test_functional.py 55.7 KB
Newer Older
Tim Dettmers's avatar
Tim Dettmers committed
1
2
3
import math
import random
import time
Tim Dettmers's avatar
Tim Dettmers committed
4

5
import einops
Aarni Koskela's avatar
Aarni Koskela committed
6
import numpy as np
7
8
9
10
import pytest
import torch

import bitsandbytes as bnb
Tim Dettmers's avatar
Tim Dettmers committed
11
from bitsandbytes import functional as F
Aarni Koskela's avatar
Aarni Koskela committed
12
13
14
15
from tests.helpers import (
    BOOLEAN_TUPLES,
    TRUE_FALSE,
    describe_dtype,
16
    get_available_devices,
Aarni Koskela's avatar
Aarni Koskela committed
17
18
19
    get_test_dims,
    id_formatter,
)
Tim Dettmers's avatar
Tim Dettmers committed
20

Ruff's avatar
Ruff committed
21
torch.set_printoptions(precision=5, sci_mode=False, linewidth=120, edgeitems=20, threshold=10000)
Tim Dettmers's avatar
Tim Dettmers committed
22
23
k = 20

24

Tim Dettmers's avatar
Tim Dettmers committed
25
def assert_all_approx_close(a, b, rtol=1e-3, atol=1e-3, count=0, throw=True):
26
    idx = torch.isclose(a, b, rtol=rtol, atol=atol)
27
    sumval = (idx == 0).sum().item()
Tim Dettmers's avatar
Tim Dettmers committed
28
    if sumval > count:
Tim Dettmers's avatar
Tim Dettmers committed
29
30
        if throw:
            print(f"Too many values not close: assert {sumval} < {count}")
31
            torch.testing.assert_close(a, b, rtol=rtol, atol=atol)
Tim Dettmers's avatar
Tim Dettmers committed
32
33

    return sumval
Tim Dettmers's avatar
Tim Dettmers committed
34

35

Tim Dettmers's avatar
Tim Dettmers committed
36
37
class FFN(torch.nn.Module):
    def __init__(self, input_features, hidden_size, bias=True):
38
        super().__init__()
Tim Dettmers's avatar
Tim Dettmers committed
39
40
41
42
43
44
45
46
47
48
49
50
        self.fc1 = torch.nn.Linear(input_features, hidden_size, bias=bias)
        self.fc2 = torch.nn.Linear(hidden_size, input_features, bias=bias)

        with torch.no_grad():
            torch.nn.init.xavier_uniform_(self.fc1.weight)
            torch.nn.init.xavier_uniform_(self.fc2.weight)

    def forward(self, x):
        x = torch.relu(self.fc1(x))
        x = self.fc2(x)
        return x

51

52
class Timer:
Tim Dettmers's avatar
Tim Dettmers committed
53
54
55
56
57
    def __init__(self):
        self.starts = {}
        self.ends = {}
        self.agg = {}

58
    def tick(self, name="default"):
Tim Dettmers's avatar
Tim Dettmers committed
59
60
61
62
63
64
65
        if name not in self.starts:
            self.starts[name] = torch.cuda.Event(enable_timing=True)
            self.ends[name] = torch.cuda.Event(enable_timing=True)
            self.starts[name].record()
        else:
            ms = self.tock(name, evict=True, print_ms=False)

66
    def tock(self, name="default", evict=True, print_ms=True):
Tim Dettmers's avatar
Tim Dettmers committed
67
68
69
70
        if name in self.ends:
            self.ends[name].record()
            torch.cuda.synchronize()
            ms = self.starts[name].elapsed_time(self.ends[name])
71
72
            if name not in self.agg:
                self.agg[name] = 0.0
Tim Dettmers's avatar
Tim Dettmers committed
73
74
75
76
77
78
            self.agg[name] += ms
            if evict:
                self.starts.pop(name)
                self.ends.pop(name)

        if print_ms and name in self.agg:
79
            print(f"{name} took: {self.agg[name] / 1000.0:.5f}s")
Tim Dettmers's avatar
Tim Dettmers committed
80
81
82
83

        return self.agg[name]

    def reset(self):
84
        self.starts = {}
Tim Dettmers's avatar
Tim Dettmers committed
85
86
        self.ends = {}
        self.agg = {}
87
88
        print("Resetting benchmark data")

Tim Dettmers's avatar
Tim Dettmers committed
89

90
class Test8BitBlockwiseQuantizeFunctional:
91
    @pytest.mark.parametrize("device", get_available_devices())
92
93
94
95
    @pytest.mark.parametrize("dtype", [torch.float32, torch.float16, torch.bfloat16], ids=describe_dtype)
    @pytest.mark.parametrize("nested", TRUE_FALSE, ids=id_formatter("nested"))
    @pytest.mark.parametrize("blocksize", [4096, 2048, 1024, 512, 256, 128, 64])
    @pytest.mark.parametrize("signed", TRUE_FALSE, ids=id_formatter("signed"))
96
97
98
99
100
101
102
103
104
105
106
    def test_dynamic_blockwise_quantization(self, device, dtype, nested, blocksize, signed):
        if device == "cpu":
            # This test is slow on CPU, so avoid atypical use cases.
            if nested:
                pytest.skip("Not a typical use case.")
            if blocksize != 256:
                pytest.skip("Only blocksize 256 is the typical one supported on CPU.")

            if dtype != torch.float32:
                pytest.xfail(f"CPU implementation currently only supports float32, got {dtype}")

107
108
109
        diffs = []
        reldiffs = []
        for i in range(100):
110
            A1 = torch.randn(1024, 1024, device=device, dtype=dtype)
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
            C, S = F.quantize_blockwise(A1, blocksize=blocksize, nested=nested)
            A2 = F.dequantize_blockwise(C, S)
            diff = torch.abs(A1 - A2).float()
            reldiff = diff / torch.abs(A1.float() + 1e-8)
            diffs.append(diff.mean().item())
            reldiffs.append(reldiff.mean().item())
        abserr = sum(diffs) / len(diffs)
        relerr = sum(reldiffs) / len(reldiffs)
        # print('nested=', nested, 'randn', blocksize, 'dtype', dtype, sum(diffs)/len(diffs))
        # print('nested=', nested, 'randn', blocksize, 'dtype', dtype, sum(reldiffs)/len(reldiffs))
        assert abserr < 0.011
        assert relerr < 0.018
        assert A2.dtype == dtype

        diffs = []
        code = F.create_dynamic_map(signed=signed)
        for i in range(100):
128
            A1 = torch.rand(1024, 1024, device=device, dtype=dtype)
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
            C, S = F.quantize_blockwise(A1, blocksize=blocksize, nested=nested, code=code)
            A2 = F.dequantize_blockwise(C, S)
            diff = torch.abs(A1 - A2).float()
            reldiff = diff / torch.abs(A1.float() + 1e-8)
            diffs.append(diff.mean().item())
            reldiffs.append(reldiff.mean().item())
            # torch.testing.assert_close(A1, A2, atol=1e-2, rtol=0)
        abserr = sum(diffs) / len(diffs)
        relerr = sum(reldiffs) / len(reldiffs)
        if signed:
            assert abserr < 0.0035
            assert relerr < 0.015
        else:
            assert abserr < 0.00175
            assert relerr < 0.012
        assert A2.dtype == dtype
        # print('signed=', signed, 'nested=', nested, 'rand', blocksize, sum(diffs)/len(diffs))
        # print('signed=', signed, 'nested=', nested, 'rand', blocksize, sum(reldiffs)/len(reldiffs))

    def test_blockwise_cpu_large(self):
        diffs = []
        reldiffs = []
        batch = 128
        seq = 128
        for hidden in [128]:  # , 14336]:
            for blocksize in [4096, 16384]:
                for i in range(2):
                    A1 = torch.randn(batch, seq, hidden, device="cpu")
                    t0 = time.time()
                    C, S = F.quantize_blockwise(A1, blocksize=blocksize)
                    A2 = F.dequantize_blockwise(C, S, blocksize=blocksize)
                    print(time.time() - t0)
                    diff = torch.abs(A1 - A2)
                    reldiff = diff / torch.abs(A1 + 1e-8)
                    diffs.append(diff.mean().item())
                    reldiffs.append(reldiff.mean().item())
                    assert diffs[-1] < 0.011
                # print(sum(diffs)/len(diffs))
                # print(sum(reldiffs)/len(reldiffs))

169
    @pytest.mark.parametrize("device", get_available_devices())
170
171
    @pytest.mark.parametrize("bits", range(2, 9), ids=id_formatter("bits"))
    @pytest.mark.parametrize("method", ["linear", "fp8", "dynamic", "quantile"])
172
173
174
175
    def test_few_bit_quant(self, device, bits, method):
        if device == "cpu" and bits != 8:
            pytest.skip("CPU implementation only supports 8 bits")

