test_functional.py 55.2 KB
Newer Older
Tim Dettmers's avatar
Tim Dettmers committed
1
2
3
import math
import random
import time
Tim Dettmers's avatar
Tim Dettmers committed
4

5
import einops
Aarni Koskela's avatar
Aarni Koskela committed
6
import numpy as np
7
8
9
10
import pytest
import torch

import bitsandbytes as bnb
Tim Dettmers's avatar
Tim Dettmers committed
11
from bitsandbytes import functional as F
Aarni Koskela's avatar
Aarni Koskela committed
12
13
14
15
16
17
18
from tests.helpers import (
    BOOLEAN_TUPLES,
    TRUE_FALSE,
    describe_dtype,
    get_test_dims,
    id_formatter,
)
Tim Dettmers's avatar
Tim Dettmers committed
19

Ruff's avatar
Ruff committed
20
torch.set_printoptions(precision=5, sci_mode=False, linewidth=120, edgeitems=20, threshold=10000)
Tim Dettmers's avatar
Tim Dettmers committed
21
22
k = 20

23

Tim Dettmers's avatar
Tim Dettmers committed
24
def assert_all_approx_close(a, b, rtol=1e-3, atol=1e-3, count=0, throw=True):
25
    idx = torch.isclose(a, b, rtol=rtol, atol=atol)
26
    sumval = (idx == 0).sum().item()
Tim Dettmers's avatar
Tim Dettmers committed
27
    if sumval > count:
Tim Dettmers's avatar
Tim Dettmers committed
28
29
        if throw:
            print(f"Too many values not close: assert {sumval} < {count}")
30
            torch.testing.assert_close(a, b, rtol=rtol, atol=atol)
Tim Dettmers's avatar
Tim Dettmers committed
31
32

    return sumval
Tim Dettmers's avatar
Tim Dettmers committed
33

34

Tim Dettmers's avatar
Tim Dettmers committed
35
36
class FFN(torch.nn.Module):
    def __init__(self, input_features, hidden_size, bias=True):
37
        super().__init__()
Tim Dettmers's avatar
Tim Dettmers committed
38
39
40
41
42
43
44
45
46
47
48
49
        self.fc1 = torch.nn.Linear(input_features, hidden_size, bias=bias)
        self.fc2 = torch.nn.Linear(hidden_size, input_features, bias=bias)

        with torch.no_grad():
            torch.nn.init.xavier_uniform_(self.fc1.weight)
            torch.nn.init.xavier_uniform_(self.fc2.weight)

    def forward(self, x):
        x = torch.relu(self.fc1(x))
        x = self.fc2(x)
        return x

50

51
class Timer:
Tim Dettmers's avatar
Tim Dettmers committed
52
53
54
55
56
    def __init__(self):
        self.starts = {}
        self.ends = {}
        self.agg = {}

57
    def tick(self, name="default"):
Tim Dettmers's avatar
Tim Dettmers committed
58
59
60
61
62
63
64
        if name not in self.starts:
            self.starts[name] = torch.cuda.Event(enable_timing=True)
            self.ends[name] = torch.cuda.Event(enable_timing=True)
            self.starts[name].record()
        else:
            ms = self.tock(name, evict=True, print_ms=False)

65
    def tock(self, name="default", evict=True, print_ms=True):
Tim Dettmers's avatar
Tim Dettmers committed
66
67
68
69
        if name in self.ends:
            self.ends[name].record()
            torch.cuda.synchronize()
            ms = self.starts[name].elapsed_time(self.ends[name])
70
71
            if name not in self.agg:
                self.agg[name] = 0.0
Tim Dettmers's avatar
Tim Dettmers committed
72
73
74
75
76
77
            self.agg[name] += ms
            if evict:
                self.starts.pop(name)
                self.ends.pop(name)

        if print_ms and name in self.agg:
78
            print(f"{name} took: {self.agg[name] / 1000.0:.5f}s")
Tim Dettmers's avatar
Tim Dettmers committed
79
80
81
82

        return self.agg[name]

    def reset(self):
83
        self.starts = {}
Tim Dettmers's avatar
Tim Dettmers committed
84
85
        self.ends = {}
        self.agg = {}
86
87
        print("Resetting benchmark data")

Tim Dettmers's avatar
Tim Dettmers committed
88

89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
class Test8BitBlockwiseQuantizeFunctional:
    @pytest.mark.parametrize("dtype", [torch.float32, torch.float16, torch.bfloat16], ids=describe_dtype)
    @pytest.mark.parametrize("nested", TRUE_FALSE, ids=id_formatter("nested"))
    @pytest.mark.parametrize("blocksize", [4096, 2048, 1024, 512, 256, 128, 64])
    @pytest.mark.parametrize("signed", TRUE_FALSE, ids=id_formatter("signed"))
    def test_dynamic_blockwise_quantization(self, dtype, nested, blocksize, signed):
        diffs = []
        reldiffs = []
        for i in range(100):
            A1 = torch.randn(1024, 1024, device="cuda", dtype=dtype)
            C, S = F.quantize_blockwise(A1, blocksize=blocksize, nested=nested)
            A2 = F.dequantize_blockwise(C, S)
            diff = torch.abs(A1 - A2).float()
            reldiff = diff / torch.abs(A1.float() + 1e-8)
            diffs.append(diff.mean().item())
            reldiffs.append(reldiff.mean().item())
        abserr = sum(diffs) / len(diffs)
        relerr = sum(reldiffs) / len(reldiffs)
        # print('nested=', nested, 'randn', blocksize, 'dtype', dtype, sum(diffs)/len(diffs))
        # print('nested=', nested, 'randn', blocksize, 'dtype', dtype, sum(reldiffs)/len(reldiffs))
        assert abserr < 0.011
        assert relerr < 0.018
        assert A2.dtype == dtype

        diffs = []
        code = F.create_dynamic_map(signed=signed)
        for i in range(100):
            A1 = torch.rand(1024, 1024, device="cuda", dtype=dtype)
            C, S = F.quantize_blockwise(A1, blocksize=blocksize, nested=nested, code=code)
            A2 = F.dequantize_blockwise(C, S)
            diff = torch.abs(A1 - A2).float()
            reldiff = diff / torch.abs(A1.float() + 1e-8)
            diffs.append(diff.mean().item())
            reldiffs.append(reldiff.mean().item())
            # torch.testing.assert_close(A1, A2, atol=1e-2, rtol=0)
        abserr = sum(diffs) / len(diffs)
        relerr = sum(reldiffs) / len(reldiffs)
        if signed:
            assert abserr < 0.0035
            assert relerr < 0.015
        else:
            assert abserr < 0.00175
            assert relerr < 0.012
        assert A2.dtype == dtype
        # print('signed=', signed, 'nested=', nested, 'rand', blocksize, sum(diffs)/len(diffs))
        # print('signed=', signed, 'nested=', nested, 'rand', blocksize, sum(reldiffs)/len(reldiffs))

    def test_blockwise_cpu_large(self):
        diffs = []
        reldiffs = []
        batch = 128
        seq = 128
        for hidden in [128]:  # , 14336]:
            for blocksize in [4096, 16384]:
                for i in range(2):
                    A1 = torch.randn(batch, seq, hidden, device="cpu")
                    t0 = time.time()
                    C, S = F.quantize_blockwise(A1, blocksize=blocksize)
                    A2 = F.dequantize_blockwise(C, S, blocksize=blocksize)
                    print(time.time() - t0)
                    diff = torch.abs(A1 - A2)
                    reldiff = diff / torch.abs(A1 + 1e-8)
                    diffs.append(diff.mean().item())
                    reldiffs.append(reldiff.mean().item())
                    assert diffs[-1] < 0.011
                # print(sum(diffs)/len(diffs))
                # print(sum(reldiffs)/len(reldiffs))

