test_functional.py 76.2 KB
Newer Older
Tim Dettmers's avatar
Tim Dettmers committed
1
2
3
import math
import random
import time
Tim Dettmers's avatar
Tim Dettmers committed
4
5
from itertools import product

6
7
8
import einops
import pytest
import torch
Tim Dettmers's avatar
Tim Dettmers committed
9
import numpy as np
10
11

import bitsandbytes as bnb
Tim Dettmers's avatar
Tim Dettmers committed
12
from bitsandbytes import functional as F
Tim Dettmers's avatar
Tim Dettmers committed
13
from scipy.stats import norm
Tim Dettmers's avatar
Tim Dettmers committed
14

15
torch.set_printoptions(
Tim Dettmers's avatar
Tim Dettmers committed
16
    precision=5, sci_mode=False, linewidth=120, edgeitems=20, threshold=10000
17
)
Tim Dettmers's avatar
Tim Dettmers committed
18
19
k = 20

20

21
def assert_all_approx_close(a, b, rtol=1e-3, atol=1e-3, count=0):
Tim Dettmers's avatar
Tim Dettmers committed
22
    idx = torch.isclose(a, b, rtol, atol)
23
    sumval = (idx == 0).sum().item()
Tim Dettmers's avatar
Tim Dettmers committed
24
    if sumval > count:
25
        print(f"Too many values not close: assert {sumval} < {count}")
Tim Dettmers's avatar
Tim Dettmers committed
26
27
        torch.testing.assert_allclose(a, b, rtol, atol)

28

Tim Dettmers's avatar
Tim Dettmers committed
29
30
class FFN(torch.nn.Module):
    def __init__(self, input_features, hidden_size, bias=True):
31
        super().__init__()
Tim Dettmers's avatar
Tim Dettmers committed
32
33
34
35
36
37
38
39
40
41
42
43
        self.fc1 = torch.nn.Linear(input_features, hidden_size, bias=bias)
        self.fc2 = torch.nn.Linear(hidden_size, input_features, bias=bias)

        with torch.no_grad():
            torch.nn.init.xavier_uniform_(self.fc1.weight)
            torch.nn.init.xavier_uniform_(self.fc2.weight)

    def forward(self, x):
        x = torch.relu(self.fc1(x))
        x = self.fc2(x)
        return x

44

45
class Timer:
Tim Dettmers's avatar
Tim Dettmers committed
46
47
48
49
50
    def __init__(self):
        self.starts = {}
        self.ends = {}
        self.agg = {}

51
    def tick(self, name="default"):
Tim Dettmers's avatar
Tim Dettmers committed
52
53
54
55
56
57
58
        if name not in self.starts:
            self.starts[name] = torch.cuda.Event(enable_timing=True)
            self.ends[name] = torch.cuda.Event(enable_timing=True)
            self.starts[name].record()
        else:
            ms = self.tock(name, evict=True, print_ms=False)

59
    def tock(self, name="default", evict=True, print_ms=True):
Tim Dettmers's avatar
Tim Dettmers committed
60
61
62
63
        if name in self.ends:
            self.ends[name].record()
            torch.cuda.synchronize()
            ms = self.starts[name].elapsed_time(self.ends[name])
64
65
            if name not in self.agg:
                self.agg[name] = 0.0
Tim Dettmers's avatar
Tim Dettmers committed
66
67
68
69
70
71
            self.agg[name] += ms
            if evict:
                self.starts.pop(name)
                self.ends.pop(name)

        if print_ms and name in self.agg:
72
            print(f"{name} took: {self.agg[name] / 1000.0:.5f}s")
Tim Dettmers's avatar
Tim Dettmers committed
73
74
75
76

        return self.agg[name]

    def reset(self):
77
        self.starts = {}
Tim Dettmers's avatar
Tim Dettmers committed
78
79
        self.ends = {}
        self.agg = {}
80
81
        print("Resetting benchmark data")