176
177
178
179
        abserrs = []
        relerrs = []
        code = None
        if method == "linear":
180
            code = F.create_linear_map(True, total_bits=bits).to(device)
181
182
183
        elif method == "fp8":
            ebits = math.ceil(bits / 2)
            pbits = bits - ebits - 1
184
            code = F.create_fp8_map(True, ebits, pbits, bits).to(device)
185
        elif method == "dynamic":
186
            code = F.create_dynamic_map(True, bits - 0, bits).to(device)
187
        elif method == "quantile":
188
189
            if device != "cuda":
                pytest.xfail("Quantile map only works on CUDA")
190
191
192
193
194
195
196
197
198
            values = torch.randn(2048, 2048, device="cuda")
            code = F.create_quantile_map(values, bits).cuda()
        # for some data types we have no zero
        # for some data types we have one zero
        # for some data types we have two zeros
        assert torch.unique(code).numel() in [2**bits, 2**bits - 1], f"bits: {bits}, method: {method}"
        # print(method, (code==0).sum())
        assert code.numel() == 256
        for i in range(10):
199
            values = torch.randn(1, 32, device=device)
200
201
202
203
204
205
206
207
208
209
            values /= values.abs().max()
            # values[values.abs() < 1e-6] += 1e-5

            q1 = []
            v1 = []
            for v in values[0]:
                idx = torch.abs(v - code).argmin()
                q1.append(idx.item())
                v1.append(code[idx].item())

210
211
            q1 = torch.tensor(q1, device=device)
            v1 = torch.tensor(v1, device=device)
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226

            q2, S2 = F.quantize_blockwise(values, code=code)
            v2 = F.dequantize_blockwise(q2, S2)

            idx = torch.isclose(q1.int(), q2.int())
            err2 = torch.abs(v2 - values)
            abserrs.append(err2.mean().item())
            relerrs.append((err2 / (1e-10 + values).abs()).mean().item())
            if idx.sum():
                # some weird cases
                err1 = torch.abs(v1 - values).mean()
                # assert err2.mean() <= err1
            else:
                torch.testing.assert_close(q1, q2)

227
228
229
230
231
232
    @pytest.mark.parametrize("device", get_available_devices())
    def test_fp8_quant(self, device):
        # TODO
        if device == "cpu":
            pytest.skip("CPU implementation segfaults")

233
234
        for e_bits in range(1, 7):
            p_bits = 7 - e_bits
235
            code = F.create_fp8_map(True, e_bits, p_bits).to(device)
236
237
238
239

            abserr = []
            relerr = []
            for i in range(100):
240
                A1 = torch.randn(1024, 1024, device=device)
241
242
243
244
245
246
247
248
249
250
251
252
253
                C, SC = F.quantize_blockwise(A1, code=code)
                A2 = F.dequantize_blockwise(C, SC)
                diff = torch.abs(A1 - A2)
                reldiff = diff / torch.abs(A1 + 1e-8)
                abserr.append(diff.mean().item())
                relerr.append(reldiff.mean().item())
                # assert diff < 0.0075
            # print(sum(abserr)/len(abserr))
            # print(sum(relerr)/len(relerr))

            abserr = []
            relerr = []
            for i in range(100):
254
                A1 = torch.rand(1024, 1024, device=device)
255
256
257
258
259
260
261
262
263
264
265
266
267
                C, SC = F.quantize_blockwise(A1, code=code)
                A2 = F.dequantize_blockwise(C, SC)
                diff = torch.abs(A1 - A2)
                reldiff = diff / torch.abs(A1 + 1e-8)
                abserr.append(diff.mean().item())
                relerr.append(reldiff.mean().item())
                # assert diff < 0.0075
            # print(sum(abserr)/len(abserr))
            # print(sum(relerr)/len(relerr))

            abserr = []
            relerr = []
            for i in range(100):
268
                A1 = torch.randn(1024, 1024, device=device)
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
                C, SC = F.quantize_blockwise(A1)
                A2 = F.dequantize_blockwise(C, SC)
                diff = torch.abs(A1 - A2)
                reldiff = diff / torch.abs(A1 + 1e-8)
                abserr.append(diff.mean().item())
                relerr.append(reldiff.mean().item())
                # assert diff < 0.0075
            # print(3, sum(abserr)/len(abserr))
            # print(3, sum(relerr)/len(relerr))

    @pytest.mark.benchmark
    def test_bench_dequantization(self):
        a = torch.rand(1024, 1024, device="cuda").half()
        code = F.create_fp8_map(True, 3, 0, 4).cuda()
        qa, SA = F.quantize_blockwise(a, code=code)
        print(qa.max())

        max_theoretical_mu = 1024 * 1024 * 2 / 1024**3 / 672 * 1000 * 1000
        # print(max_theoretical_mu)

        torch.cuda.synchronize()
        t0 = time.time()
        for i in range(100):
            qa, SA = F.quantize_blockwise(a)
        torch.cuda.synchronize()
        # print((time.time()-t0)/1e6)
Tim Dettmers's avatar
Tim Dettmers committed
295
296


297
298
299
def test_stable_embedding():
    layer = bnb.nn.StableEmbedding(1024, 1024)
    layer.reset_parameters()
Tim Dettmers's avatar
Tim Dettmers committed
300
301


Tim Dettmers's avatar
Tim Dettmers committed
302
303
def quant(x):
    max1 = torch.abs(x).max()
304
    x = torch.round(x / max1 * 127)
Tim Dettmers's avatar
Tim Dettmers committed
305
306
    return max1, x.to(torch.int8)

307

Tim Dettmers's avatar
Tim Dettmers committed
308
def dequant(c, maxC):
309
310
    return c.float() * (maxC / 127)

Tim Dettmers's avatar
Tim Dettmers committed
311
312

def mm_dequant(maxA, maxB, C):
313
314
    return C.float() * (maxA / 127) * (maxB / 127)

Tim Dettmers's avatar
Tim Dettmers committed
315
316
317

def quant_multi(x, dim):
    max1 = torch.amax(torch.abs(x), dim=dim, keepdim=True)
318
319
    max1[max1 == 0] = 1.0
    x = torch.round(x / max1 * 127)
Tim Dettmers's avatar
Tim Dettmers committed
320
321
    return max1, x.to(torch.int8)

322

Tim Dettmers's avatar
Tim Dettmers committed
323
def quant_multi_chunk(x, dim, chunk_size=32):
324
325
326
    if dim == 1:
        x_chunked = einops.rearrange(x, "(c a) b -> c a b", c=chunk_size)
        max1 = torch.amax(torch.abs(x_chunked), dim=dim + 1, keepdim=True)
Tim Dettmers's avatar
Tim Dettmers committed
327
328
        max1 = torch.tile(max1, (1, 1, x.shape[1]))
        max1 = max1.view(x.shape)
329
330
    elif dim == 0:
        x_chunked = einops.rearrange(x, "a (b c) -> a b c", c=chunk_size)
Tim Dettmers's avatar
Tim Dettmers committed
331
332
333
        max1 = torch.amax(torch.abs(x_chunked), dim=dim, keepdim=True)
        max1 = torch.tile(max1, (x.shape[0], 1, 1))
        max1 = max1.view(x.shape)
334
335
    max1[max1 == 0] = 1.0
    x = torch.round(x / max1 * 127)
Tim Dettmers's avatar
Tim Dettmers committed
336
337
    return max1, x.to(torch.int8)

338

Tim Dettmers's avatar
Tim Dettmers committed
339
def mean(xx):
340
341
    return sum(xx) / float(len(xx))

Tim Dettmers's avatar
Tim Dettmers committed
342

Aarni Koskela's avatar
Aarni Koskela committed
343
344
methods = {
    "linear": (
345
346
347
348
349
        lambda x, dim: quant(x),
        lambda x, dim: quant(x),
        dequant,
        dequant,
        mm_dequant,
Aarni Koskela's avatar
Aarni Koskela committed
350
351
352
    ),
    "vectorwise": (quant_multi, quant_multi, dequant, dequant, mm_dequant),
}
353
354