    @pytest.mark.parametrize("bits", range(2, 9), ids=id_formatter("bits"))
    @pytest.mark.parametrize("method", ["linear", "fp8", "dynamic", "quantile"])
    def test_few_bit_quant(self, bits, method):
        abserrs = []
        relerrs = []
        code = None
        if method == "linear":
            code = F.create_linear_map(True, total_bits=bits).cuda()
        elif method == "fp8":
            ebits = math.ceil(bits / 2)
            pbits = bits - ebits - 1
            code = F.create_fp8_map(True, ebits, pbits, bits).cuda()
        elif method == "dynamic":
            code = F.create_dynamic_map(True, bits - 0, bits).cuda()
        elif method == "quantile":
            values = torch.randn(2048, 2048, device="cuda")
            code = F.create_quantile_map(values, bits).cuda()
        # for some data types we have no zero
        # for some data types we have one zero
        # for some data types we have two zeros
        assert torch.unique(code).numel() in [2**bits, 2**bits - 1], f"bits: {bits}, method: {method}"
        # print(method, (code==0).sum())
        assert code.numel() == 256
        for i in range(10):
            values = torch.randn(1, 32, device="cuda")
            values /= values.abs().max()
            # values[values.abs() < 1e-6] += 1e-5

            q1 = []
            v1 = []
            for v in values[0]:
                idx = torch.abs(v - code).argmin()
                q1.append(idx.item())
                v1.append(code[idx].item())

            q1 = torch.Tensor(q1).cuda()
            v1 = torch.Tensor(v1).cuda()

            q2, S2 = F.quantize_blockwise(values, code=code)
            v2 = F.dequantize_blockwise(q2, S2)

            idx = torch.isclose(q1.int(), q2.int())
            err2 = torch.abs(v2 - values)
            abserrs.append(err2.mean().item())
            relerrs.append((err2 / (1e-10 + values).abs()).mean().item())
            if idx.sum():
                # some weird cases
                err1 = torch.abs(v1 - values).mean()
                # assert err2.mean() <= err1
            else:
                torch.testing.assert_close(q1, q2)

    def test_fp8_quant(self):
        for e_bits in range(1, 7):
            p_bits = 7 - e_bits
            code = F.create_fp8_map(True, e_bits, p_bits).cuda()

            abserr = []
            relerr = []
            for i in range(100):
                A1 = torch.randn(1024, 1024, device="cuda")
                C, SC = F.quantize_blockwise(A1, code=code)
                A2 = F.dequantize_blockwise(C, SC)
                diff = torch.abs(A1 - A2)
                reldiff = diff / torch.abs(A1 + 1e-8)
                abserr.append(diff.mean().item())
                relerr.append(reldiff.mean().item())
                # assert diff < 0.0075
            # print(sum(abserr)/len(abserr))
            # print(sum(relerr)/len(relerr))

            abserr = []
            relerr = []
            for i in range(100):
                A1 = torch.rand(1024, 1024, device="cuda")
                C, SC = F.quantize_blockwise(A1, code=code)
                A2 = F.dequantize_blockwise(C, SC)
                diff = torch.abs(A1 - A2)
                reldiff = diff / torch.abs(A1 + 1e-8)
                abserr.append(diff.mean().item())
                relerr.append(reldiff.mean().item())
                # assert diff < 0.0075
            # print(sum(abserr)/len(abserr))
            # print(sum(relerr)/len(relerr))

            abserr = []
            relerr = []
            for i in range(100):
                A1 = torch.randn(1024, 1024, device="cuda")
                C, SC = F.quantize_blockwise(A1)
                A2 = F.dequantize_blockwise(C, SC)
                diff = torch.abs(A1 - A2)
                reldiff = diff / torch.abs(A1 + 1e-8)
                abserr.append(diff.mean().item())
                relerr.append(reldiff.mean().item())
                # assert diff < 0.0075
            # print(3, sum(abserr)/len(abserr))
            # print(3, sum(relerr)/len(relerr))

    @pytest.mark.benchmark
    def test_bench_dequantization(self):
        a = torch.rand(1024, 1024, device="cuda").half()
        code = F.create_fp8_map(True, 3, 0, 4).cuda()
        qa, SA = F.quantize_blockwise(a, code=code)
        print(qa.max())

        max_theoretical_mu = 1024 * 1024 * 2 / 1024**3 / 672 * 1000 * 1000
        # print(max_theoretical_mu)

        torch.cuda.synchronize()
        t0 = time.time()
        for i in range(100):
            qa, SA = F.quantize_blockwise(a)
        torch.cuda.synchronize()
        # print((time.time()-t0)/1e6)
Tim Dettmers's avatar
Tim Dettmers committed
272
273


274
275
276
def test_stable_embedding():
    layer = bnb.nn.StableEmbedding(1024, 1024)
    layer.reset_parameters()
Tim Dettmers's avatar
Tim Dettmers committed
277
278


Tim Dettmers's avatar
Tim Dettmers committed
279
280
def quant(x):
    max1 = torch.abs(x).max()
281
    x = torch.round(x / max1 * 127)
Tim Dettmers's avatar
Tim Dettmers committed
282
283
    return max1, x.to(torch.int8)

284

Tim Dettmers's avatar
Tim Dettmers committed
285
def dequant(c, maxC):
286
287
    return c.float() * (maxC / 127)

Tim Dettmers's avatar
Tim Dettmers committed
288
289

def mm_dequant(maxA, maxB, C):
290
291
    return C.float() * (maxA / 127) * (maxB / 127)

Tim Dettmers's avatar
Tim Dettmers committed
292
293
294

def quant_multi(x, dim):
    max1 = torch.amax(torch.abs(x), dim=dim, keepdim=True)
295
296
    max1[max1 == 0] = 1.0
    x = torch.round(x / max1 * 127)
Tim Dettmers's avatar
Tim Dettmers committed
297
298
    return max1, x.to(torch.int8)

299

Tim Dettmers's avatar
Tim Dettmers committed
300
def quant_multi_chunk(x, dim, chunk_size=32):
301
302
303
    if dim == 1:
        x_chunked = einops.rearrange(x, "(c a) b -> c a b", c=chunk_size)
        max1 = torch.amax(torch.abs(x_chunked), dim=dim + 1, keepdim=True)
Tim Dettmers's avatar
Tim Dettmers committed
304
305
        max1 = torch.tile(max1, (1, 1, x.shape[1]))
        max1 = max1.view(x.shape)
306
307
    elif dim == 0:
        x_chunked = einops.rearrange(x, "a (b c) -> a b c", c=chunk_size)
Tim Dettmers's avatar
Tim Dettmers committed
308
309
310
        max1 = torch.amax(torch.abs(x_chunked), dim=dim, keepdim=True)
        max1 = torch.tile(max1, (x.shape[0], 1, 1))
        max1 = max1.view(x.shape)
311
312
    max1[max1 == 0] = 1.0
    x = torch.round(x / max1 * 127)
Tim Dettmers's avatar
Tim Dettmers committed
313
314
    return max1, x.to(torch.int8)

315

Tim Dettmers's avatar
Tim Dettmers committed
316
def mean(xx):
317
318
    return sum(xx) / float(len(xx))

Tim Dettmers's avatar
Tim Dettmers committed
319

Aarni Koskela's avatar
Aarni Koskela committed
320
321
methods = {
    "linear": (
322
323
324
325
326
        lambda x, dim: quant(x),
        lambda x, dim: quant(x),
        dequant,
        dequant,
        mm_dequant,
Aarni Koskela's avatar
Aarni Koskela committed
327
328
329
    ),
    "vectorwise": (quant_multi, quant_multi, dequant, dequant, mm_dequant),
}
330
331


332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
class TestIGEMMFunctional:
    @pytest.mark.parametrize("dim1", [1024 * 2], ids=id_formatter("dim1"))
    @pytest.mark.parametrize("dim2", [1024 * 16], ids=id_formatter("dim2"))
    @pytest.mark.parametrize("quant_methods", methods.values(), ids=methods.keys())
    @pytest.mark.parametrize("batched", TRUE_FALSE, ids=id_formatter("batched"))
    def test_approx_igemm(self, dim1, dim2, quant_methods, batched):
        dim1 = dim1 - (dim1 % 32)
        dim2 = dim2 - (dim2 % 32)
        errors = []
        relerrors = []
        # print("")
        for i in range(5):
            if batched:
                A = torch.normal(0, 0.5, size=(32, dim1, dim2 // 32), device="cuda")
                B = torch.normal(0, 0.5, size=(32, dim2 // 32, dim1), device="cuda")
                maxA, Ac = quant_methods[0](A, 2)
                maxB, Bc = quant_methods[1](B, 1)
            else:
                A = torch.normal(0, 0.5, size=(dim1, dim2), device="cuda")
                B = torch.normal(0, 0.5, size=(dim2, dim1), device="cuda")
                maxA, Ac = quant_methods[0](A, 1)
                maxB, Bc = quant_methods[1](B, 0)
            torch.testing.assert_close(quant_methods[2](maxA, Ac), A, atol=0.025, rtol=0.05)
            if batched:
                out2 = torch.bmm(A, B)
                C = torch.bmm(Ac.float(), Bc.float())
            else:
                out2 = torch.mm(A, B)
                C = F.igemm(Ac, Bc)
            out = quant_methods[4](maxA, maxB, C)
            std = out2.std()
            out /= std
            out2 /= std
            err = torch.abs(out - out2)
            relerr = err / torch.abs(out2)
            errors.append(err.mean().item())
            relerrors.append(relerr.mean().item())
        # print(mean(errors))
        # print(mean(relerrors))