Tim Dettmers's avatar
Tim Dettmers committed
82

Tim Dettmers's avatar
Tim Dettmers committed
83
84
85
def setup():
    pass

86

Tim Dettmers's avatar
Tim Dettmers committed
87
88
89
def teardown():
    pass

90

91
92
93
@pytest.mark.parametrize(
    "dtype", [torch.float32, torch.float16], ids=["float", "half"]
)
Tim Dettmers's avatar
Tim Dettmers committed
94
def test_estimate_quantiles(dtype):
95
    A = torch.rand(1024, 1024, device="cuda")
Tim Dettmers's avatar
Tim Dettmers committed
96
97
98
    A = A.to(dtype)
    code = F.estimate_quantiles(A)

99
    percs = torch.linspace(1 / 512, 511 / 512, 256, device=A.device)
Tim Dettmers's avatar
Tim Dettmers committed
100
101
    torch.testing.assert_allclose(percs, code, atol=1e-3, rtol=1e-2)

102
    A = torch.randn(1024, 1024, device="cuda")
Tim Dettmers's avatar
Tim Dettmers committed
103
104
105
106
    A = A.to(dtype)
    code = F.estimate_quantiles(A)

    quantiles = torch.quantile(A.float(), percs)
107
    diff = torch.abs(code - quantiles)
Tim Dettmers's avatar
Tim Dettmers committed
108
109
110
111
112
    assert (diff > 5e-02).sum().item() == 0


def test_quantile_quantization():
    for i in range(100):
113
        A1 = torch.randn(1024, 1024, device="cuda")
Tim Dettmers's avatar
Tim Dettmers committed
114
115
116
        code = F.estimate_quantiles(A1)
        C = F.quantize_no_absmax(A1, code)
        A2 = F.dequantize_no_absmax(C, code)
117
        diff = torch.abs(A1 - A2).mean().item()
Tim Dettmers's avatar
Tim Dettmers committed
118
119
        assert diff < 0.0075

120
        A1 = torch.rand(1024, 1024, device="cuda")
Tim Dettmers's avatar
Tim Dettmers committed
121
122
123
        code = F.estimate_quantiles(A1)
        C = F.quantize_no_absmax(A1, code)
        A2 = F.dequantize_no_absmax(C, code)
124
        diff = torch.abs(A1 - A2).mean().item()
Tim Dettmers's avatar
Tim Dettmers committed
125
126
127
128
129
130
131
132
        torch.testing.assert_allclose(A1, A2, atol=5e-3, rtol=0)
        assert diff < 0.001


def test_dynamic_quantization():
    diffs = []
    reldiffs = []
    for i in range(100):
133
        A1 = torch.randn(1024, 1024, device="cuda")
Tim Dettmers's avatar
Tim Dettmers committed
134
135
        C, S = F.quantize(A1)
        A2 = F.dequantize(C, S)
136
137
        diff = torch.abs(A1 - A2)
        reldiff = diff / torch.abs(A1 + 1e-8)
Tim Dettmers's avatar
Tim Dettmers committed
138
139
140
        diffs.append(diff.mean().item())
        reldiffs.append(reldiff.mean().item())
        assert diff.mean().item() < 0.0135
141
142
    # print(sum(diffs)/len(diffs))
    # print(sum(reldiffs)/len(reldiffs))
Tim Dettmers's avatar
Tim Dettmers committed
143
144

    for i in range(100):
145
        A1 = torch.rand(1024, 1024, device="cuda")
Tim Dettmers's avatar
Tim Dettmers committed
146
147
        C, S = F.quantize(A1)
        A2 = F.dequantize(C, S)
148
        diff = torch.abs(A1 - A2).mean().item()
Tim Dettmers's avatar
Tim Dettmers committed
149
150
151
152
153
        torch.testing.assert_allclose(A1, A2, atol=1e-2, rtol=0)
        assert diff < 0.004


def test_dynamic_blockwise_quantization():
154
    #print('')
Tim Dettmers's avatar
Tim Dettmers committed
155
    for blocksize in [4096, 2048, 1024, 512, 256, 128, 64, 32]:
156
157
158
159
        diffs = []
        reldiffs = []
        for i in range(100):
            A1 = torch.randn(1024, 1024, device="cuda")
Tim Dettmers's avatar
Tim Dettmers committed
160
161
            C, S = F.quantize_blockwise(A1, blocksize=blocksize)
            A2 = F.dequantize_blockwise(C, S, blocksize=blocksize)
162
163
164
165
166
167
168
169
            diff = torch.abs(A1 - A2)
            reldiff = diff / torch.abs(A1 + 1e-8)
            diffs.append(diff.mean().item())
            reldiffs.append(reldiff.mean().item())
        abserr = sum(diffs)/len(diffs)
        relerr = sum(reldiffs)/len(reldiffs)
        assert abserr < 0.011
        assert relerr < 0.018
170
171
        #print('randn', blocksize, sum(diffs)/len(diffs))
        #print('randn', blocksize, sum(reldiffs)/len(reldiffs))
172
173
174
175