355
@pytest.mark.skipif(not torch.cuda.is_available(), reason="CUDA is required")
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
class TestIGEMMFunctional:
    @pytest.mark.parametrize("dim1", [1024 * 2], ids=id_formatter("dim1"))
    @pytest.mark.parametrize("dim2", [1024 * 16], ids=id_formatter("dim2"))
    @pytest.mark.parametrize("quant_methods", methods.values(), ids=methods.keys())
    @pytest.mark.parametrize("batched", TRUE_FALSE, ids=id_formatter("batched"))
    def test_approx_igemm(self, dim1, dim2, quant_methods, batched):
        dim1 = dim1 - (dim1 % 32)
        dim2 = dim2 - (dim2 % 32)
        errors = []
        relerrors = []
        # print("")
        for i in range(5):
            if batched:
                A = torch.normal(0, 0.5, size=(32, dim1, dim2 // 32), device="cuda")
                B = torch.normal(0, 0.5, size=(32, dim2 // 32, dim1), device="cuda")
                maxA, Ac = quant_methods[0](A, 2)
                maxB, Bc = quant_methods[1](B, 1)
            else:
                A = torch.normal(0, 0.5, size=(dim1, dim2), device="cuda")
                B = torch.normal(0, 0.5, size=(dim2, dim1), device="cuda")
                maxA, Ac = quant_methods[0](A, 1)
                maxB, Bc = quant_methods[1](B, 0)
            torch.testing.assert_close(quant_methods[2](maxA, Ac), A, atol=0.025, rtol=0.05)
            if batched:
                out2 = torch.bmm(A, B)
                C = torch.bmm(Ac.float(), Bc.float())
            else:
                out2 = torch.mm(A, B)
                C = F.igemm(Ac, Bc)
            out = quant_methods[4](maxA, maxB, C)
            std = out2.std()
            out /= std
            out2 /= std
            err = torch.abs(out - out2)
            relerr = err / torch.abs(out2)
            errors.append(err.mean().item())
            relerrors.append(relerr.mean().item())
        # print(mean(errors))
        # print(mean(relerrors))

Matthew Douglas's avatar
Matthew Douglas committed
396
397
398
    @pytest.mark.parametrize("hidden_dim", [32, 256], ids=id_formatter("hidden_dim"))
    @pytest.mark.parametrize("batch_dim", [16, 256], ids=id_formatter("batch_dim"))
    @pytest.mark.parametrize("seq_dim", [16, 256], ids=id_formatter("seq_dim"))
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
    @pytest.mark.parametrize("transpose", BOOLEAN_TUPLES, ids=id_formatter("transpose"))
    def test_igemm(self, hidden_dim, batch_dim, transpose, seq_dim):
        hidden_dim = hidden_dim - (hidden_dim % 32)
        batch_dim = batch_dim - (batch_dim % 16)
        seq_dim = seq_dim - (seq_dim % 16)
        for i in range(k):
            shapeA = (batch_dim, hidden_dim) if not transpose[0] else (hidden_dim, batch_dim)
            shapeB = (
                (32 * random.randint(1, 4), hidden_dim) if transpose[1] else (hidden_dim, 32 * random.randint(1, 4))
            )
            A = torch.randint(-128, 127, size=shapeA, device="cuda").to(torch.int8)
            B = torch.randint(-128, 127, size=shapeB, device="cuda").to(torch.int8)
            if not transpose[0] and not transpose[1]:
                out2 = torch.matmul(A.float(), B.float())
                out = F.igemm(A, B)
            elif not transpose[0] and transpose[1]:
                out2 = torch.matmul(A.float(), B.t().float())
                out = F.igemm(A, B.t())
            elif transpose[0] and not transpose[1]:
                out2 = torch.matmul(A.t().float(), B.float())
                out = F.igemm(A.t(), B)
            elif transpose[0] and transpose[1]:
                out2 = torch.matmul(A.t().float(), B.t().float())
                out = F.igemm(A.t(), B.t())

            torch.testing.assert_close(out.float(), out2)

        for i in range(k):
            shapeA = (batch_dim, seq_dim, hidden_dim)
            shapeB = (
                (32 * random.randint(1, 4), hidden_dim) if transpose[1] else (hidden_dim, 32 * random.randint(1, 4))
            )
            A = torch.randint(-128, 127, size=shapeA, device="cuda").to(torch.int8)
            B = torch.randint(-128, 127, size=shapeB, device="cuda").to(torch.int8)
            if not transpose[0] and not transpose[1]:
                out2 = torch.matmul(A.float(), B.float())
                out = F.igemm(A, B)
            elif not transpose[0] and transpose[1]:
                out2 = torch.matmul(A.float(), B.t().float())
                out = F.igemm(A, B.t())

            torch.testing.assert_close(out.float(), out2)

Matthew Douglas's avatar
Matthew Douglas committed
442
443
444
    @pytest.mark.parametrize("seq_dim", [32, 256, 512], ids=id_formatter("seq_dim"))
    @pytest.mark.parametrize("hidden_dim", [64, 1024, 4096], ids=id_formatter("hidden_dim"))
    @pytest.mark.parametrize("batch_dim", [2, 8, 16], ids=id_formatter("batch_dim"))
445
446
447
448
449
450
451
452
453
454
455
456
457
    def test_dim3_igemm(self, seq_dim, hidden_dim, batch_dim):
        seq_dim = seq_dim - (seq_dim % 32)
        hidden_dim = hidden_dim - (hidden_dim % 32)
        batch_dim = batch_dim - (batch_dim % 2)
        for i in range(25):
            A = torch.randint(-128, 127, size=(batch_dim, seq_dim, hidden_dim), device="cuda").to(torch.int8)
            B = torch.randint(-128, 127, size=(batch_dim, seq_dim, 1024), device="cuda").to(torch.int8)
            out2 = torch.einsum("bsi, bso->io", A.float(), B.float())
            iout = torch.empty(A.shape[2], B.shape[2], dtype=torch.int32, device=A.device)
            out = F.igemm(A, B, out=iout)

            torch.testing.assert_close(out.float(), out2)

Matthew Douglas's avatar
Matthew Douglas committed
458
459
460
    @pytest.mark.parametrize("seq_dim", [32, 512], ids=id_formatter("seq_dim"))
    @pytest.mark.parametrize("hidden_dim", [32, 1024 * 4], ids=id_formatter("hidden_dim"))
    @pytest.mark.parametrize("batch_dim", [2, 16], ids=id_formatter("batch_dim"))
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
    @pytest.mark.parametrize("transpose", TRUE_FALSE, ids=id_formatter("transpose"))
    def test_minmax_igemm(self, seq_dim, hidden_dim, batch_dim, transpose):
        def min_max(x):
            maxA = torch.amax(x, dim=2, keepdim=True)
            minA = torch.amin(x, dim=2, keepdim=True)
            scale = (maxA - minA) / 2.0
            return (127 * (x - minA - scale) / scale).to(torch.int8), minA, scale

        seq_dim = seq_dim - (seq_dim % 16)
        hidden_dim = hidden_dim - (hidden_dim % 16)
        batch_dim = batch_dim - (batch_dim % 2)
        errs = []
        relerrs = []
        errs2 = []
        relerrs2 = []
        for i in range(k):
            A = torch.normal(0.0, 0.5, size=(batch_dim, seq_dim, hidden_dim), device="cuda")
            if transpose:
                B = torch.normal(0, 0.5, size=(256, hidden_dim), device="cuda")
            else:
                B = torch.normal(0, 0.5, size=(hidden_dim, 256), device="cuda")
            Ac, minA, scale = min_max(A)
            if transpose:
                maxB, Bc = quant_multi(B, dim=(1 if transpose else 0))
                out = F.igemm(Ac, Bc.t())
                out2 = torch.matmul(A, B.t())
                offset = B.t().sum(0) * (minA + scale)
                out = out.float()
                out = (out * maxB.t() * scale / (127 * 127)) + offset

                maxA, Ac = quant_multi(A, dim=2)
                out3 = F.igemm(Ac, Bc.t())
                out3 = mm_dequant(maxA, maxB.t(), out3)
            else:
                maxB, Bc = quant_multi(B, dim=0)
                offset = B.sum(0) * (minA + scale)
                out = F.igemm(Ac, Bc)
                out2 = torch.matmul(A, B)
                out = out.float()
                out = (out * maxB * scale / (127 * 127)) + offset

                maxA, Ac = quant_multi(A, dim=2)
                out3 = F.igemm(Ac, Bc)
                out3 = mm_dequant(maxA, maxB, out3)

            std = out2.std()
            out2 /= std
            out /= std
            out3 /= std

            err = torch.abs(out - out2)
            relerr = err / (torch.abs(out2) + 1e-7)

            err2 = torch.abs(out3 - out2)
            relerr2 = err2 / (torch.abs(out2) + 1e-7)

            errs.append(err.mean().item())
            relerrs.append(relerr.mean().item())
            errs2.append(err2.mean().item())
            relerrs2.append(relerr2.mean().item())
        # print(mean(errs))
        # print(mean(relerrs))
        # print(mean(errs2))
        # print(mean(relerrs2))
        assert mean(errs) < 0.015
        assert mean(relerrs) < 0.3

