        rows, cols = torch.where(idx)
        values = A[idx]
        cooA = F.COOSparseTensor(A.shape[0], A.shape[1], nnz, rows.int(), cols.int(), values)
Tim Dettmers's avatar
Tim Dettmers committed
885

886
887
        for i in range(10):
            out2 = F.spmm_coo(cooA, B)
Tim Dettmers's avatar
Tim Dettmers committed
888

889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
        torch.cuda.synchronize()
        t0 = time.time()
        for i in range(k):
            out2 = F.spmm_coo(cooA, B)
        torch.cuda.synchronize()
        tsp = time.time() - t0
        print(tsp, t8)
        print(tsp / t8)

    @pytest.mark.parametrize("dim1", [1 * 2048], ids=id_formatter("dim1"))
    @pytest.mark.parametrize("dim2", [12288], ids=id_formatter("dim2"))
    @pytest.mark.parametrize("dtype", [torch.float16], ids=describe_dtype)
    @pytest.mark.parametrize("out_func", ["zeros", "ones"], ids=id_formatter("out_func"))
    def test_spmm_coo_very_sparse(self, dim1, dim2, dtype, out_func):
        out_func = getattr(torch, out_func)

        threshold = 3.3
        # threshold = 2.8
        # threshold = 0.0
        A = torch.randn(dim1, dim2, device="cuda").half()
        if dtype == torch.float16:
            B = torch.randn(dim2, dim2 * 4, device="cuda").half()
            torch.nn.init.xavier_uniform_(B)
Tim Dettmers's avatar
Tim Dettmers committed
912
        else:
913
914
            B = torch.randn(dim2, dim2 * 4, device="cuda").half()
            torch.nn.init.xavier_uniform_(B)
Matthew Douglas's avatar
Matthew Douglas committed
915
916
917

            SB = torch.abs(B).max().float()
            B = torch.round(B / SB * 127).to(torch.int8)
Tim Dettmers's avatar
Tim Dettmers committed
918

919
920
921
922
923
924
925
926
927
928
929
930
        print("")
        idx = torch.abs(A) >= threshold
        nnz = (idx == 1).sum().item()
        rows, cols = torch.where(idx)
        values = A[idx]
        cooA = F.COOSparseTensor(A.shape[0], A.shape[1], nnz, rows.int(), cols.int(), values)
        A2 = A * idx
        out1 = torch.matmul(A2.half(), B.half())
        out = out_func(out1.shape, dtype=torch.float16, device=out1.device)
        out1 += out.clone()
        out2 = F.spmm_coo_very_sparse(cooA, B, out=out)
        # print(B)
931
932
        # print(out1)
        # print(out2)
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
        p = 200 / (2048 * 12288 * 4)
        n = out1.numel()
        count = math.ceil(p * n)
        std = out1.std()
        out1 /= std
        out2 /= std
        assert_all_approx_close(out1, out2.half(), rtol=0.01, atol=3.0e-2, count=count)
        # assert_all_approx_close(out1, out2.half(), rtol=0.05, atol=0.01, count=count)

        idx_col = torch.randint(0, A2.shape[-1], size=(15,))

        # torch.testing.assert_close(out1, out2.half(), rtol=0.05, atol=0.001)

        # Bt = torch.randn(dim2*4, dim2, device='cuda').half()
        # torch.cuda.synchronize()
        # t0 = time.time()
        # print(A2.shape, B.shape)
        # for i in range(100):
        #   #out3 = F.spmm_coo(cooA, Bt.t())
        #   #out2 = F.spmm_coo(cooA, B)
        #   #out2 = F.spmm_coo_very_sparse(cooA, B)
        #   #out1 = torch.matmul(A, Bt.t())

        # torch.cuda.synchronize()
        # print(time.time() - t0)

    @pytest.mark.parametrize("dim1", [1 * 2048])
    @pytest.mark.parametrize("dim2", [2048])
    @pytest.mark.parametrize("dtype", [torch.int8])
    def test_spmm_coo_dequant(self, dim1, dim2, dtype):
        threshold = 6.0
        # threshold = 2.8
        # threshold = 0.0
966
        A = torch.randn(dim1, dim2, device="cuda").half()
967
968
969
        B = torch.empty(dim2, dim2 * 4, device="cuda", dtype=torch.float16)
        torch.nn.init.xavier_uniform_(B)
        Bt = B.t().contiguous()
Tim Dettmers's avatar
Tim Dettmers committed
970