        diffs = []
        for i in range(100):
            A1 = torch.rand(1024, 1024, device="cuda")
Tim Dettmers's avatar
Tim Dettmers committed
176
177
            C, S = F.quantize_blockwise(A1, blocksize=blocksize)
            A2 = F.dequantize_blockwise(C, S, blocksize=blocksize)
178
179
180
181
            diff = torch.abs(A1 - A2)
            reldiff = diff / torch.abs(A1 + 1e-8)
            diffs.append(diff.mean().item())
            reldiffs.append(reldiff.mean().item())
Tim Dettmers's avatar
Tim Dettmers committed
182
            #torch.testing.assert_allclose(A1, A2, atol=1e-2, rtol=0)
183
184
185
186
        abserr = sum(diffs)/len(diffs)
        relerr = sum(reldiffs)/len(reldiffs)
        assert abserr < 0.0035
        assert relerr < 0.015
187
188
        #print('rand', blocksize, sum(diffs)/len(diffs))
        #print('rand', blocksize, sum(reldiffs)/len(reldiffs))
189

Tim Dettmers's avatar
Tim Dettmers committed
190
191
192
193
194
195

def test_dynamic_blockwise_stochastic_quantization():
    diffs = []
    reldiffs = []
    rand = torch.rand(1024).cuda()
    for i in range(100):
196
        A1 = torch.randn(1024, 1024, device="cuda")
Tim Dettmers's avatar
Tim Dettmers committed
197
198
199
200
        C1, S1 = F.quantize_blockwise(A1, rand=rand)
        C2, S2 = F.quantize_blockwise(A1)
        # a maximunm distance of quantized values of 1
        torch.testing.assert_allclose(C1, C2, atol=1, rtol=0)
201
202
203
204
205
        fraction_smaller = (C1 < C2).float().sum() / C1.numel()
        fraction_larger = (C1 > C2).float().sum() / C1.numel()
        torch.testing.assert_allclose(
            fraction_larger, fraction_smaller, atol=0.01, rtol=0
        )
Tim Dettmers's avatar
Tim Dettmers committed
206
207


208
209
210
@pytest.mark.parametrize(
    "gtype", [torch.float32, torch.float16], ids=["float", "half"]
)
Tim Dettmers's avatar
Tim Dettmers committed
211
def test_percentile_clipping(gtype):
212
213
    gnorm_vec1 = torch.zeros(100, device="cuda")
    gnorm_vec2 = torch.zeros(100, device="cuda")
Tim Dettmers's avatar
Tim Dettmers committed
214
215
    n = 4
    step = 0
216
    percentile = 5
Tim Dettmers's avatar
Tim Dettmers committed
217
    for i in range(k):
Tim Dettmers's avatar
Tim Dettmers committed
218
        step += 1
219
220
221
222
223
        g = torch.randn(n, n, dtype=gtype, device="cuda")
        gnorm1, clip2, gnorm_scale = F.percentile_clipping(
            g, gnorm_vec2, step, percentile=percentile
        )
        assert gnorm_scale == 1.0 if gnorm1 < clip2 else clip2 / gnorm1
Tim Dettmers's avatar
Tim Dettmers committed
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238

        gnorm2 = torch.norm(g.float())
        if step == 1:
            gnorm_vec1[:] = gnorm2
        else:
            gnorm_vec1[step % 100] = gnorm2

        vals, idx = torch.sort(gnorm_vec1)
        clip1 = vals[percentile]

        torch.testing.assert_allclose(gnorm_vec1, torch.sqrt(gnorm_vec2))
        torch.testing.assert_allclose(clip1, clip2)
        torch.testing.assert_allclose(gnorm1, gnorm2)


Tim Dettmers's avatar
Tim Dettmers committed
239
240
def quant(x):
    max1 = torch.abs(x).max()
241
    x = torch.round(x / max1 * 127)
Tim Dettmers's avatar
Tim Dettmers committed
242
243
    return max1, x.to(torch.int8)