Matthew Douglas's avatar
Matthew Douglas committed
528
529
530
531
    @pytest.mark.parametrize("dim1", [1, 64], ids=id_formatter("dim1"))
    @pytest.mark.parametrize("dim2", [32, 128], ids=id_formatter("dim2"))
    @pytest.mark.parametrize("dim3", [32, 256], ids=id_formatter("dim3"))
    @pytest.mark.parametrize("dim4", [32, 256], ids=id_formatter("dim4"))
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
    @pytest.mark.parametrize("transpose", BOOLEAN_TUPLES, ids=id_formatter("transpose"))
    def test_ibmm(self, dim1, dim2, dim3, dim4, transpose):
        dim2 = dim2 - (dim2 % 16)
        dim3 = dim3 - (dim3 % 16)
        dim4 = dim4 - (dim4 % 16)
        for i in range(k):
            shapeA = (dim1, dim3, dim2) if transpose[0] else (dim1, dim2, dim3)
            shapeB = (dim1, dim4, dim3) if transpose[1] else (dim1, dim3, dim4)
            A = torch.randint(-128, 127, size=shapeA, device="cuda").to(torch.int8)
            B = torch.randint(-128, 127, size=shapeB, device="cuda").to(torch.int8)

            if not transpose[0] and not transpose[1]:
                out2 = torch.bmm(A.float(), B.float())
                out = F.igemm(A, B)
            elif not transpose[0] and transpose[1]:
                out2 = torch.bmm(A.float(), B.permute([0, 2, 1]).float())
                out = F.igemm(A, B.permute([0, 2, 1]))
            elif transpose[0] and not transpose[1]:
                out2 = torch.bmm(A.permute([0, 2, 1]).float(), B.float())
                out = F.igemm(A.permute([0, 2, 1]), B)
            elif transpose[0] and transpose[1]:
                out2 = torch.bmm(A.permute([0, 2, 1]).float(), B.permute([0, 2, 1]).float())
                out = F.igemm(A.permute([0, 2, 1]), B.permute([0, 2, 1]))
            torch.testing.assert_close(out.float(), out2.float())


class TestLLMInt8Functional:
559
    @pytest.mark.parametrize("device", get_available_devices())
560
561
562
563
564
565
    @pytest.mark.parametrize("dim1", [128], ids=id_formatter("dim1"))
    @pytest.mark.parametrize("dim2", [256], ids=id_formatter("dim2"))
    @pytest.mark.parametrize("dim3", [499, 512], ids=id_formatter("dim3"))
    @pytest.mark.parametrize("dim4", [512], ids=id_formatter("dim4"))
    @pytest.mark.parametrize("dims", (2, 3), ids=id_formatter("dims"))
    @pytest.mark.parametrize("ldb", (0,), ids=id_formatter("ldb"))
566
    def test_int8_linear_matmul(self, device, dim1, dim2, dim3, dim4, dims, ldb):
567
568
        for i in range(k):
            if dims == 2:
569
                A = torch.randint(-128, 127, size=(dim1, dim3), dtype=torch.int8, device=device)
570
            elif dims == 3:
571
572
                A = torch.randint(-128, 127, size=(dim1, dim2, dim3), dtype=torch.int8, device=device)
            B = torch.randint(-128, 127, size=(dim4, dim3), dtype=torch.int8, device=device)
573
574
575
576
577
            C1 = torch.matmul(A.float(), B.t().float())

            C2 = F.int8_linear_matmul(A, B)
            torch.testing.assert_close(C1, C2.float())

578
    @pytest.mark.parametrize("device", get_available_devices())
579
580
581
582
583
    @pytest.mark.parametrize("dim1", [32], ids=id_formatter("dim1"))
    @pytest.mark.parametrize("dim2", [32], ids=id_formatter("dim2"))
    @pytest.mark.parametrize("dim3", [32], ids=id_formatter("dim3"))
    @pytest.mark.parametrize("dim4", [32], ids=id_formatter("dim4"))
    @pytest.mark.parametrize("dims", (2,), ids=id_formatter("dims"))
584
    def test_int8_linear_matmul_half(self, device, dim1, dim2, dim3, dim4, dims):
585
586
        for i in range(k):
            if dims == 2:
587
                A = torch.normal(0, 0.5, size=(dim1, dim3), device=device).half()
588
            elif dims == 3:
589
590
                A = torch.normal(0, 0.5, size=(dim1, dim2, dim3), device=device).half()
            B = torch.randn((dim4, dim3), device=device).half()
591
592
593
594
595
596
597
598
599
600
601
            torch.nn.init.xavier_uniform_(B)
            C1 = torch.matmul(A, B.t())

            A = A.view(-1, A.shape[-1])

            CA, _, statsA, _, _ = F.int8_double_quant(A)
            CB, statsB, _ = F.int8_vectorwise_quant(B)
            output = F.int8_mm_dequant(F.int8_linear_matmul(CA, CB), statsA, statsB)

            torch.testing.assert_close(C1.view(-1, C1.shape[-1]), output, atol=0.025, rtol=0.05)

602
    @pytest.mark.parametrize("device", get_available_devices())
603
604
605
606
    @pytest.mark.parametrize("dim1", (64, 256), ids=id_formatter("dim1"))
    @pytest.mark.parametrize("dim4", (64, 1024), ids=id_formatter("dim4"))
    @pytest.mark.parametrize("dims", (2,), ids=id_formatter("dims"))
    @pytest.mark.parametrize("has_bias", TRUE_FALSE, ids=id_formatter("has_bias"))
607
    def test_dequant_mm(self, device, dim1, dim4, dims, has_bias):
608
609
        inner = 128
        bias = None
Ruff's avatar
Ruff committed
610
        if has_bias:
611
            bias = torch.randn(dim4, device=device, dtype=torch.float16)
612
613

        for i in range(1):
614
615
            A = torch.randn(dim1, inner, device=device)
            B = torch.randn(dim4, inner, device=device)
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
            C1 = torch.matmul(A.half(), B.t().half())
            if has_bias:
                C1 += bias

            A1, maxA = F.vectorwise_quant(A, dim=1)
            B1, maxB = F.vectorwise_quant(B, dim=1)

            C2 = F.int8_linear_matmul(A1, B1)

            C4 = F.vectorwise_mm_dequant(C2.float(), maxA, maxB.t())
            if has_bias:
                C4 += bias

            # TODO: is something wrong here? If so, the problem goes deeper
            # n = C1.numel()
            # p = 0.06
            std = C1.std(0).view(1, -1)
            C1 /= std
            C4 /= std
            # assert_all_approx_close(C1, C4, atol=0.02, rtol=0.1, count=int(n*0.06))
            # assert (count / n < p), f"error in more than {p} of elements: {count}/{n}={count/n}"

            C5 = F.int8_mm_dequant(C2, maxA, maxB, bias=bias)
            C5 /= std
            torch.testing.assert_close(C5, C4, atol=0.015, rtol=0.1)
            n = C5.numel()
            assert_all_approx_close(C1, C4, atol=0.015, rtol=0.1, count=int(0.01 * n))

    @pytest.mark.parametrize("dim1", [1 * 1024], ids=id_formatter("dim1"))
    @pytest.mark.parametrize("dim2", [1 * 1024], ids=id_formatter("dim2"))
    @pytest.mark.parametrize("dims", (2,), ids=id_formatter("dims"))
    @pytest.mark.parametrize("threshold", [0.0, 3.0], ids=id_formatter("decomp"))
648
    @pytest.mark.deprecated
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
    def test_colrow_absmax(self, dim1, dim2, dims, threshold):
        for i in range(k):
            A = torch.randn(dim1, dim2, device="cuda").half()

            assert dims == 2

            row_stats1, _ = torch.abs(A.float()).max(1)
            col_stats1, _ = torch.abs(A.float()).max(0)

            if threshold > 0.0:
                A_truncated = A.clone()
                A_truncated[torch.abs(A_truncated) >= threshold] = 0.0
                row_stats1_trunc, _ = torch.abs(A_truncated.float()).max(1)
                col_stats1_trunc, _ = torch.abs(A_truncated.float()).max(0)

                row_stats2, col_stats2, nnz_block_ptr2 = F.get_colrow_absmax(A, threshold=threshold)

                nnz_rows1_counts = (torch.abs(A) >= threshold).sum(1).flatten()
                nnz_block_ptr1 = torch.zeros(
                    nnz_rows1_counts.shape[0] + 1,
                    dtype=nnz_rows1_counts.dtype,
                    device=nnz_rows1_counts.device,
                )
                nnz_block_ptr1[1:] = nnz_rows1_counts.cumsum(0)

                torch.testing.assert_close(col_stats1_trunc, col_stats2)
                torch.testing.assert_close(row_stats1_trunc, row_stats2)
                # torch.testing.assert_close(nnz_block_ptr1, nnz_block_ptr2)
            else:
                row_stats2, col_stats2, nnz_block_ptr2 = F.get_colrow_absmax(A, threshold=0.0)
                assert nnz_block_ptr2 is None
                torch.testing.assert_close(col_stats1, col_stats2)
                torch.testing.assert_close(row_stats1, row_stats2)

    @pytest.mark.parametrize("dim1", [2048, 4096], ids=id_formatter("dim1"))
    @pytest.mark.parametrize("dim2", [512, 1024], ids=id_formatter("dim2"))
685
    @pytest.mark.deprecated
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
    def test_int8_double_quant(self, dim1, dim2):
        for i in range(k):
            A = torch.randn(dim1, dim2, device="cuda").half()
            out_col1, Scol = F.vectorwise_quant(A, dim=0)
            out_row1, Srow = F.vectorwise_quant(A, dim=1)