971
        CB, CBt, statsB, statsBt, coo_tensor = F.int8_double_quant(B)
972

973
        rowidx = torch.randint(0, A.shape[-1], size=(15,))
Tim Dettmers's avatar
Tim Dettmers committed
974

975
        A[:, rowidx] = 8.0
Tim Dettmers's avatar
Tim Dettmers committed
976
977
978
979
980

        idx = torch.abs(A) >= threshold
        nnz = (idx == 1).sum().item()
        rows, cols = torch.where(idx)
        values = A[idx]
Ruff's avatar
Ruff committed
981
        cooA = F.COOSparseTensor(A.shape[0], A.shape[1], nnz, rows.int(), cols.int(), values)
982
983
        A2 = A * idx
        out2 = F.spmm_coo_very_sparse(cooA, CBt, dequant_stats=statsBt)
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
        out1 = torch.matmul(A2, B.half())
        out3 = F.spmm_coo_very_sparse(cooA, CBt.half())
        out3 = out3 * statsBt.half() / 127

        values, counts = torch.unique(cooA.rowidx, return_counts=True)
        offset = counts.cumsum(0).int()
        max_count, max_idx = torch.sort(counts, descending=True)
        print(torch.median(max_count.float()))

        torch.testing.assert_close(out2, out3, rtol=0.05, atol=0.001)

        p = 200 / (2048 * 12288 * 4)
        n = out1.numel()
        count = math.ceil(p * n)
        assert_all_approx_close(out1, out2, rtol=0.01, atol=3.0e-2, count=count)

        # torch.cuda.synchronize()
        # t0 = time.time()
        # for i in range(100):
        #   out2 = F.spmm_coo_very_sparse(cooA, B)
        # torch.cuda.synchronize()
        # print('fp16', time.time() - t0)

        torch.cuda.synchronize()
        t0 = time.time()
        for i in range(100):
            out2 = F.spmm_coo(cooA, B)
        torch.cuda.synchronize()
        print("cusparse fp16", time.time() - t0)
1013

1014
1015
1016
1017
1018
1019
        torch.cuda.synchronize()
        t0 = time.time()
        for i in range(100):
            out2 = F.spmm_coo_very_sparse(cooA, CBt)
        torch.cuda.synchronize()
        print("int8", time.time() - t0)
1020

1021
1022
1023
1024
1025
1026
        torch.cuda.synchronize()
        t0 = time.time()
        for i in range(100):
            out2 = F.spmm_coo_very_sparse(cooA, CBt, dequant_stats=statsBt)
        torch.cuda.synchronize()
        print("int8+dequant", time.time() - t0)
1027

1028
1029
1030
1031
1032
1033
        torch.cuda.synchronize()
        t0 = time.time()
        for i in range(100):
            out2 = torch.matmul(A, B)
        torch.cuda.synchronize()
        print("matmul", time.time() - t0)
1034

1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
        torch.cuda.synchronize()
        t0 = time.time()
        for i in range(100):
            out1 = bnb.matmul(A, Bt)
            out2 = F.spmm_coo_very_sparse(cooA, CBt, dequant_stats=statsBt)
            out = out1 + out2
        torch.cuda.synchronize()
        print("sparse+ matmul", time.time() - t0)

        torch.cuda.synchronize()
        t0 = time.time()
        for i in range(100):
            out1 = bnb.matmul(A, Bt)
            torch.matmul(A[:, rowidx], Bt.t()[rowidx], out=out1)
        torch.cuda.synchronize()
        print("partial matmul", time.time() - t0)
1051

1052
1053
1054
1055
1056
1057
        torch.cuda.synchronize()
        t0 = time.time()
        for i in range(100):
            out1 = bnb.matmul(A, Bt)
        torch.cuda.synchronize()
        print("partial matmul", time.time() - t0)
1058

1059

1060
@pytest.mark.skipif(not torch.cuda.is_available(), reason="CUDA is required")
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
class TestSparseTensorFunctional:
    def test_coo2csr(self):
        threshold = 1
        A = torch.randn(128, 128).half().cuda()
        idx = torch.abs(A) >= threshold
        nnz = (idx == 1).sum().item()
        rows, cols = torch.where(idx)
        values = A[idx]
        cooA = F.COOSparseTensor(A.shape[0], A.shape[1], nnz, rows.int(), cols.int(), values)
        A2 = A * idx
        csrA = F.coo2csr(cooA)
        counts = csrA.rowptr[1:] - csrA.rowptr[:-1]
        assert counts.numel() == A.shape[0]
1074