    @pytest.mark.parametrize("hidden_dim", get_test_dims(32, 256, n=2), ids=id_formatter("hidden_dim"))
    @pytest.mark.parametrize("batch_dim", get_test_dims(16, 256, n=2), ids=id_formatter("batch_dim"))
    @pytest.mark.parametrize("seq_dim", get_test_dims(16, 256, n=2), ids=id_formatter("seq_dim"))
    @pytest.mark.parametrize("transpose", BOOLEAN_TUPLES, ids=id_formatter("transpose"))
    def test_igemm(self, hidden_dim, batch_dim, transpose, seq_dim):
        hidden_dim = hidden_dim - (hidden_dim % 32)
        batch_dim = batch_dim - (batch_dim % 16)
        seq_dim = seq_dim - (seq_dim % 16)
        for i in range(k):
            shapeA = (batch_dim, hidden_dim) if not transpose[0] else (hidden_dim, batch_dim)
            shapeB = (
                (32 * random.randint(1, 4), hidden_dim) if transpose[1] else (hidden_dim, 32 * random.randint(1, 4))
            )
            A = torch.randint(-128, 127, size=shapeA, device="cuda").to(torch.int8)
            B = torch.randint(-128, 127, size=shapeB, device="cuda").to(torch.int8)
            if not transpose[0] and not transpose[1]:
                out2 = torch.matmul(A.float(), B.float())
                out = F.igemm(A, B)
            elif not transpose[0] and transpose[1]:
                out2 = torch.matmul(A.float(), B.t().float())
                out = F.igemm(A, B.t())
            elif transpose[0] and not transpose[1]:
                out2 = torch.matmul(A.t().float(), B.float())
                out = F.igemm(A.t(), B)
            elif transpose[0] and transpose[1]:
                out2 = torch.matmul(A.t().float(), B.t().float())
                out = F.igemm(A.t(), B.t())

            torch.testing.assert_close(out.float(), out2)

        for i in range(k):
            shapeA = (batch_dim, seq_dim, hidden_dim)
            shapeB = (
                (32 * random.randint(1, 4), hidden_dim) if transpose[1] else (hidden_dim, 32 * random.randint(1, 4))
            )
            A = torch.randint(-128, 127, size=shapeA, device="cuda").to(torch.int8)
            B = torch.randint(-128, 127, size=shapeB, device="cuda").to(torch.int8)
            if not transpose[0] and not transpose[1]:
                out2 = torch.matmul(A.float(), B.float())
                out = F.igemm(A, B)
            elif not transpose[0] and transpose[1]:
                out2 = torch.matmul(A.float(), B.t().float())
                out = F.igemm(A, B.t())

            torch.testing.assert_close(out.float(), out2)

    @pytest.mark.parametrize("seq_dim", get_test_dims(32, 512, n=3), ids=id_formatter("seq_dim"))
    @pytest.mark.parametrize("hidden_dim", get_test_dims(32, 1024 * 4, n=3), ids=id_formatter("hidden_dim"))
    @pytest.mark.parametrize("batch_dim", get_test_dims(2, 16, n=3), ids=id_formatter("batch_dim"))
    def test_dim3_igemm(self, seq_dim, hidden_dim, batch_dim):
        seq_dim = seq_dim - (seq_dim % 32)
        hidden_dim = hidden_dim - (hidden_dim % 32)
        batch_dim = batch_dim - (batch_dim % 2)
        for i in range(25):
            A = torch.randint(-128, 127, size=(batch_dim, seq_dim, hidden_dim), device="cuda").to(torch.int8)
            B = torch.randint(-128, 127, size=(batch_dim, seq_dim, 1024), device="cuda").to(torch.int8)
            out2 = torch.einsum("bsi, bso->io", A.float(), B.float())
            iout = torch.empty(A.shape[2], B.shape[2], dtype=torch.int32, device=A.device)
            out = F.igemm(A, B, out=iout)

            torch.testing.assert_close(out.float(), out2)

    @pytest.mark.parametrize("seq_dim", get_test_dims(32, 512, n=2), ids=id_formatter("seq_dim"))
    @pytest.mark.parametrize("hidden_dim", get_test_dims(32, 1024 * 4, n=2), ids=id_formatter("hidden_dim"))
    @pytest.mark.parametrize("batch_dim", get_test_dims(2, 16, n=2), ids=id_formatter("batch_dim"))
    @pytest.mark.parametrize("transpose", TRUE_FALSE, ids=id_formatter("transpose"))
    def test_minmax_igemm(self, seq_dim, hidden_dim, batch_dim, transpose):
        def min_max(x):
            maxA = torch.amax(x, dim=2, keepdim=True)
            minA = torch.amin(x, dim=2, keepdim=True)
            scale = (maxA - minA) / 2.0
            return (127 * (x - minA - scale) / scale).to(torch.int8), minA, scale

        seq_dim = seq_dim - (seq_dim % 16)
        hidden_dim = hidden_dim - (hidden_dim % 16)
        batch_dim = batch_dim - (batch_dim % 2)
        errs = []
        relerrs = []
        errs2 = []
        relerrs2 = []
        for i in range(k):
            A = torch.normal(0.0, 0.5, size=(batch_dim, seq_dim, hidden_dim), device="cuda")
            if transpose:
                B = torch.normal(0, 0.5, size=(256, hidden_dim), device="cuda")
            else:
                B = torch.normal(0, 0.5, size=(hidden_dim, 256), device="cuda")
            Ac, minA, scale = min_max(A)
            if transpose:
                maxB, Bc = quant_multi(B, dim=(1 if transpose else 0))
                out = F.igemm(Ac, Bc.t())
                out2 = torch.matmul(A, B.t())
                offset = B.t().sum(0) * (minA + scale)
                out = out.float()
                out = (out * maxB.t() * scale / (127 * 127)) + offset

                maxA, Ac = quant_multi(A, dim=2)
                out3 = F.igemm(Ac, Bc.t())
                out3 = mm_dequant(maxA, maxB.t(), out3)
            else:
                maxB, Bc = quant_multi(B, dim=0)
                offset = B.sum(0) * (minA + scale)
                out = F.igemm(Ac, Bc)
                out2 = torch.matmul(A, B)
                out = out.float()
                out = (out * maxB * scale / (127 * 127)) + offset

                maxA, Ac = quant_multi(A, dim=2)
                out3 = F.igemm(Ac, Bc)
                out3 = mm_dequant(maxA, maxB, out3)

            std = out2.std()
            out2 /= std
            out /= std
            out3 /= std

            err = torch.abs(out - out2)
            relerr = err / (torch.abs(out2) + 1e-7)

            err2 = torch.abs(out3 - out2)
            relerr2 = err2 / (torch.abs(out2) + 1e-7)

            errs.append(err.mean().item())
            relerrs.append(relerr.mean().item())
            errs2.append(err2.mean().item())
            relerrs2.append(relerr2.mean().item())
        # print(mean(errs))
        # print(mean(relerrs))
        # print(mean(errs2))
        # print(mean(relerrs2))
        assert mean(errs) < 0.015
        assert mean(relerrs) < 0.3