            CA, CAt, statsA, statsAt, _ = F.int8_double_quant(A)

            # max difference is 1 due to rounding differences
            torch.testing.assert_close(CA, out_row1, atol=1, rtol=0)
            torch.testing.assert_close(CAt, out_col1, atol=1, rtol=0)

            n = CAt.numel()
            num_not_close_rows = (torch.isclose(CA, out_row1, atol=1) == 0).sum().item()
            num_not_close_cols = (torch.isclose(CAt, out_col1, atol=1) == 0).sum().item()

            # allow for 1:500 error due to rounding differences
            min_error = 1 / 500
            if num_not_close_cols > (min_error * n):
                print(
706
                    f"Min error exceeded {num_not_close_cols} elements are different. Error: {num_not_close_cols / n:.4f}"
707
708
709
710
                )
                assert False
            if num_not_close_rows > (min_error * n):
                print(
711
                    f"Min error exceeded {num_not_close_rows} elements are different. Error: {num_not_close_rows / n:.4f}"
712
713
714
715
716
717
                )
                assert False

            torch.testing.assert_close(Srow.flatten().float(), statsA)
            torch.testing.assert_close(Scol.flatten().float(), statsAt)

718
    @pytest.mark.parametrize("device", get_available_devices())
719
720
721
722
723
724
725
726
    @pytest.mark.parametrize(
        ("dim1", "dim4", "inner"),
        (
            pytest.param(dim1, dim4, inner, id=f"{dim1=},{dim4=},{inner=}")
            for (dim1, dim4, inner) in zip(
                (1, 8, 2048, 4096),
                (2, 128, 2048, 4096),
                (4, 256, 512, 4096),
727
            )
728
729
        ),
    )
730
    def test_integrated_int8_linear_matmul(self, device, dim1, dim4, inner):
731
        for i in range(k):
732
733
            A = torch.randn(dim1, inner, device=device).half()
            B = torch.randn(dim4, inner, device=device).half()
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756

            out1 = torch.matmul(A.half(), B.t().half())

            C1a, stats1a, _ = F.int8_vectorwise_quant(A)
            C2a, stats2a, _ = F.int8_vectorwise_quant(B)
            A1, maxA = F.vectorwise_quant(A, dim=1)
            B1, maxB = F.vectorwise_quant(B, dim=1)

            torch.testing.assert_close(maxA.flatten().float(), stats1a)
            torch.testing.assert_close(maxB.flatten().float(), stats2a)
            torch.testing.assert_close(C1a, A1, rtol=0, atol=1)
            torch.testing.assert_close(C2a, B1, rtol=0, atol=1)

            out2 = F.int8_linear_matmul(A1, B1)

            C2 = F.int8_linear_matmul(A1, B1)

            out3 = F.vectorwise_mm_dequant(C2.float(), maxA, maxB.t())

            err1 = torch.abs(out1 - out2).mean().item()
            err2 = torch.abs(out1 - out3).mean().item()
            assert err2 <= err1 * 1.025

757
    @pytest.mark.parametrize("device", get_available_devices())
758
759
    @pytest.mark.parametrize("dim1", [512, 2048], ids=id_formatter("dim1"))
    @pytest.mark.parametrize("dim2", [1024, 4096], ids=id_formatter("dim2"))
760
    def test_coo_double_quant(self, device, dim1, dim2):
761
762
        threshold = 2.00
        for i in range(k):
763
            A = torch.randn(dim1, dim2, device=device).half()
764
765
766
767
768
769
770
771
772
773
774
775
776

            idx = torch.abs(A) >= threshold
            CA, statsA, outlier_cols = F.int8_vectorwise_quant(A, threshold=threshold)

            if outlier_cols is not None:
                A1 = A * idx
                A2 = torch.zeros_like(A) + A1
                torch.testing.assert_close(A1, A2)

                A[:, outlier_cols] = 0
                A2 = (CA.float() * statsA.unsqueeze(1) / 127).half()
                torch.testing.assert_close(A, A2, rtol=0.05, atol=1.5e-2)

777
    @pytest.mark.parametrize("device", get_available_devices())
778
779
    @pytest.mark.parametrize("dim1", [512, 2048], ids=id_formatter("dim1"))
    @pytest.mark.parametrize("dim2", [1024, 4096], ids=id_formatter("dim2"))
780
    def test_coo_int8_vectorwise_quant(self, device, dim1, dim2):
781
782
        threshold = 3.00
        for i in range(k):
783
            A = torch.randn(dim1, dim2, device=device).half()
784
785
786
787
788
789
790
791
792
793

            idx = torch.abs(A) >= threshold
            CA, statsA, outlier_cols = F.int8_vectorwise_quant(A, threshold=threshold)

            if outlier_cols is not None:
                A2 = (CA.float() * statsA.unsqueeze(1) / 127).half()
                A[:, outlier_cols] = 0
                torch.testing.assert_close(A * (idx == 0), A2, rtol=0.05, atol=1.5e-2)


794
@pytest.mark.skipif(not torch.cuda.is_available(), reason="CUDA is required")
795
class TestSpMMFunctional:
Matthew Douglas's avatar
Matthew Douglas committed
796
797
    @pytest.mark.parametrize("dim1", [256, 1024], ids=id_formatter("dim1"))
    @pytest.mark.parametrize("dim2", [128, 512], ids=id_formatter("dim2"))
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
    @pytest.mark.parametrize("transposed_B", TRUE_FALSE, ids=id_formatter("transposed_B"))
    def test_spmm_coo(self, dim1, dim2, transposed_B):
        threshold = 1.5
        dim3 = torch.randint(32, 128, size=(1,)).item()
        # dim3 = 17
        for i in range(k):
            A = torch.randn(dim1, dim2).cuda().half()
            if transposed_B:
                B = torch.randn(dim3, dim2).cuda().half()
            else:
                B = torch.randn(dim2, dim3).cuda().half()

            idx = torch.abs(A) >= threshold
            nnz = (idx == 1).sum().item()
            rows, cols = torch.where(idx)
            values = A[idx]
            cooA = F.COOSparseTensor(A.shape[0], A.shape[1], nnz, rows.int(), cols.int(), values)
            A2 = A * idx

            if transposed_B:
                out2 = F.spmm_coo(cooA, B.t())
                out1 = torch.matmul(A2, B.t())
            else:
                out2 = F.spmm_coo(cooA, B)
                out1 = torch.matmul(A2, B)

            assert_all_approx_close(out1, out2, rtol=0.01, atol=3.0e-2, count=30)

    @pytest.mark.benchmark
    def test_spmm_bench(self):
        batch = 2
        model = 1024 * 1
        hidden = model * 4
        seq = 1024
        dim1 = batch * seq
        dim2 = model
        dim3 = hidden
        threshold = 4
836
        A = torch.randn(dim1, dim2, device="cuda").half()
837
838
839
        B = torch.randn(dim2, dim3, device="cuda").half()
        for i in range(10):
            C1 = bnb.matmul(A, B.t())
Tim Dettmers's avatar
Tim Dettmers committed
840

841
842
843
844
845
846
        torch.cuda.synchronize()
        t0 = time.time()
        for i in range(k):
            C1 = bnb.matmul(A, B.t())
        torch.cuda.synchronize()
        t8 = time.time() - t0
Tim Dettmers's avatar
Tim Dettmers committed
847

848
849
850
851
852
853
        idx = torch.abs(A) >= threshold
        nnz = (idx == 1).sum().item()
        print(nnz / idx.numel())
        rows, cols = torch.where(idx)
        values = A[idx]
        cooA = F.COOSparseTensor(A.shape[0], A.shape[1], nnz, rows.int(), cols.int(), values)
Tim Dettmers's avatar
Tim Dettmers committed
854

855
856
        for i in range(10):
            out2 = F.spmm_coo(cooA, B)
Tim Dettmers's avatar
Tim Dettmers committed
857

858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
        torch.cuda.synchronize()
        t0 = time.time()
        for i in range(k):
            out2 = F.spmm_coo(cooA, B)
        torch.cuda.synchronize()
        tsp = time.time() - t0
        print(tsp, t8)
        print(tsp / t8)