1075
1076
1077
        torch.testing.assert_close(counts.long(), (A2 != 0).sum(1))
        idx = A2 != 0
        torch.testing.assert_close(A2[idx], csrA.values)
Tim Dettmers's avatar
Tim Dettmers committed
1078

1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
    def test_coo2csc(self):
        threshold = 1
        A = torch.randn(128, 128).half().cuda()
        idx = torch.abs(A) >= threshold
        nnz = (idx == 1).sum().item()
        rows, cols = torch.where(idx)
        values = A[idx]
        cooA = F.COOSparseTensor(A.shape[0], A.shape[1], nnz, rows.int(), cols.int(), values)
        A2 = A * idx
        cscA = F.coo2csc(cooA)
        counts = cscA.colptr[1:] - cscA.colptr[:-1]
        assert counts.numel() == A.shape[1]
Tim Dettmers's avatar
Tim Dettmers committed
1091

1092
1093
1094
1095
        torch.testing.assert_close(counts.long(), (A2 != 0).sum(0))
        # torch uses row-major -> use transpose to transfer to col-major
        idx = A2.t() != 0
        torch.testing.assert_close(A2.t()[idx], cscA.values)
Tim Dettmers's avatar
Tim Dettmers committed
1096

Tim Dettmers's avatar
Tim Dettmers committed
1097

1098
class TestQuantize4BitFunctional:
1099
    @pytest.mark.parametrize("device", get_available_devices())
1100
1101
1102
    @pytest.mark.parametrize("dtype", [torch.float32, torch.float16, torch.bfloat16], ids=describe_dtype)
    @pytest.mark.parametrize("quant_type", ["fp4", "nf4"])
    @pytest.mark.parametrize("blocksize", [64, 128, 256, 512, 1024, 2048, 4096])
1103
1104
    def test_4bit_quant(self, device, dtype, quant_type, blocksize):
        A1 = torch.randn(1024, 1024, device=device, dtype=dtype)
1105
1106
        qa, SA = F.quantize_4bit(A1, blocksize=blocksize, quant_type=quant_type)
        A2 = F.dequantize_4bit(qa, SA, blocksize=blocksize, quant_type=quant_type)
1107

1108
1109
1110
        err = (A1 - A2).abs().float()
        relerr = (err / (A1.abs().float() + 1e-8)).mean()
        err = err.mean()
1111

1112
        assert A2.dtype == dtype
1113

1114
1115
1116
1117
        # With larger block sizes, we can expect this to blow up.
        # At blocksize>=1024, don't even bother looking at relerr.
        if blocksize <= 64:
            assert err.item() < 0.1
1118
            assert relerr.item() < 0.28
1119
        elif blocksize <= 256:
1120
            assert err.item() < 0.11
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
            assert relerr.item() < 0.30
        elif blocksize <= 512:
            assert err.item() < 0.12
            assert relerr.item() < 0.31
        elif quant_type == "fp4":
            # 1024 => 0.48, 2048 => 0.52, 4096 => 0.56
            assert err.item() < 0.08 + math.log2(blocksize) * 4e-2
        else:
            # 1024 => 0.8, 2048 => 0.88, 4096 => 0.96
            assert err.item() < math.log2(blocksize) * 8e-2

1132
    @pytest.mark.parametrize("device", get_available_devices())
1133
    @pytest.mark.parametrize("quant_type", ["fp4", "nf4"])
Matthew Douglas's avatar
Matthew Douglas committed
1134
    @pytest.mark.parametrize("blocksize", [64, 128], ids=id_formatter("blocksize"))
1135
    def test_4bit_compressed_stats(self, device, quant_type, blocksize):
Matthew Douglas's avatar
Matthew Douglas committed
1136
1137
1138
        errs1 = []
        errs2 = []
        for i in range(10):
1139
            A1 = torch.randn(1024, 1024, device=device).half()
Matthew Douglas's avatar
Matthew Douglas committed
1140
1141
1142
1143
            q2, SA2 = F.quantize_4bit(A1, blocksize=blocksize, quant_type=quant_type)
            q3, SA3 = F.quantize_4bit(A1, blocksize=blocksize, compress_statistics=True, quant_type=quant_type)
            A2 = F.dequantize_4bit(q2, SA2, quant_type=quant_type)
            A3 = F.dequantize_4bit(q3, SA3, quant_type=quant_type)
1144