    @pytest.mark.parametrize("dim1", get_test_dims(1, 64, n=2), ids=id_formatter("dim1"))
    @pytest.mark.parametrize("dim2", get_test_dims(32, 128, n=2), ids=id_formatter("dim2"))
    @pytest.mark.parametrize("dim3", get_test_dims(32, 256, n=2), ids=id_formatter("dim3"))
    @pytest.mark.parametrize("dim4", get_test_dims(32, 256, n=2), ids=id_formatter("dim4"))
    @pytest.mark.parametrize("transpose", BOOLEAN_TUPLES, ids=id_formatter("transpose"))
    def test_ibmm(self, dim1, dim2, dim3, dim4, transpose):
        dim2 = dim2 - (dim2 % 16)
        dim3 = dim3 - (dim3 % 16)
        dim4 = dim4 - (dim4 % 16)
        for i in range(k):
            shapeA = (dim1, dim3, dim2) if transpose[0] else (dim1, dim2, dim3)
            shapeB = (dim1, dim4, dim3) if transpose[1] else (dim1, dim3, dim4)
            A = torch.randint(-128, 127, size=shapeA, device="cuda").to(torch.int8)
            B = torch.randint(-128, 127, size=shapeB, device="cuda").to(torch.int8)

            if not transpose[0] and not transpose[1]:
                out2 = torch.bmm(A.float(), B.float())
                out = F.igemm(A, B)
            elif not transpose[0] and transpose[1]:
                out2 = torch.bmm(A.float(), B.permute([0, 2, 1]).float())
                out = F.igemm(A, B.permute([0, 2, 1]))
            elif transpose[0] and not transpose[1]:
                out2 = torch.bmm(A.permute([0, 2, 1]).float(), B.float())
                out = F.igemm(A.permute([0, 2, 1]), B)
            elif transpose[0] and transpose[1]:
                out2 = torch.bmm(A.permute([0, 2, 1]).float(), B.permute([0, 2, 1]).float())
                out = F.igemm(A.permute([0, 2, 1]), B.permute([0, 2, 1]))
            torch.testing.assert_close(out.float(), out2.float())


class TestLLMInt8Functional:
    @pytest.mark.parametrize("dim1", [128], ids=id_formatter("dim1"))
    @pytest.mark.parametrize("dim2", [256], ids=id_formatter("dim2"))
    @pytest.mark.parametrize("dim3", [499, 512], ids=id_formatter("dim3"))
    @pytest.mark.parametrize("dim4", [512], ids=id_formatter("dim4"))
    @pytest.mark.parametrize("dims", (2, 3), ids=id_formatter("dims"))
    @pytest.mark.parametrize("ldb", (0,), ids=id_formatter("ldb"))
    def test_int8_linear_matmul(self, dim1, dim2, dim3, dim4, dims, ldb):
        for i in range(k):
            if dims == 2:
                A = torch.randint(-128, 127, size=(dim1, dim3), device="cuda").to(torch.int8)
            elif dims == 3:
                A = torch.randint(-128, 127, size=(dim1, dim2, dim3), device="cuda").to(torch.int8)
            B = torch.randint(-128, 127, size=(dim4, dim3), device="cuda").to(torch.int8)
            C1 = torch.matmul(A.float(), B.t().float())

            C2 = F.int8_linear_matmul(A, B)
            torch.testing.assert_close(C1, C2.float())

    @pytest.mark.parametrize("dim1", [32], ids=id_formatter("dim1"))
    @pytest.mark.parametrize("dim2", [32], ids=id_formatter("dim2"))
    @pytest.mark.parametrize("dim3", [32], ids=id_formatter("dim3"))
    @pytest.mark.parametrize("dim4", [32], ids=id_formatter("dim4"))
    @pytest.mark.parametrize("dims", (2,), ids=id_formatter("dims"))
    def test_int8_linear_matmul_half(self, dim1, dim2, dim3, dim4, dims):
        for i in range(k):
            if dims == 2:
                A = torch.normal(0, 0.5, size=(dim1, dim3), device="cuda").half()
            elif dims == 3:
                A = torch.normal(0, 0.5, size=(dim1, dim2, dim3), device="cuda").half()
            B = torch.randn((dim4, dim3), device="cuda").half()
            torch.nn.init.xavier_uniform_(B)
            C1 = torch.matmul(A, B.t())

            A = A.view(-1, A.shape[-1])

            CA, _, statsA, _, _ = F.int8_double_quant(A)
            CB, statsB, _ = F.int8_vectorwise_quant(B)
            output = F.int8_mm_dequant(F.int8_linear_matmul(CA, CB), statsA, statsB)

            torch.testing.assert_close(C1.view(-1, C1.shape[-1]), output, atol=0.025, rtol=0.05)

    @pytest.mark.parametrize("dim1", (64, 256), ids=id_formatter("dim1"))
    @pytest.mark.parametrize("dim4", (64, 1024), ids=id_formatter("dim4"))
    @pytest.mark.parametrize("dims", (2,), ids=id_formatter("dims"))
    @pytest.mark.parametrize("has_bias", TRUE_FALSE, ids=id_formatter("has_bias"))
    def test_dequant_mm(self, dim1, dim4, dims, has_bias):
        inner = 128
        bias = None
Ruff's avatar
Ruff committed
583
        if has_bias:
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
            bias = torch.randn(dim4, device="cuda", dtype=torch.float16)

        for i in range(1):
            A = torch.randn(dim1, inner, device="cuda")
            B = torch.randn(dim4, inner, device="cuda")
            C1 = torch.matmul(A.half(), B.t().half())
            if has_bias:
                C1 += bias

            A1, maxA = F.vectorwise_quant(A, dim=1)
            B1, maxB = F.vectorwise_quant(B, dim=1)

            C2 = F.int8_linear_matmul(A1, B1)

            C4 = F.vectorwise_mm_dequant(C2.float(), maxA, maxB.t())
            if has_bias:
                C4 += bias

            # TODO: is something wrong here? If so, the problem goes deeper
            # n = C1.numel()
            # p = 0.06
            std = C1.std(0).view(1, -1)
            C1 /= std
            C4 /= std
            # assert_all_approx_close(C1, C4, atol=0.02, rtol=0.1, count=int(n*0.06))
            # assert (count / n < p), f"error in more than {p} of elements: {count}/{n}={count/n}"

            C5 = F.int8_mm_dequant(C2, maxA, maxB, bias=bias)
            C5 /= std
            torch.testing.assert_close(C5, C4, atol=0.015, rtol=0.1)
            n = C5.numel()
            assert_all_approx_close(C1, C4, atol=0.015, rtol=0.1, count=int(0.01 * n))

    @pytest.mark.parametrize("dim1", [1 * 1024], ids=id_formatter("dim1"))
    @pytest.mark.parametrize("dim2", [1 * 1024], ids=id_formatter("dim2"))
    @pytest.mark.parametrize("dims", (2,), ids=id_formatter("dims"))
    @pytest.mark.parametrize("threshold", [0.0, 3.0], ids=id_formatter("decomp"))
    def test_colrow_absmax(self, dim1, dim2, dims, threshold):
        for i in range(k):
            A = torch.randn(dim1, dim2, device="cuda").half()

            assert dims == 2

            row_stats1, _ = torch.abs(A.float()).max(1)
            col_stats1, _ = torch.abs(A.float()).max(0)

            if threshold > 0.0:
                A_truncated = A.clone()
                A_truncated[torch.abs(A_truncated) >= threshold] = 0.0
                row_stats1_trunc, _ = torch.abs(A_truncated.float()).max(1)
                col_stats1_trunc, _ = torch.abs(A_truncated.float()).max(0)

                row_stats2, col_stats2, nnz_block_ptr2 = F.get_colrow_absmax(A, threshold=threshold)

                nnz_rows1_counts = (torch.abs(A) >= threshold).sum(1).flatten()
                nnz_block_ptr1 = torch.zeros(
                    nnz_rows1_counts.shape[0] + 1,
                    dtype=nnz_rows1_counts.dtype,
                    device=nnz_rows1_counts.device,
                )
                nnz_block_ptr1[1:] = nnz_rows1_counts.cumsum(0)

                torch.testing.assert_close(col_stats1_trunc, col_stats2)
                torch.testing.assert_close(row_stats1_trunc, row_stats2)
                # torch.testing.assert_close(nnz_block_ptr1, nnz_block_ptr2)
            else:
                row_stats2, col_stats2, nnz_block_ptr2 = F.get_colrow_absmax(A, threshold=0.0)
                assert nnz_block_ptr2 is None
                torch.testing.assert_close(col_stats1, col_stats2)
                torch.testing.assert_close(row_stats1, row_stats2)

    @pytest.mark.parametrize("dim1", [2048, 4096], ids=id_formatter("dim1"))
    @pytest.mark.parametrize("dim2", [512, 1024], ids=id_formatter("dim2"))
    def test_int8_double_quant(self, dim1, dim2):
        for i in range(k):
            A = torch.randn(dim1, dim2, device="cuda").half()
            out_col1, Scol = F.vectorwise_quant(A, dim=0)
            out_row1, Srow = F.vectorwise_quant(A, dim=1)

            CA, CAt, statsA, statsAt, _ = F.int8_double_quant(A)