    @pytest.mark.parametrize("dim1", [1 * 2048], ids=id_formatter("dim1"))
    @pytest.mark.parametrize("dim2", [12288], ids=id_formatter("dim2"))
    @pytest.mark.parametrize("dtype", [torch.float16], ids=describe_dtype)
    @pytest.mark.parametrize("out_func", ["zeros", "ones"], ids=id_formatter("out_func"))
    def test_spmm_coo_very_sparse(self, dim1, dim2, dtype, out_func):
        out_func = getattr(torch, out_func)

        threshold = 3.3
        # threshold = 2.8
        # threshold = 0.0
        A = torch.randn(dim1, dim2, device="cuda").half()
        if dtype == torch.float16:
            B = torch.randn(dim2, dim2 * 4, device="cuda").half()
            torch.nn.init.xavier_uniform_(B)
Tim Dettmers's avatar
Tim Dettmers committed
881
        else:
882
883
884
885
            B = torch.randn(dim2, dim2 * 4, device="cuda").half()
            torch.nn.init.xavier_uniform_(B)
            B, SB = F.vectorwise_quant(B, quant_type="linear")
            # B = torch.randint(-127, 127, size=(dim2, dim2*4), device='cuda').to(torch.int8)
Tim Dettmers's avatar
Tim Dettmers committed
886

887
888
889
890
891
892
893
894
895
896
897
898
        print("")
        idx = torch.abs(A) >= threshold
        nnz = (idx == 1).sum().item()
        rows, cols = torch.where(idx)
        values = A[idx]
        cooA = F.COOSparseTensor(A.shape[0], A.shape[1], nnz, rows.int(), cols.int(), values)
        A2 = A * idx
        out1 = torch.matmul(A2.half(), B.half())
        out = out_func(out1.shape, dtype=torch.float16, device=out1.device)
        out1 += out.clone()
        out2 = F.spmm_coo_very_sparse(cooA, B, out=out)
        # print(B)
899
900
        # print(out1)
        # print(out2)
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
        p = 200 / (2048 * 12288 * 4)
        n = out1.numel()
        count = math.ceil(p * n)
        std = out1.std()
        out1 /= std
        out2 /= std
        assert_all_approx_close(out1, out2.half(), rtol=0.01, atol=3.0e-2, count=count)
        # assert_all_approx_close(out1, out2.half(), rtol=0.05, atol=0.01, count=count)

        idx_col = torch.randint(0, A2.shape[-1], size=(15,))

        # torch.testing.assert_close(out1, out2.half(), rtol=0.05, atol=0.001)

        # Bt = torch.randn(dim2*4, dim2, device='cuda').half()
        # torch.cuda.synchronize()
        # t0 = time.time()
        # print(A2.shape, B.shape)
        # for i in range(100):
        #   #out3 = F.spmm_coo(cooA, Bt.t())
        #   #out2 = F.spmm_coo(cooA, B)
        #   #out2 = F.spmm_coo_very_sparse(cooA, B)
        #   #out1 = torch.matmul(A, Bt.t())

        # torch.cuda.synchronize()
        # print(time.time() - t0)

    @pytest.mark.parametrize("dim1", [256, 1024], ids=id_formatter("dim1"))
    @pytest.mark.parametrize("dim2", [256, 1024], ids=id_formatter("dim2"))
Matthew Douglas's avatar
Matthew Douglas committed
929
    @pytest.mark.skip("No longer supported")
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
    def test_integrated_sparse_decomp(self, dim1, dim2):
        threshold = 3.0
        for _ in range(k):
            A = torch.randn(dim1, dim2).cuda().half()
            w1 = torch.randn(dim1, dim2).cuda().half()
            out1 = torch.matmul(A, w1.t())

            Cw1, statsw1, _ = F.int8_vectorwise_quant(w1)
            CA, statsA, _ = F.int8_vectorwise_quant(A)

            out1_32 = F.int8_linear_matmul(CA, Cw1)
            out2 = F.int8_mm_dequant(out1_32, statsA, statsw1)

            # CA, statsA, outlier_cols = F.int8_vectorwise_quant(A, threshold=threshold)
            CA, _, statsA, _, coo_tensor = F.double_quant(A, threshold=threshold)

            out1_32 = F.int8_linear_matmul(CA, Cw1)
            out3 = F.int8_mm_dequant(out1_32, statsA, statsw1)

            assert coo_tensor is not None

            out4 = F.spmm_coo(coo_tensor, w1.t())
            # idx = torch.unique(coo_tensor._indices()[1]).long()
            # out4 = torch.matmul(A, w1.t())
            out5 = out3 + out4

            err1 = torch.abs(out1 - out2).mean().item()
            err2 = torch.abs(out1 - out5).mean().item()
            assert err2 < err1

    @pytest.mark.parametrize("dim1", [1 * 2048])
    @pytest.mark.parametrize("dim2", [2048])
    @pytest.mark.parametrize("dtype", [torch.int8])
    def test_spmm_coo_dequant(self, dim1, dim2, dtype):
        threshold = 6.0
        # threshold = 2.8
        # threshold = 0.0
967
        A = torch.randn(dim1, dim2, device="cuda").half()
968
969
970
        B = torch.empty(dim2, dim2 * 4, device="cuda", dtype=torch.float16)
        torch.nn.init.xavier_uniform_(B)
        Bt = B.t().contiguous()
Tim Dettmers's avatar
Tim Dettmers committed
971

972
        CB, CBt, statsB, statsBt, coo_tensor = F.int8_double_quant(B)
973

974
        rowidx = torch.randint(0, A.shape[-1], size=(15,))
Tim Dettmers's avatar
Tim Dettmers committed
975

976
        A[:, rowidx] = 8.0
Tim Dettmers's avatar
Tim Dettmers committed
977
978
979
980
981

        idx = torch.abs(A) >= threshold
        nnz = (idx == 1).sum().item()
        rows, cols = torch.where(idx)
        values = A[idx]
Ruff's avatar
Ruff committed
982
        cooA = F.COOSparseTensor(A.shape[0], A.shape[1], nnz, rows.int(), cols.int(), values)
983
984
        A2 = A * idx
        out2 = F.spmm_coo_very_sparse(cooA, CBt, dequant_stats=statsBt)
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
        out1 = torch.matmul(A2, B.half())
        out3 = F.spmm_coo_very_sparse(cooA, CBt.half())
        out3 = out3 * statsBt.half() / 127

        values, counts = torch.unique(cooA.rowidx, return_counts=True)
        offset = counts.cumsum(0).int()
        max_count, max_idx = torch.sort(counts, descending=True)
        print(torch.median(max_count.float()))

        torch.testing.assert_close(out2, out3, rtol=0.05, atol=0.001)

        p = 200 / (2048 * 12288 * 4)
        n = out1.numel()
        count = math.ceil(p * n)
        assert_all_approx_close(out1, out2, rtol=0.01, atol=3.0e-2, count=count)

        # torch.cuda.synchronize()
        # t0 = time.time()
        # for i in range(100):
        #   out2 = F.spmm_coo_very_sparse(cooA, B)
        # torch.cuda.synchronize()
        # print('fp16', time.time() - t0)

        torch.cuda.synchronize()
        t0 = time.time()
        for i in range(100):
            out2 = F.spmm_coo(cooA, B)
        torch.cuda.synchronize()
        print("cusparse fp16", time.time() - t0)
1014

1015
1016
1017
1018
1019
1020
        torch.cuda.synchronize()
        t0 = time.time()
        for i in range(100):
            out2 = F.spmm_coo_very_sparse(cooA, CBt)
        torch.cuda.synchronize()
        print("int8", time.time() - t0)
1021

1022
1023
1024
1025
1026
1027
        torch.cuda.synchronize()
        t0 = time.time()
        for i in range(100):
            out2 = F.spmm_coo_very_sparse(cooA, CBt, dequant_stats=statsBt)
        torch.cuda.synchronize()
        print("int8+dequant", time.time() - t0)
1028

1029
1030
1031
1032
1033
1034
        torch.cuda.synchronize()
        t0 = time.time()
        for i in range(100):
            out2 = torch.matmul(A, B)
        torch.cuda.synchronize()
        print("matmul", time.time() - t0)
1035

1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
        torch.cuda.synchronize()
        t0 = time.time()
        for i in range(100):
            out1 = bnb.matmul(A, Bt)
            out2 = F.spmm_coo_very_sparse(cooA, CBt, dequant_stats=statsBt)
            out = out1 + out2
        torch.cuda.synchronize()
        print("sparse+ matmul", time.time() - t0)

        torch.cuda.synchronize()
        t0 = time.time()
        for i in range(100):
            out1 = bnb.matmul(A, Bt)
            torch.matmul(A[:, rowidx], Bt.t()[rowidx], out=out1)
        torch.cuda.synchronize()
        print("partial matmul", time.time() - t0)
1052

1053
1054
1055
1056
1057
1058
        torch.cuda.synchronize()
        t0 = time.time()
        for i in range(100):
            out1 = bnb.matmul(A, Bt)
        torch.cuda.synchronize()
        print("partial matmul", time.time() - t0)
1059

1060

1061
@pytest.mark.skipif(not torch.cuda.is_available(), reason="CUDA is required")
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
class TestSparseTensorFunctional:
    def test_coo2csr(self):
        threshold = 1
        A = torch.randn(128, 128).half().cuda()
        idx = torch.abs(A) >= threshold
        nnz = (idx == 1).sum().item()
        rows, cols = torch.where(idx)
        values = A[idx]
        cooA = F.COOSparseTensor(A.shape[0], A.shape[1], nnz, rows.int(), cols.int(), values)
        A2 = A * idx
        csrA = F.coo2csr(cooA)
        counts = csrA.rowptr[1:] - csrA.rowptr[:-1]
        assert counts.numel() == A.shape[0]
1075