Matthew Douglas's avatar
Matthew Douglas committed
1145
1146
1147
            err = (A1 - A2).abs().float()
            relerr = (err / (A1.abs().float() + 1e-15)).mean()
            err = err.mean()
1148

Matthew Douglas's avatar
Matthew Douglas committed
1149
            errs1.append(err.item())
1150

Matthew Douglas's avatar
Matthew Douglas committed
1151
1152
            assert err.item() < 0.11
            assert relerr.item() < 0.28
1153

Matthew Douglas's avatar
Matthew Douglas committed
1154
1155
1156
            err = (A1 - A3).abs().float()
            relerr = (err / (A1.abs().float() + 1e-15)).mean()
            err = err.mean()
1157

Matthew Douglas's avatar
Matthew Douglas committed
1158
            errs2.append(err.item())
1159

Matthew Douglas's avatar
Matthew Douglas committed
1160
1161
            assert err.item() < 0.11
            assert relerr.item() < 0.28
1162
1163
1164

    # @pytest.mark.parametrize("quant_type", ['fp4', 'nf4'])
    @pytest.mark.parametrize("quant_type", ["nf4"])
1165
    @pytest.mark.skipif(not torch.cuda.is_available(), reason="CUDA is required")
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
    @pytest.mark.benchmark
    def test_bench_4bit_dequant(self, quant_type):
        blocksize = 256
        a = torch.rand(1024 * 12 * 4, 1024 * 12, device="cuda").half()
        qa, SA = F.quantize_4bit(a, blocksize=blocksize, quant_type=quant_type)

        input_size = a.numel() / 2
        output_size = a.numel() * 2
        num_bytes = input_size + output_size
        GB = num_bytes / 1e9
        max_theoretical_s = GB / 768
        # print(max_theoretical_s*1e6)
        b = torch.randn(128, 1024 * 12, device="cuda").half()

        iters = 100
        torch.cuda.synchronize()
        t0 = time.time()
        for i in range(iters):
            F.dequantize_4bit(qa, SA, blocksize=blocksize, quant_type=quant_type)
            # b.copy_(a)
        torch.cuda.synchronize()
        # print((time.time()-t0)/iters*1e6)

        # torch.cuda.synchronize()
        # t0 = time.time()
        # for i in range(iters):
        #    torch.matmul(b, a.t())
        # torch.cuda.synchronize()
        # print((time.time()-t0)/iters*1e6)

1196
    @pytest.mark.parametrize("device", get_available_devices())
1197
1198
1199
1200
1201
1202
1203
1204
1205
    @pytest.mark.parametrize("double_quant", TRUE_FALSE, ids=lambda double_quant: f"DQ_{double_quant}")
    @pytest.mark.parametrize("storage_type", ["nf4", "fp4"])
    @pytest.mark.parametrize("kind", ["fc1", "fc2", "attn", "attn_packed"])
    @pytest.mark.parametrize("dtype", [torch.float16, torch.bfloat16, torch.float32], ids=describe_dtype)
    @pytest.mark.parametrize(
        "quant_storage",
        [torch.uint8, torch.float16, torch.bfloat16, torch.float32],
        ids=describe_dtype,
    )
Matthew Douglas's avatar
Matthew Douglas committed
1206
    @pytest.mark.parametrize("dim", [128, 256, 512, 1024], ids=id_formatter("dim"))
1207
    def test_gemv_4bit(self, device, dim, dtype, storage_type, quant_storage, double_quant, kind):
Matthew Douglas's avatar
Matthew Douglas committed
1208
1209
1210
1211
1212
1213
1214
1215
1216
        errs1 = []
        errs2 = []
        errs3 = []
        relerrs1 = []
        relerrs2 = []
        relerrs3 = []
        max_errs1 = []
        max_errs2 = []
        max_errs3 = []
1217