            # max difference is 1 due to rounding differences
            torch.testing.assert_close(CA, out_row1, atol=1, rtol=0)
            torch.testing.assert_close(CAt, out_col1, atol=1, rtol=0)

            n = CAt.numel()
            num_not_close_rows = (torch.isclose(CA, out_row1, atol=1) == 0).sum().item()
            num_not_close_cols = (torch.isclose(CAt, out_col1, atol=1) == 0).sum().item()

            # allow for 1:500 error due to rounding differences
            min_error = 1 / 500
            if num_not_close_cols > (min_error * n):
                print(
677
                    f"Min error exceeded {num_not_close_cols} elements are different. Error: {num_not_close_cols / n:.4f}"
678
679
680
681
                )
                assert False
            if num_not_close_rows > (min_error * n):
                print(
682
                    f"Min error exceeded {num_not_close_rows} elements are different. Error: {num_not_close_rows / n:.4f}"
683
684
685
686
687
688
689
690
691
692
693
694
695
696
                )
                assert False

            torch.testing.assert_close(Srow.flatten().float(), statsA)
            torch.testing.assert_close(Scol.flatten().float(), statsAt)

    @pytest.mark.parametrize(
        ("dim1", "dim4", "inner"),
        (
            pytest.param(dim1, dim4, inner, id=f"{dim1=},{dim4=},{inner=}")
            for (dim1, dim4, inner) in zip(
                (1, 8, 2048, 4096),
                (2, 128, 2048, 4096),
                (4, 256, 512, 4096),
697
            )
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
        ),
    )
    def test_integrated_int8_linear_matmul(self, dim1, dim4, inner):
        for i in range(k):
            A = torch.randn(dim1, inner, device="cuda").half()
            B = torch.randn(dim4, inner, device="cuda").half()

            out1 = torch.matmul(A.half(), B.t().half())

            C1a, stats1a, _ = F.int8_vectorwise_quant(A)
            C2a, stats2a, _ = F.int8_vectorwise_quant(B)
            A1, maxA = F.vectorwise_quant(A, dim=1)
            B1, maxB = F.vectorwise_quant(B, dim=1)

            torch.testing.assert_close(maxA.flatten().float(), stats1a)
            torch.testing.assert_close(maxB.flatten().float(), stats2a)
            torch.testing.assert_close(C1a, A1, rtol=0, atol=1)
            torch.testing.assert_close(C2a, B1, rtol=0, atol=1)

            out2 = F.int8_linear_matmul(A1, B1)

            C2 = F.int8_linear_matmul(A1, B1)

            out3 = F.vectorwise_mm_dequant(C2.float(), maxA, maxB.t())

            err1 = torch.abs(out1 - out2).mean().item()
            err2 = torch.abs(out1 - out3).mean().item()
            assert err2 <= err1 * 1.025

    @pytest.mark.parametrize("dim1", [512, 2048], ids=id_formatter("dim1"))
    @pytest.mark.parametrize("dim2", [1024, 4096], ids=id_formatter("dim2"))
    def test_coo_double_quant(self, dim1, dim2):
        threshold = 2.00
        for i in range(k):
            A = torch.randn(dim1, dim2, device="cuda").half()

            idx = torch.abs(A) >= threshold
            CA, statsA, outlier_cols = F.int8_vectorwise_quant(A, threshold=threshold)

            if outlier_cols is not None:
                A1 = A * idx
                A2 = torch.zeros_like(A) + A1
                torch.testing.assert_close(A1, A2)

                A[:, outlier_cols] = 0
                A2 = (CA.float() * statsA.unsqueeze(1) / 127).half()
                torch.testing.assert_close(A, A2, rtol=0.05, atol=1.5e-2)

    @pytest.mark.parametrize("dim1", [512, 2048], ids=id_formatter("dim1"))
    @pytest.mark.parametrize("dim2", [1024, 4096], ids=id_formatter("dim2"))
    def test_coo_int8_vectorwise_quant(self, dim1, dim2):
        threshold = 3.00
        for i in range(k):
            A = torch.randn(dim1, dim2, device="cuda").half()

            idx = torch.abs(A) >= threshold
            CA, statsA, outlier_cols = F.int8_vectorwise_quant(A, threshold=threshold)

            if outlier_cols is not None:
                A2 = (CA.float() * statsA.unsqueeze(1) / 127).half()
                A[:, outlier_cols] = 0
                torch.testing.assert_close(A * (idx == 0), A2, rtol=0.05, atol=1.5e-2)


class TestSpMMFunctional:
    @pytest.mark.parametrize("dim1", get_test_dims(1, 1 * 1024, n=2), ids=id_formatter("dim1"))
    @pytest.mark.parametrize("dim2", get_test_dims(1, 1 * 1024, n=2), ids=id_formatter("dim2"))
    @pytest.mark.parametrize("transposed_B", TRUE_FALSE, ids=id_formatter("transposed_B"))
    def test_spmm_coo(self, dim1, dim2, transposed_B):
        threshold = 1.5
        dim3 = torch.randint(32, 128, size=(1,)).item()
        # dim3 = 17
        for i in range(k):
            A = torch.randn(dim1, dim2).cuda().half()
            if transposed_B:
                B = torch.randn(dim3, dim2).cuda().half()
            else:
                B = torch.randn(dim2, dim3).cuda().half()

            idx = torch.abs(A) >= threshold
            nnz = (idx == 1).sum().item()
            rows, cols = torch.where(idx)
            values = A[idx]
            cooA = F.COOSparseTensor(A.shape[0], A.shape[1], nnz, rows.int(), cols.int(), values)
            A2 = A * idx

            if transposed_B:
                out2 = F.spmm_coo(cooA, B.t())
                out1 = torch.matmul(A2, B.t())
            else:
                out2 = F.spmm_coo(cooA, B)
                out1 = torch.matmul(A2, B)

            assert_all_approx_close(out1, out2, rtol=0.01, atol=3.0e-2, count=30)

    @pytest.mark.benchmark
    def test_spmm_bench(self):
        batch = 2
        model = 1024 * 1
        hidden = model * 4
        seq = 1024
        dim1 = batch * seq
        dim2 = model
        dim3 = hidden
        threshold = 4
803
        A = torch.randn(dim1, dim2, device="cuda").half()
804
805
806
        B = torch.randn(dim2, dim3, device="cuda").half()
        for i in range(10):
            C1 = bnb.matmul(A, B.t())
Tim Dettmers's avatar
Tim Dettmers committed
807

808
809
810
811
812
813
        torch.cuda.synchronize()
        t0 = time.time()
        for i in range(k):
            C1 = bnb.matmul(A, B.t())
        torch.cuda.synchronize()
        t8 = time.time() - t0
Tim Dettmers's avatar
Tim Dettmers committed
814

815
816
817
818
819
820
        idx = torch.abs(A) >= threshold
        nnz = (idx == 1).sum().item()
        print(nnz / idx.numel())
        rows, cols = torch.where(idx)
        values = A[idx]
        cooA = F.COOSparseTensor(A.shape[0], A.shape[1], nnz, rows.int(), cols.int(), values)
Tim Dettmers's avatar
Tim Dettmers committed
821

822
823
        for i in range(10):
            out2 = F.spmm_coo(cooA, B)
Tim Dettmers's avatar
Tim Dettmers committed
824

825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
        torch.cuda.synchronize()
        t0 = time.time()
        for i in range(k):
            out2 = F.spmm_coo(cooA, B)
        torch.cuda.synchronize()
        tsp = time.time() - t0
        print(tsp, t8)
        print(tsp / t8)

    @pytest.mark.parametrize("dim1", [1 * 2048], ids=id_formatter("dim1"))
    @pytest.mark.parametrize("dim2", [12288], ids=id_formatter("dim2"))
    @pytest.mark.parametrize("dtype", [torch.float16], ids=describe_dtype)
    @pytest.mark.parametrize("out_func", ["zeros", "ones"], ids=id_formatter("out_func"))
    def test_spmm_coo_very_sparse(self, dim1, dim2, dtype, out_func):
        out_func = getattr(torch, out_func)

        threshold = 3.3
        # threshold = 2.8
        # threshold = 0.0
        A = torch.randn(dim1, dim2, device="cuda").half()
        if dtype == torch.float16:
            B = torch.randn(dim2, dim2 * 4, device="cuda").half()
            torch.nn.init.xavier_uniform_(B)
Tim Dettmers's avatar
Tim Dettmers committed
848
        else:
849
850
851
852
            B = torch.randn(dim2, dim2 * 4, device="cuda").half()
            torch.nn.init.xavier_uniform_(B)
            B, SB = F.vectorwise_quant(B, quant_type="linear")
            # B = torch.randint(-127, 127, size=(dim2, dim2*4), device='cuda').to(torch.int8)
Tim Dettmers's avatar
Tim Dettmers committed
853