1076
1077
1078
        torch.testing.assert_close(counts.long(), (A2 != 0).sum(1))
        idx = A2 != 0
        torch.testing.assert_close(A2[idx], csrA.values)
Tim Dettmers's avatar
Tim Dettmers committed
1079

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
    def test_coo2csc(self):
        threshold = 1
        A = torch.randn(128, 128).half().cuda()
        idx = torch.abs(A) >= threshold
        nnz = (idx == 1).sum().item()
        rows, cols = torch.where(idx)
        values = A[idx]
        cooA = F.COOSparseTensor(A.shape[0], A.shape[1], nnz, rows.int(), cols.int(), values)
        A2 = A * idx
        cscA = F.coo2csc(cooA)
        counts = cscA.colptr[1:] - cscA.colptr[:-1]
        assert counts.numel() == A.shape[1]
Tim Dettmers's avatar
Tim Dettmers committed
1092

1093
1094
1095
1096
        torch.testing.assert_close(counts.long(), (A2 != 0).sum(0))
        # torch uses row-major -> use transpose to transfer to col-major
        idx = A2.t() != 0
        torch.testing.assert_close(A2.t()[idx], cscA.values)
Tim Dettmers's avatar
Tim Dettmers committed
1097

Tim Dettmers's avatar
Tim Dettmers committed
1098

1099
class TestQuantize4BitFunctional:
1100
    @pytest.mark.parametrize("device", get_available_devices())
1101
1102
1103
    @pytest.mark.parametrize("dtype", [torch.float32, torch.float16, torch.bfloat16], ids=describe_dtype)
    @pytest.mark.parametrize("quant_type", ["fp4", "nf4"])
    @pytest.mark.parametrize("blocksize", [64, 128, 256, 512, 1024, 2048, 4096])
1104
1105
    def test_4bit_quant(self, device, dtype, quant_type, blocksize):
        A1 = torch.randn(1024, 1024, device=device, dtype=dtype)
1106
1107
        qa, SA = F.quantize_4bit(A1, blocksize=blocksize, quant_type=quant_type)
        A2 = F.dequantize_4bit(qa, SA, blocksize=blocksize, quant_type=quant_type)
1108

1109
1110
1111
        err = (A1 - A2).abs().float()
        relerr = (err / (A1.abs().float() + 1e-8)).mean()
        err = err.mean()
1112

1113
        assert A2.dtype == dtype
1114

1115
1116
1117
1118
        # With larger block sizes, we can expect this to blow up.
        # At blocksize>=1024, don't even bother looking at relerr.
        if blocksize <= 64:
            assert err.item() < 0.1
1119
            assert relerr.item() < 0.28
1120
        elif blocksize <= 256:
1121
            assert err.item() < 0.11
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
            assert relerr.item() < 0.30
        elif blocksize <= 512:
            assert err.item() < 0.12
            assert relerr.item() < 0.31
        elif quant_type == "fp4":
            # 1024 => 0.48, 2048 => 0.52, 4096 => 0.56
            assert err.item() < 0.08 + math.log2(blocksize) * 4e-2
        else:
            # 1024 => 0.8, 2048 => 0.88, 4096 => 0.96
            assert err.item() < math.log2(blocksize) * 8e-2

1133
    @pytest.mark.parametrize("device", get_available_devices())
1134
    @pytest.mark.parametrize("quant_type", ["fp4", "nf4"])
Matthew Douglas's avatar
Matthew Douglas committed
1135
    @pytest.mark.parametrize("blocksize", [64, 128], ids=id_formatter("blocksize"))
1136
    def test_4bit_compressed_stats(self, device, quant_type, blocksize):
Matthew Douglas's avatar
Matthew Douglas committed
1137
1138
1139
        errs1 = []
        errs2 = []
        for i in range(10):
1140
            A1 = torch.randn(1024, 1024, device=device).half()
Matthew Douglas's avatar
Matthew Douglas committed
1141
1142
1143
1144
            q2, SA2 = F.quantize_4bit(A1, blocksize=blocksize, quant_type=quant_type)
            q3, SA3 = F.quantize_4bit(A1, blocksize=blocksize, compress_statistics=True, quant_type=quant_type)
            A2 = F.dequantize_4bit(q2, SA2, quant_type=quant_type)
            A3 = F.dequantize_4bit(q3, SA3, quant_type=quant_type)
1145

Matthew Douglas's avatar
Matthew Douglas committed
1146
1147
1148
            err = (A1 - A2).abs().float()
            relerr = (err / (A1.abs().float() + 1e-15)).mean()
            err = err.mean()
1149

Matthew Douglas's avatar
Matthew Douglas committed
1150
            errs1.append(err.item())
1151

Matthew Douglas's avatar
Matthew Douglas committed
1152
1153
            assert err.item() < 0.11
            assert relerr.item() < 0.28
1154

Matthew Douglas's avatar
Matthew Douglas committed
1155
1156
1157
            err = (A1 - A3).abs().float()
            relerr = (err / (A1.abs().float() + 1e-15)).mean()
            err = err.mean()
1158

Matthew Douglas's avatar
Matthew Douglas committed
1159
            errs2.append(err.item())
1160

Matthew Douglas's avatar
Matthew Douglas committed
1161
1162
            assert err.item() < 0.11
            assert relerr.item() < 0.28
1163
1164
1165

    # @pytest.mark.parametrize("quant_type", ['fp4', 'nf4'])
    @pytest.mark.parametrize("quant_type", ["nf4"])
1166
    @pytest.mark.skipif(not torch.cuda.is_available(), reason="CUDA is required")
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
    @pytest.mark.benchmark
    def test_bench_4bit_dequant(self, quant_type):
        blocksize = 256
        a = torch.rand(1024 * 12 * 4, 1024 * 12, device="cuda").half()
        qa, SA = F.quantize_4bit(a, blocksize=blocksize, quant_type=quant_type)

        input_size = a.numel() / 2
        output_size = a.numel() * 2
        num_bytes = input_size + output_size
        GB = num_bytes / 1e9
        max_theoretical_s = GB / 768
        # print(max_theoretical_s*1e6)
        b = torch.randn(128, 1024 * 12, device="cuda").half()

        iters = 100
        torch.cuda.synchronize()
        t0 = time.time()
        for i in range(iters):
            F.dequantize_4bit(qa, SA, blocksize=blocksize, quant_type=quant_type)
            # b.copy_(a)
        torch.cuda.synchronize()
        # print((time.time()-t0)/iters*1e6)

        # torch.cuda.synchronize()
        # t0 = time.time()
        # for i in range(iters):
        #    torch.matmul(b, a.t())
        # torch.cuda.synchronize()
        # print((time.time()-t0)/iters*1e6)

1197
    @pytest.mark.parametrize("device", get_available_devices())
1198
1199
1200
1201
1202
1203
1204
1205
1206
    @pytest.mark.parametrize("double_quant", TRUE_FALSE, ids=lambda double_quant: f"DQ_{double_quant}")
    @pytest.mark.parametrize("storage_type", ["nf4", "fp4"])
    @pytest.mark.parametrize("kind", ["fc1", "fc2", "attn", "attn_packed"])
    @pytest.mark.parametrize("dtype", [torch.float16, torch.bfloat16, torch.float32], ids=describe_dtype)
    @pytest.mark.parametrize(
        "quant_storage",
        [torch.uint8, torch.float16, torch.bfloat16, torch.float32],
        ids=describe_dtype,
    )
Matthew Douglas's avatar
Matthew Douglas committed
1207
    @pytest.mark.parametrize("dim", [128, 256, 512, 1024], ids=id_formatter("dim"))
1208
    def test_gemv_4bit(self, device, dim, dtype, storage_type, quant_storage, double_quant, kind):
Matthew Douglas's avatar
Matthew Douglas committed
1209
1210
1211
1212
1213
1214
1215
1216
1217
        errs1 = []
        errs2 = []
        errs3 = []
        relerrs1 = []
        relerrs2 = []
        relerrs3 = []
        max_errs1 = []
        max_errs2 = []
        max_errs3 = []
1218