1218
1219
1220
1221
1222
        # Large number of iterations is excessive and slow on CPU.
        # Keep for CUDA for now.
        iters = 100 if device == "cuda" else 10

        for i in range(iters):
Matthew Douglas's avatar
Matthew Douglas committed
1223
            if kind == "fc1":
1224
1225
                A = torch.randn(1, dim, dtype=dtype, device=device)
                B = torch.randn(dim * 4, dim, dtype=dtype, device=device) / math.sqrt(dim)
Matthew Douglas's avatar
Matthew Douglas committed
1226
            elif kind == "fc2":
1227
1228
                A = torch.randn(1, 4 * dim, dtype=dtype, device=device)
                B = torch.randn(dim, 4 * dim, dtype=dtype, device=device) / math.sqrt(dim)
Matthew Douglas's avatar
Matthew Douglas committed
1229
            elif kind == "attn":
1230
1231
                A = torch.randn(1, dim, dtype=dtype, device=device)
                B = torch.randn(dim, dim, dtype=dtype, device=device) / math.sqrt(dim)
Matthew Douglas's avatar
Matthew Douglas committed
1232
            elif kind == "attn_packed":
1233
1234
                A = torch.randn(1, dim, dtype=dtype, device=device)
                B = torch.randn(dim * 3, dim, dtype=dtype, device=device) / math.sqrt(dim)
Matthew Douglas's avatar
Matthew Douglas committed
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305

            qB, state = F.quantize_4bit(
                B,
                quant_type=storage_type,
                compress_statistics=double_quant,
                quant_storage=quant_storage,
            )
            C3 = torch.matmul(A, B.t())
            C2 = F.gemv_4bit(A, qB.t(), state=state)
            A.requires_grad = True
            C1 = bnb.matmul_4bit(A, qB.t(), state)

            err1 = (C1 - C2).abs().float()
            err2 = (C3 - C2).abs().float()
            err3 = (C3 - C1).abs().float()

            mag1 = torch.abs(C1).float() + 1e-5
            mag2 = torch.abs(C3).float() + 1e-5
            mag3 = torch.abs(C3).float() + 1e-5

            relerr1 = err1 / mag1
            relerr2 = err2 / mag2
            relerr3 = err3 / mag3

            max_err1 = err1.max()
            max_err2 = err2.max()
            max_err3 = err3.max()

            errs1.append(err1.mean().item())
            errs2.append(err2.mean().item())
            errs3.append(err3.mean().item())

            relerrs1.append(relerr1.mean().item())
            relerrs2.append(relerr2.mean().item())
            relerrs3.append(relerr3.mean().item())

            max_errs1.append(max_err1.item())
            max_errs2.append(max_err2.item())
            max_errs3.append(max_err3.item())

            c = int(C1.numel() * 0.0014 * (dim / 256)) + 1

            c = assert_all_approx_close(C1, C2, 1e-5, 0.01, count=0, throw=False)
        err1 = sum(errs1) / len(errs1) / math.sqrt(dim)
        err2 = sum(errs2) / len(errs2) / math.sqrt(dim)
        err3 = sum(errs3) / len(errs3) / math.sqrt(dim)
        relerr1 = sum(relerrs1) / len(relerrs1) / math.sqrt(dim)
        relerr2 = sum(relerrs2) / len(relerrs2) / math.sqrt(dim)
        relerr3 = sum(relerrs3) / len(relerrs3) / math.sqrt(dim)
        maxerr1 = sum(max_errs1) / len(max_errs1) / math.sqrt(dim)
        maxerr2 = sum(max_errs2) / len(max_errs2) / math.sqrt(dim)
        maxerr3 = sum(max_errs3) / len(max_errs3) / math.sqrt(dim)
        absratio = err2 / err3
        relratio = relerr2 / relerr3
        maxratio = relerr2 / relerr3

        # for debugging if the tests fails
        #
        # print('='*80)
        # print(f'For matmul: {A.shape}, {B.shape}, {kind}, {dtype}, {storage_type}, double_quant={double_quant}:')
        # print(C1.flatten()[-20:])
        # print(C2.flatten()[-20:])
        # print(f'inference vs training abs: {err1}')
        # print(f'inference vs training rel: {relerr1}')
        # print(f'inference vs training max: {maxerr1}')
        # print(f'inference vs training vs torch err ratio abs: {absratio}')
        # print(f'inference vs training vs torch err ratio rel: {relratio}')
        # print(f'inference vs training vs torch err ratio max: {maxratio}')
        if dtype == torch.float16:
            if dim <= 512:
                assert err1 < 7e-5
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317