854
855
856
857
858
859
860
861
862
863
864
865
        print("")
        idx = torch.abs(A) >= threshold
        nnz = (idx == 1).sum().item()
        rows, cols = torch.where(idx)
        values = A[idx]
        cooA = F.COOSparseTensor(A.shape[0], A.shape[1], nnz, rows.int(), cols.int(), values)
        A2 = A * idx
        out1 = torch.matmul(A2.half(), B.half())
        out = out_func(out1.shape, dtype=torch.float16, device=out1.device)
        out1 += out.clone()
        out2 = F.spmm_coo_very_sparse(cooA, B, out=out)
        # print(B)
866
867
        # print(out1)
        # print(out2)
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
        p = 200 / (2048 * 12288 * 4)
        n = out1.numel()
        count = math.ceil(p * n)
        std = out1.std()
        out1 /= std
        out2 /= std
        assert_all_approx_close(out1, out2.half(), rtol=0.01, atol=3.0e-2, count=count)
        # assert_all_approx_close(out1, out2.half(), rtol=0.05, atol=0.01, count=count)

        idx_col = torch.randint(0, A2.shape[-1], size=(15,))

        # torch.testing.assert_close(out1, out2.half(), rtol=0.05, atol=0.001)

        # Bt = torch.randn(dim2*4, dim2, device='cuda').half()
        # torch.cuda.synchronize()
        # t0 = time.time()
        # print(A2.shape, B.shape)
        # for i in range(100):
        #   #out3 = F.spmm_coo(cooA, Bt.t())
        #   #out2 = F.spmm_coo(cooA, B)
        #   #out2 = F.spmm_coo_very_sparse(cooA, B)
        #   #out1 = torch.matmul(A, Bt.t())

        # torch.cuda.synchronize()
        # print(time.time() - t0)

    @pytest.mark.parametrize("dim1", [256, 1024], ids=id_formatter("dim1"))
    @pytest.mark.parametrize("dim2", [256, 1024], ids=id_formatter("dim2"))
    @pytest.skip("No longer supported")
    def test_integrated_sparse_decomp(self, dim1, dim2):
        threshold = 3.0
        for _ in range(k):
            A = torch.randn(dim1, dim2).cuda().half()
            w1 = torch.randn(dim1, dim2).cuda().half()
            out1 = torch.matmul(A, w1.t())

            Cw1, statsw1, _ = F.int8_vectorwise_quant(w1)
            CA, statsA, _ = F.int8_vectorwise_quant(A)

            out1_32 = F.int8_linear_matmul(CA, Cw1)
            out2 = F.int8_mm_dequant(out1_32, statsA, statsw1)

            # CA, statsA, outlier_cols = F.int8_vectorwise_quant(A, threshold=threshold)
            CA, _, statsA, _, coo_tensor = F.double_quant(A, threshold=threshold)

            out1_32 = F.int8_linear_matmul(CA, Cw1)
            out3 = F.int8_mm_dequant(out1_32, statsA, statsw1)

            assert coo_tensor is not None

            out4 = F.spmm_coo(coo_tensor, w1.t())
            # idx = torch.unique(coo_tensor._indices()[1]).long()
            # out4 = torch.matmul(A, w1.t())
            out5 = out3 + out4

            err1 = torch.abs(out1 - out2).mean().item()
            err2 = torch.abs(out1 - out5).mean().item()
            assert err2 < err1

    @pytest.mark.parametrize("dim1", [1 * 2048])
    @pytest.mark.parametrize("dim2", [2048])
    @pytest.mark.parametrize("dtype", [torch.int8])
    def test_spmm_coo_dequant(self, dim1, dim2, dtype):
        threshold = 6.0
        # threshold = 2.8
        # threshold = 0.0
934
        A = torch.randn(dim1, dim2, device="cuda").half()
935
936
937
        B = torch.empty(dim2, dim2 * 4, device="cuda", dtype=torch.float16)
        torch.nn.init.xavier_uniform_(B)
        Bt = B.t().contiguous()
Tim Dettmers's avatar
Tim Dettmers committed
938

939
        CB, CBt, statsB, statsBt, coo_tensor = F.int8_double_quant(B)
940

941
        rowidx = torch.randint(0, A.shape[-1], size=(15,))
Tim Dettmers's avatar
Tim Dettmers committed
942

943
        A[:, rowidx] = 8.0
Tim Dettmers's avatar
Tim Dettmers committed
944
945
946
947
948

        idx = torch.abs(A) >= threshold
        nnz = (idx == 1).sum().item()
        rows, cols = torch.where(idx)
        values = A[idx]
Ruff's avatar
Ruff committed
949
        cooA = F.COOSparseTensor(A.shape[0], A.shape[1], nnz, rows.int(), cols.int(), values)
950
951
        A2 = A * idx
        out2 = F.spmm_coo_very_sparse(cooA, CBt, dequant_stats=statsBt)
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
        out1 = torch.matmul(A2, B.half())
        out3 = F.spmm_coo_very_sparse(cooA, CBt.half())
        out3 = out3 * statsBt.half() / 127

        values, counts = torch.unique(cooA.rowidx, return_counts=True)
        offset = counts.cumsum(0).int()
        max_count, max_idx = torch.sort(counts, descending=True)
        print(torch.median(max_count.float()))

        torch.testing.assert_close(out2, out3, rtol=0.05, atol=0.001)

        p = 200 / (2048 * 12288 * 4)
        n = out1.numel()
        count = math.ceil(p * n)
        assert_all_approx_close(out1, out2, rtol=0.01, atol=3.0e-2, count=count)

        # torch.cuda.synchronize()
        # t0 = time.time()
        # for i in range(100):
        #   out2 = F.spmm_coo_very_sparse(cooA, B)
        # torch.cuda.synchronize()
        # print('fp16', time.time() - t0)

        torch.cuda.synchronize()
        t0 = time.time()
        for i in range(100):
            out2 = F.spmm_coo(cooA, B)
        torch.cuda.synchronize()
        print("cusparse fp16", time.time() - t0)
981

982
983
984
985
986
987
        torch.cuda.synchronize()
        t0 = time.time()
        for i in range(100):
            out2 = F.spmm_coo_very_sparse(cooA, CBt)
        torch.cuda.synchronize()
        print("int8", time.time() - t0)
988

989
990
991
992
993
994
        torch.cuda.synchronize()
        t0 = time.time()
        for i in range(100):
            out2 = F.spmm_coo_very_sparse(cooA, CBt, dequant_stats=statsBt)
        torch.cuda.synchronize()
        print("int8+dequant", time.time() - t0)
995

996
997
998
999
1000
1001
        torch.cuda.synchronize()
        t0 = time.time()
        for i in range(100):
            out2 = torch.matmul(A, B)
        torch.cuda.synchronize()
        print("matmul", time.time() - t0)
1002

1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
        torch.cuda.synchronize()
        t0 = time.time()
        for i in range(100):
            out1 = bnb.matmul(A, Bt)
            out2 = F.spmm_coo_very_sparse(cooA, CBt, dequant_stats=statsBt)
            out = out1 + out2
        torch.cuda.synchronize()
        print("sparse+ matmul", time.time() - t0)

        torch.cuda.synchronize()
        t0 = time.time()
        for i in range(100):
            out1 = bnb.matmul(A, Bt)
            torch.matmul(A[:, rowidx], Bt.t()[rowidx], out=out1)
        torch.cuda.synchronize()
        print("partial matmul", time.time() - t0)
1019

1020
1021
1022
1023
1024
1025
        torch.cuda.synchronize()
        t0 = time.time()
        for i in range(100):
            out1 = bnb.matmul(A, Bt)
        torch.cuda.synchronize()
        print("partial matmul", time.time() - t0)
1026

1027

1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
class TestSparseTensorFunctional:
    def test_coo2csr(self):
        threshold = 1
        A = torch.randn(128, 128).half().cuda()
        idx = torch.abs(A) >= threshold
        nnz = (idx == 1).sum().item()
        rows, cols = torch.where(idx)
        values = A[idx]
        cooA = F.COOSparseTensor(A.shape[0], A.shape[1], nnz, rows.int(), cols.int(), values)
        A2 = A * idx
        csrA = F.coo2csr(cooA)
        counts = csrA.rowptr[1:] - csrA.rowptr[:-1]
        assert counts.numel() == A.shape[0]
1041