Matthew Douglas's avatar
Matthew Douglas committed
1219
1220
        for i in range(100):
            if kind == "fc1":
1221
1222
                A = torch.randn(1, dim, dtype=dtype, device=device)
                B = torch.randn(dim * 4, dim, dtype=dtype, device=device) / math.sqrt(dim)
Matthew Douglas's avatar
Matthew Douglas committed
1223
            elif kind == "fc2":
1224
1225
                A = torch.randn(1, 4 * dim, dtype=dtype, device=device)
                B = torch.randn(dim, 4 * dim, dtype=dtype, device=device) / math.sqrt(dim)
Matthew Douglas's avatar
Matthew Douglas committed
1226
            elif kind == "attn":
1227
1228
                A = torch.randn(1, dim, dtype=dtype, device=device)
                B = torch.randn(dim, dim, dtype=dtype, device=device) / math.sqrt(dim)
Matthew Douglas's avatar
Matthew Douglas committed
1229
            elif kind == "attn_packed":
1230
1231
                A = torch.randn(1, dim, dtype=dtype, device=device)
                B = torch.randn(dim * 3, dim, dtype=dtype, device=device) / math.sqrt(dim)
Matthew Douglas's avatar
Matthew Douglas committed
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333

            qB, state = F.quantize_4bit(
                B,
                quant_type=storage_type,
                compress_statistics=double_quant,
                quant_storage=quant_storage,
            )
            C3 = torch.matmul(A, B.t())
            C2 = F.gemv_4bit(A, qB.t(), state=state)
            A.requires_grad = True
            C1 = bnb.matmul_4bit(A, qB.t(), state)

            err1 = (C1 - C2).abs().float()
            err2 = (C3 - C2).abs().float()
            err3 = (C3 - C1).abs().float()

            mag1 = torch.abs(C1).float() + 1e-5
            mag2 = torch.abs(C3).float() + 1e-5
            mag3 = torch.abs(C3).float() + 1e-5

            relerr1 = err1 / mag1
            relerr2 = err2 / mag2
            relerr3 = err3 / mag3

            max_err1 = err1.max()
            max_err2 = err2.max()
            max_err3 = err3.max()

            errs1.append(err1.mean().item())
            errs2.append(err2.mean().item())
            errs3.append(err3.mean().item())

            relerrs1.append(relerr1.mean().item())
            relerrs2.append(relerr2.mean().item())
            relerrs3.append(relerr3.mean().item())

            max_errs1.append(max_err1.item())
            max_errs2.append(max_err2.item())
            max_errs3.append(max_err3.item())

            c = int(C1.numel() * 0.0014 * (dim / 256)) + 1

            c = assert_all_approx_close(C1, C2, 1e-5, 0.01, count=0, throw=False)
        err1 = sum(errs1) / len(errs1) / math.sqrt(dim)
        err2 = sum(errs2) / len(errs2) / math.sqrt(dim)
        err3 = sum(errs3) / len(errs3) / math.sqrt(dim)
        relerr1 = sum(relerrs1) / len(relerrs1) / math.sqrt(dim)
        relerr2 = sum(relerrs2) / len(relerrs2) / math.sqrt(dim)
        relerr3 = sum(relerrs3) / len(relerrs3) / math.sqrt(dim)
        maxerr1 = sum(max_errs1) / len(max_errs1) / math.sqrt(dim)
        maxerr2 = sum(max_errs2) / len(max_errs2) / math.sqrt(dim)
        maxerr3 = sum(max_errs3) / len(max_errs3) / math.sqrt(dim)
        absratio = err2 / err3
        relratio = relerr2 / relerr3
        maxratio = relerr2 / relerr3

        # for debugging if the tests fails
        #
        # print('='*80)
        # print(f'For matmul: {A.shape}, {B.shape}, {kind}, {dtype}, {storage_type}, double_quant={double_quant}:')
        # print(C1.flatten()[-20:])
        # print(C2.flatten()[-20:])
        # print(f'inference vs training abs: {err1}')
        # print(f'inference vs training rel: {relerr1}')
        # print(f'inference vs training max: {maxerr1}')
        # print(f'inference vs training vs torch err ratio abs: {absratio}')
        # print(f'inference vs training vs torch err ratio rel: {relratio}')
        # print(f'inference vs training vs torch err ratio max: {maxratio}')
        if dtype == torch.float16:
            if dim <= 512:
                assert err1 < 7e-5
                assert relerr1 < 0.0008
            else:
                assert err1 < 6e-5
                assert relerr1 < 2e-4
            assert absratio < 1.005 and absratio > 0.995
            assert relratio < 1.005 and relratio > 0.995
            assert maxratio < 1.005 and maxratio > 0.995
        elif dtype == torch.float32:
            if dim <= 512:
                assert err1 < 5e-8
                assert relerr1 < 1e-6
                assert maxerr1 < 1e-7
            else:
                assert err1 < 5e-8
                assert relerr1 < 8e-6
                assert maxerr1 < 1e-7
            assert absratio < 1.005 and absratio > 0.995
            assert relratio < 1.005 and relratio > 0.995
            assert maxratio < 1.005 and maxratio > 0.995
        elif dtype == torch.bfloat16:
            if dim <= 512:
                assert err1 < 6e-4
                assert relerr1 < 0.007
                assert maxerr1 < 0.015
            else:
                assert err1 < 2e-4
                assert relerr1 < 0.002
                assert maxerr1 < 0.0012
            assert absratio < 1.005 and absratio > 0.995
            assert relratio < 1.04 and relratio > 0.96
            assert maxratio < 1.02 and maxratio > 0.98
1334

1335
    @pytest.mark.parametrize("device", get_available_devices())
1336
1337
1338
    @pytest.mark.parametrize("storage_type", ["nf4", "fp4"], ids=["nf4", "fp4"])
    @pytest.mark.parametrize("dtype", [torch.float16, torch.bfloat16, torch.float32], ids=describe_dtype)
    @pytest.mark.parametrize("double_quant", [False], ids=["DQ_True"])
1339
    def test_gemv_eye_4bit(self, device, storage_type, dtype, double_quant):
1340
1341
1342
1343
1344
1345
        dims = 10
        torch.random.manual_seed(np.random.randint(0, 412424242))
        dims = get_test_dims(0, 8192, n=dims)
        dims = [dim + (64 - (dim % 64)) for dim in dims]
        # for dim in [576, 5120, 3520, 5184, 1280, 4992, 5312, 2048]:
        for dim in dims:
1346
1347
            A = torch.normal(0, 0.1, size=(1, 1, dim), dtype=dtype, device=device)
            B = torch.eye(dim, dtype=dtype, device=device)
1348
1349
1350
1351
1352
1353

            qB, state = F.quantize_4bit(B, quant_type=storage_type, compress_statistics=double_quant)
            C3 = torch.matmul(A, B.t())
            C2 = bnb.matmul_4bit(A, qB.t(), state)
            A.requires_grad = True
            C1 = bnb.matmul_4bit(A, qB.t(), state)
1354

1355
1356
1357
1358
1359
            torch.testing.assert_close(A, C3)
            torch.testing.assert_close(A, C1)
            torch.testing.assert_close(A, C2)
        # torch.testing.assert_close(A, C1, rtol=1e-5, atol=0.00001)
        # torch.testing.assert_close(A, C2, rtol=1e-5, atol=0.080)
1360
1361
1362
1363


def test_normal_map_tree():
    code = F.create_normal_map()
Ruff's avatar
Ruff committed
1364
    values = code[:8].tolist() + code[-8:].tolist()
1365
    num_pivots = 1
Ruff's avatar
Ruff committed
1366
1367
1368
1369
    # print(values)
    while num_pivots < 16:
        idx = list(range(16 // num_pivots // 2, 16, 16 // num_pivots))
        # print(idx)
1370
1371
1372
        num_pivots *= 2
        pivots = []
        for i in idx:
Ruff's avatar
Ruff committed
1373
1374
            pivots.append((values[i - 1] + values[i]) / 2)
        # print(pivots)
1375

Tim Dettmers's avatar
Tim Dettmers committed
1376

1377
@pytest.mark.skip("Row scale has some bugs for ampere")
Tim Dettmers's avatar
Tim Dettmers committed
1378
def test_managed():
Ruff's avatar
Ruff committed
1379
    n = 32 * 10
Tim Dettmers's avatar
Tim Dettmers committed
1380
1381
1382
1383
1384
    A = F.get_paged(n, n, dtype=torch.float32)
    B = F.get_paged(n, n, dtype=torch.uint8)
    B2 = F.get_paged(n, n, dtype=torch.float32)
    assert A.is_paged
    assert B.is_paged
Ruff's avatar
Ruff committed
1385
1386
    assert A.page_deviceid == 0
    assert B.page_deviceid == 0
Tim Dettmers's avatar
Tim Dettmers committed
1387
1388
1389
    F.fill(A, 17.0)
    F.fill(B, 17)
    F.fill(B2, 2)
Ruff's avatar
Ruff committed
1390
1391
1392
1393
    assert (A == 17).sum().item() == n * n
    assert (B == 17).sum().item() == n * n
    C = A * B.float()
    assert (C == 289).sum().item() == n * n
Tim Dettmers's avatar
Tim Dettmers committed
1394
1395
1396
    F._mul(A, B2)
    F._mul(A, B2)
    F._mul(A, B2)
Ruff's avatar
Ruff committed
1397
    assert (A == 17 * (2**3)).sum().item() == n * n