                # TODO(matthewdouglas): On T4, dim=128-fp16-fc2-fp4-DQ will have relerror ~ 0.00092727
                if (
                    device == "cuda"
                    and double_quant
                    and storage_type == "fp4"
                    and kind == "fc2"
                    and torch.cuda.get_device_capability() == (7, 5)
                ):
                    assert relerr1 < 0.00093
                else:
                    assert relerr1 < 0.0008
Matthew Douglas's avatar
Matthew Douglas committed
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
            else:
                assert err1 < 6e-5
                assert relerr1 < 2e-4
            assert absratio < 1.005 and absratio > 0.995
            assert relratio < 1.005 and relratio > 0.995
            assert maxratio < 1.005 and maxratio > 0.995
        elif dtype == torch.float32:
            if dim <= 512:
                assert err1 < 5e-8
                assert relerr1 < 1e-6
                assert maxerr1 < 1e-7
            else:
                assert err1 < 5e-8
                assert relerr1 < 8e-6
                assert maxerr1 < 1e-7
            assert absratio < 1.005 and absratio > 0.995
            assert relratio < 1.005 and relratio > 0.995
            assert maxratio < 1.005 and maxratio > 0.995
        elif dtype == torch.bfloat16:
            if dim <= 512:
                assert err1 < 6e-4
                assert relerr1 < 0.007
                assert maxerr1 < 0.015
            else:
                assert err1 < 2e-4
                assert relerr1 < 0.002
                assert maxerr1 < 0.0012
            assert absratio < 1.005 and absratio > 0.995
            assert relratio < 1.04 and relratio > 0.96
            assert maxratio < 1.02 and maxratio > 0.98
1348

1349
    @pytest.mark.parametrize("device", get_available_devices())
1350
1351
1352
    @pytest.mark.parametrize("storage_type", ["nf4", "fp4"], ids=["nf4", "fp4"])
    @pytest.mark.parametrize("dtype", [torch.float16, torch.bfloat16, torch.float32], ids=describe_dtype)
    @pytest.mark.parametrize("double_quant", [False], ids=["DQ_True"])
1353
    def test_gemv_eye_4bit(self, device, storage_type, dtype, double_quant):
Matthew Douglas's avatar
Matthew Douglas committed
1354
1355
1356
        if device == "cpu" and dtype == torch.bfloat16 and torch.__version__ < (2, 3):
            pytest.skip("eye doe not support bfloat16 on CPU in torch < 2.3")

1357
1358
1359
1360
1361
1362
        dims = 10
        torch.random.manual_seed(np.random.randint(0, 412424242))
        dims = get_test_dims(0, 8192, n=dims)
        dims = [dim + (64 - (dim % 64)) for dim in dims]
        # for dim in [576, 5120, 3520, 5184, 1280, 4992, 5312, 2048]:
        for dim in dims:
1363
1364
            A = torch.normal(0, 0.1, size=(1, 1, dim), dtype=dtype, device=device)
            B = torch.eye(dim, dtype=dtype, device=device)
1365
1366
1367
1368
1369
1370

            qB, state = F.quantize_4bit(B, quant_type=storage_type, compress_statistics=double_quant)
            C3 = torch.matmul(A, B.t())
            C2 = bnb.matmul_4bit(A, qB.t(), state)
            A.requires_grad = True
            C1 = bnb.matmul_4bit(A, qB.t(), state)
1371

1372
1373
1374
1375
1376
            torch.testing.assert_close(A, C3)
            torch.testing.assert_close(A, C1)
            torch.testing.assert_close(A, C2)
        # torch.testing.assert_close(A, C1, rtol=1e-5, atol=0.00001)
        # torch.testing.assert_close(A, C2, rtol=1e-5, atol=0.080)
1377
1378
1379
1380


def test_normal_map_tree():
    code = F.create_normal_map()
Ruff's avatar
Ruff committed
1381
    values = code[:8].tolist() + code[-8:].tolist()
1382
    num_pivots = 1
Ruff's avatar
Ruff committed
1383
1384
1385
1386
    # print(values)
    while num_pivots < 16:
        idx = list(range(16 // num_pivots // 2, 16, 16 // num_pivots))
        # print(idx)
1387
1388
1389
        num_pivots *= 2
        pivots = []
        for i in idx:
Ruff's avatar
Ruff committed
1390
1391
            pivots.append((values[i - 1] + values[i]) / 2)
        # print(pivots)