1042
1043
1044
        torch.testing.assert_close(counts.long(), (A2 != 0).sum(1))
        idx = A2 != 0
        torch.testing.assert_close(A2[idx], csrA.values)
Tim Dettmers's avatar
Tim Dettmers committed
1045

1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
    def test_coo2csc(self):
        threshold = 1
        A = torch.randn(128, 128).half().cuda()
        idx = torch.abs(A) >= threshold
        nnz = (idx == 1).sum().item()
        rows, cols = torch.where(idx)
        values = A[idx]
        cooA = F.COOSparseTensor(A.shape[0], A.shape[1], nnz, rows.int(), cols.int(), values)
        A2 = A * idx
        cscA = F.coo2csc(cooA)
        counts = cscA.colptr[1:] - cscA.colptr[:-1]
        assert counts.numel() == A.shape[1]
Tim Dettmers's avatar
Tim Dettmers committed
1058

1059
1060
1061
1062
        torch.testing.assert_close(counts.long(), (A2 != 0).sum(0))
        # torch uses row-major -> use transpose to transfer to col-major
        idx = A2.t() != 0
        torch.testing.assert_close(A2.t()[idx], cscA.values)
Tim Dettmers's avatar
Tim Dettmers committed
1063

Tim Dettmers's avatar
Tim Dettmers committed
1064

1065
1066
1067
1068
1069
1070
1071
1072
class TestQuantize4BitFunctional:
    @pytest.mark.parametrize("dtype", [torch.float32, torch.float16, torch.bfloat16], ids=describe_dtype)
    @pytest.mark.parametrize("quant_type", ["fp4", "nf4"])
    @pytest.mark.parametrize("blocksize", [64, 128, 256, 512, 1024, 2048, 4096])
    def test_4bit_quant(self, dtype, quant_type, blocksize):
        A1 = torch.randn(1024, 1024, device="cuda", dtype=dtype)
        qa, SA = F.quantize_4bit(A1, blocksize=blocksize, quant_type=quant_type)
        A2 = F.dequantize_4bit(qa, SA, blocksize=blocksize, quant_type=quant_type)
1073

1074
1075
1076
        err = (A1 - A2).abs().float()
        relerr = (err / (A1.abs().float() + 1e-8)).mean()
        err = err.mean()
1077

1078
        assert A2.dtype == dtype
1079

1080
1081
1082
1083
        # With larger block sizes, we can expect this to blow up.
        # At blocksize>=1024, don't even bother looking at relerr.
        if blocksize <= 64:
            assert err.item() < 0.1
1084
            assert relerr.item() < 0.28
1085
        elif blocksize <= 256:
1086
            assert err.item() < 0.11
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
            assert relerr.item() < 0.30
        elif blocksize <= 512:
            assert err.item() < 0.12
            assert relerr.item() < 0.31
        elif quant_type == "fp4":
            # 1024 => 0.48, 2048 => 0.52, 4096 => 0.56
            assert err.item() < 0.08 + math.log2(blocksize) * 4e-2
        else:
            # 1024 => 0.8, 2048 => 0.88, 4096 => 0.96
            assert err.item() < math.log2(blocksize) * 8e-2

    @pytest.mark.parametrize("quant_type", ["fp4", "nf4"])
    def test_4bit_compressed_stats(self, quant_type):
        for blocksize in [128, 64]:
            errs1 = []
            errs2 = []
            for i in range(10):
                A1 = torch.randn(1024, 1024, device="cuda").half()
                q2, SA2 = F.quantize_4bit(A1, blocksize=blocksize, quant_type=quant_type)
                q3, SA3 = F.quantize_4bit(A1, blocksize=blocksize, compress_statistics=True, quant_type=quant_type)
                A2 = F.dequantize_4bit(q2, SA2, quant_type=quant_type)
                A3 = F.dequantize_4bit(q3, SA3, quant_type=quant_type)

                err = (A1 - A2).abs().float()
                relerr = (err / (A1.abs().float() + 1e-15)).mean()
                err = err.mean()

                errs1.append(err.item())

                assert err.item() < 0.11
                assert relerr.item() < 0.28

                err = (A1 - A3).abs().float()
                relerr = (err / (A1.abs().float() + 1e-15)).mean()
                err = err.mean()

                errs2.append(err.item())

                assert err.item() < 0.11
                assert relerr.item() < 0.28

            # print(sum(errs1)/len(errs1), blocksize, quant_type)
            # print(sum(errs2)/len(errs2), blocksize, quant_type)

    # @pytest.mark.parametrize("quant_type", ['fp4', 'nf4'])
    @pytest.mark.parametrize("quant_type", ["nf4"])
    @pytest.mark.benchmark
    def test_bench_4bit_dequant(self, quant_type):
        blocksize = 256
        a = torch.rand(1024 * 12 * 4, 1024 * 12, device="cuda").half()
        qa, SA = F.quantize_4bit(a, blocksize=blocksize, quant_type=quant_type)

        input_size = a.numel() / 2
        output_size = a.numel() * 2
        num_bytes = input_size + output_size
        GB = num_bytes / 1e9
        max_theoretical_s = GB / 768
        # print(max_theoretical_s*1e6)
        b = torch.randn(128, 1024 * 12, device="cuda").half()

        iters = 100
        torch.cuda.synchronize()
        t0 = time.time()
        for i in range(iters):
            F.dequantize_4bit(qa, SA, blocksize=blocksize, quant_type=quant_type)
            # b.copy_(a)
        torch.cuda.synchronize()
        # print((time.time()-t0)/iters*1e6)

        # torch.cuda.synchronize()
        # t0 = time.time()
        # for i in range(iters):
        #    torch.matmul(b, a.t())
        # torch.cuda.synchronize()
        # print((time.time()-t0)/iters*1e6)

    @pytest.mark.parametrize("double_quant", TRUE_FALSE, ids=lambda double_quant: f"DQ_{double_quant}")
    @pytest.mark.parametrize("storage_type", ["nf4", "fp4"])
    @pytest.mark.parametrize("kind", ["fc1", "fc2", "attn", "attn_packed"])
    @pytest.mark.parametrize("dtype", [torch.float16, torch.bfloat16, torch.float32], ids=describe_dtype)
    @pytest.mark.parametrize(
        "quant_storage",
        [torch.uint8, torch.float16, torch.bfloat16, torch.float32],
        ids=describe_dtype,
    )
    def test_gemv_4bit(self, dtype, storage_type, quant_storage, double_quant, kind):
        for dim in [128, 256, 512, 1024]:
            # for dim in [4*1024]:
            # for dim in [1*16]:
            errs1 = []
            errs2 = []
            errs3 = []
            relerrs1 = []
            relerrs2 = []
            relerrs3 = []
            max_errs1 = []
            max_errs2 = []
            max_errs3 = []

            for i in range(100):
                if kind == "fc1":
                    A = torch.randn(1, dim, dtype=dtype, device="cuda")
                    B = torch.randn(dim * 4, dim, dtype=dtype, device="cuda") / math.sqrt(dim)
                elif kind == "fc2":
                    A = torch.randn(1, 4 * dim, dtype=dtype, device="cuda")
                    B = torch.randn(dim, 4 * dim, dtype=dtype, device="cuda") / math.sqrt(dim)
                elif kind == "attn":
                    A = torch.randn(1, dim, dtype=dtype, device="cuda")
                    B = torch.randn(dim, dim, dtype=dtype, device="cuda") / math.sqrt(dim)
                elif kind == "attn_packed":
                    A = torch.randn(1, dim, dtype=dtype, device="cuda")
                    B = torch.randn(dim * 3, dim, dtype=dtype, device="cuda") / math.sqrt(dim)

                qB, state = F.quantize_4bit(
                    B,
                    quant_type=storage_type,
                    compress_statistics=double_quant,
                    quant_storage=quant_storage,
                )
                C3 = torch.matmul(A, B.t())
                C2 = F.gemv_4bit(A, qB.t(), state=state)
                A.requires_grad = True
                C1 = bnb.matmul_4bit(A, qB.t(), state)

                err1 = (C1 - C2).abs().float()
                err2 = (C3 - C2).abs().float()
                err3 = (C3 - C1).abs().float()

                mag1 = torch.abs(C1).float() + 1e-5
                mag2 = torch.abs(C3).float() + 1e-5
                mag3 = torch.abs(C3).float() + 1e-5

                relerr1 = err1 / mag1
                relerr2 = err2 / mag2
                relerr3 = err3 / mag3

                max_err1 = err1.max()
                max_err2 = err2.max()
                max_err3 = err3.max()

                errs1.append(err1.mean().item())
                errs2.append(err2.mean().item())
                errs3.append(err3.mean().item())

                relerrs1.append(relerr1.mean().item())
                relerrs2.append(relerr2.mean().item())
                relerrs3.append(relerr3.mean().item())

                max_errs1.append(max_err1.item())
                max_errs2.append(max_err2.item())
                max_errs3.append(max_err3.item())

                c = int(C1.numel() * 0.0014 * (dim / 256)) + 1

                c = assert_all_approx_close(C1, C2, 1e-5, 0.01, count=0, throw=False)
            err1 = sum(errs1) / len(errs1) / math.sqrt(dim)
            err2 = sum(errs2) / len(errs2) / math.sqrt(dim)
            err3 = sum(errs3) / len(errs3) / math.sqrt(dim)
            relerr1 = sum(relerrs1) / len(relerrs1) / math.sqrt(dim)
            relerr2 = sum(relerrs2) / len(relerrs2) / math.sqrt(dim)
            relerr3 = sum(relerrs3) / len(relerrs3) / math.sqrt(dim)
            maxerr1 = sum(max_errs1) / len(max_errs1) / math.sqrt(dim)
            maxerr2 = sum(max_errs2) / len(max_errs2) / math.sqrt(dim)
            maxerr3 = sum(max_errs3) / len(max_errs3) / math.sqrt(dim)
            absratio = err2 / err3
            relratio = relerr2 / relerr3
            maxratio = relerr2 / relerr3

            # for debugging if the tests fails
            #
            # print('='*80)
            # print(f'For matmul: {A.shape}, {B.shape}, {kind}, {dtype}, {storage_type}, double_quant={double_quant}:')
            # print(C1.flatten()[-20:])
            # print(C2.flatten()[-20:])
            # print(f'inference vs training abs: {err1}')
            # print(f'inference vs training rel: {relerr1}')
            # print(f'inference vs training max: {maxerr1}')
            # print(f'inference vs training vs torch err ratio abs: {absratio}')
            # print(f'inference vs training vs torch err ratio rel: {relratio}')
            # print(f'inference vs training vs torch err ratio max: {maxratio}')
            if dtype == torch.float16:
                if dim <= 512:
                    assert err1 < 7e-5
                    assert relerr1 < 0.0008
                else:
                    assert err1 < 6e-5
                    assert relerr1 < 2e-4
                assert absratio < 1.005 and absratio > 0.995
                assert relratio < 1.005 and relratio > 0.995
                assert maxratio < 1.005 and maxratio > 0.995
            elif dtype == torch.float32:
                if dim <= 512:
                    assert err1 < 5e-8
                    assert relerr1 < 1e-6
                    assert maxerr1 < 1e-7
                else:
                    assert err1 < 5e-8
                    assert relerr1 < 8e-6
                    assert maxerr1 < 1e-7
                assert absratio < 1.005 and absratio > 0.995
                assert relratio < 1.005 and relratio > 0.995
                assert maxratio < 1.005 and maxratio > 0.995
            elif dtype == torch.bfloat16:
                if dim <= 512:
                    assert err1 < 6e-4
                    assert relerr1 < 0.007
                    assert maxerr1 < 0.015
                else:
                    assert err1 < 2e-4
                    assert relerr1 < 0.002
                    assert maxerr1 < 0.0012
                assert absratio < 1.005 and absratio > 0.995
                assert relratio < 1.04 and relratio > 0.96
                assert maxratio < 1.02 and maxratio > 0.98

    @pytest.mark.parametrize("storage_type", ["nf4", "fp4"], ids=["nf4", "fp4"])
    @pytest.mark.parametrize("dtype", [torch.float16, torch.bfloat16, torch.float32], ids=describe_dtype)
    @pytest.mark.parametrize("double_quant", [False], ids=["DQ_True"])
    def test_gemv_eye_4bit(self, storage_type, dtype, double_quant):
        dims = 10
        torch.random.manual_seed(np.random.randint(0, 412424242))
        dims = get_test_dims(0, 8192, n=dims)
        dims = [dim + (64 - (dim % 64)) for dim in dims]
        # for dim in [576, 5120, 3520, 5184, 1280, 4992, 5312, 2048]:
        for dim in dims:
            A = torch.normal(0, 0.1, size=(1, 1, dim), dtype=dtype, device="cuda")
            B = torch.eye(dim, dtype=dtype, device="cuda")

            qB, state = F.quantize_4bit(B, quant_type=storage_type, compress_statistics=double_quant)
            C3 = torch.matmul(A, B.t())
            C2 = bnb.matmul_4bit(A, qB.t(), state)
            A.requires_grad = True
            C1 = bnb.matmul_4bit(A, qB.t(), state)
1320

1321
1322
1323
1324
1325
            torch.testing.assert_close(A, C3)
            torch.testing.assert_close(A, C1)
            torch.testing.assert_close(A, C2)
        # torch.testing.assert_close(A, C1, rtol=1e-5, atol=0.00001)
        # torch.testing.assert_close(A, C2, rtol=1e-5, atol=0.080)
1326
1327
1328
1329


def test_normal_map_tree():
    code = F.create_normal_map()
Ruff's avatar
Ruff committed
1330
    values = code[:8].tolist() + code[-8:].tolist()
1331
    num_pivots = 1
Ruff's avatar
Ruff committed
1332
1333
1334
1335
    # print(values)
    while num_pivots < 16:
        idx = list(range(16 // num_pivots // 2, 16, 16 // num_pivots))
        # print(idx)
1336
1337
1338
        num_pivots *= 2
        pivots = []
        for i in idx:
Ruff's avatar
Ruff committed
1339
1340
            pivots.append((values[i - 1] + values[i]) / 2)
        # print(pivots)
1341

Tim Dettmers's avatar
Tim Dettmers committed
1342

1343
@pytest.mark.skip("Row scale has some bugs for ampere")
Tim Dettmers's avatar
Tim Dettmers committed
1344
def test_managed():
Ruff's avatar
Ruff committed
1345
    n = 32 * 10
Tim Dettmers's avatar
Tim Dettmers committed
1346
1347
1348
1349
1350
    A = F.get_paged(n, n, dtype=torch.float32)
    B = F.get_paged(n, n, dtype=torch.uint8)
    B2 = F.get_paged(n, n, dtype=torch.float32)
    assert A.is_paged
    assert B.is_paged
Ruff's avatar
Ruff committed
1351
1352
    assert A.page_deviceid == 0
    assert B.page_deviceid == 0
Tim Dettmers's avatar
Tim Dettmers committed
1353
1354
1355
    F.fill(A, 17.0)
    F.fill(B, 17)
    F.fill(B2, 2)
Ruff's avatar
Ruff committed
1356
1357
1358
1359
    assert (A == 17).sum().item() == n * n
    assert (B == 17).sum().item() == n * n
    C = A * B.float()
    assert (C == 289).sum().item() == n * n
Tim Dettmers's avatar
Tim Dettmers committed
1360
1361
1362
    F._mul(A, B2)
    F._mul(A, B2)
    F._mul(A, B2)
Ruff's avatar
Ruff committed
1363
1364
1365
    assert (A == 17 * (2**3)).sum().item() == n * n


1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
@pytest.mark.parametrize("dim1", get_test_dims(1, 64, n=1), ids=id_formatter("dim1"))
@pytest.mark.parametrize("dim2", get_test_dims(32, 128, n=1), ids=id_formatter("dim2"))
@pytest.mark.parametrize("dim3", get_test_dims(32, 256, n=1), ids=id_formatter("dim3"))
@pytest.mark.deprecated
def test_vector_quant(dim1, dim2, dim3):
    dim2 = dim2 - (dim2 % 16)
    dim3 = dim3 - (dim3 % 16)
    for i in range(k):
        A = torch.randn(size=(dim2, dim3), device="cuda")
        qA, SA = F.vectorwise_quant(A, dim=0)
        A1 = F.vectorwise_dequant(qA, SA)
        n = A1.numel()
        assert_all_approx_close(A1, A, atol=0.01, rtol=0.1, count=int(n * 0.002))