244

Tim Dettmers's avatar
Tim Dettmers committed
245
def dequant(c, maxC):
246
247
    return c.float() * (maxC / 127)

Tim Dettmers's avatar
Tim Dettmers committed
248
249

def mm_dequant(maxA, maxB, C):
250
251
    return C.float() * (maxA / 127) * (maxB / 127)

Tim Dettmers's avatar
Tim Dettmers committed
252
253
254

def quant_multi(x, dim):
    max1 = torch.amax(torch.abs(x), dim=dim, keepdim=True)
255
256
    max1[max1 == 0] = 1.0
    x = torch.round(x / max1 * 127)
Tim Dettmers's avatar
Tim Dettmers committed
257
258
    return max1, x.to(torch.int8)

259

Tim Dettmers's avatar
Tim Dettmers committed
260
def quant_multi_chunk(x, dim, chunk_size=32):
261
262
263
    if dim == 1:
        x_chunked = einops.rearrange(x, "(c a) b -> c a b", c=chunk_size)
        max1 = torch.amax(torch.abs(x_chunked), dim=dim + 1, keepdim=True)
Tim Dettmers's avatar
Tim Dettmers committed
264
265
        max1 = torch.tile(max1, (1, 1, x.shape[1]))
        max1 = max1.view(x.shape)
266
267
    elif dim == 0:
        x_chunked = einops.rearrange(x, "a (b c) -> a b c", c=chunk_size)
Tim Dettmers's avatar
Tim Dettmers committed
268
269
270
        max1 = torch.amax(torch.abs(x_chunked), dim=dim, keepdim=True)
        max1 = torch.tile(max1, (x.shape[0], 1, 1))
        max1 = max1.view(x.shape)
271
272
    max1[max1 == 0] = 1.0
    x = torch.round(x / max1 * 127)
Tim Dettmers's avatar
Tim Dettmers committed
273
274
    return max1, x.to(torch.int8)

275

Tim Dettmers's avatar
Tim Dettmers committed
276
277
278
279
def quant_minmax(A):
    minA = A.min()
    maxA = A.max()

280

Tim Dettmers's avatar
Tim Dettmers committed
281
def mean(xx):
282
283
    return sum(xx) / float(len(xx))

Tim Dettmers's avatar
Tim Dettmers committed
284

285
286
287
288
289
# dim1 = torch.randint(1,1024*4, size=(4,)).tolist()
# dim2 = torch.randint(1,1024*4, size=(4,)).tolist()
dim1 = [1024 * 2]
dim2 = [1024 * 16]
methods = [
290
291
292
293
294
295
296
    (
        lambda x, dim: quant(x),
        lambda x, dim: quant(x),
        dequant,
        dequant,
        mm_dequant,
    )
297
]
Tim Dettmers's avatar
Tim Dettmers committed
298
methods.append((quant_multi, quant_multi, dequant, dequant, mm_dequant))
299
300
# methods.append((lambda x: quant_multi_chunk(x, dim=-1), lambda x: quant_multi_chunk(x, dim=0), dequant, dequant, mm_dequant))
method_names = ["linear", "vectorwise"]
Tim Dettmers's avatar
Tim Dettmers committed
301
batched = [False, True]
302
303
304
values = list(product(dim1, dim2, methods, batched))
values_names = list(product(dim1, dim2, method_names, batched))
names = [
305
    "dim1_{}_dim2_{}_quant_{}_batched_{}".format(*vals)
306
    for vals in values_names
307
308
309
]


310
311
312
@pytest.mark.parametrize(
    "dim1, dim2, quant_methods, batched", values, ids=names
)
Tim Dettmers's avatar
Tim Dettmers committed
313
314
315
316
317
def test_approx_igemm(dim1, dim2, quant_methods, batched):
    dim1 = dim1 - (dim1 % 32)
    dim2 = dim2 - (dim2 % 32)
    errors = []
    relerrors = []
318
    print("")
Tim Dettmers's avatar
Tim Dettmers committed
319
320
    for i in range(5):
        if batched:
321
322
            A = torch.normal(0, 0.5, size=(32, dim1, dim2 // 32), device="cuda")
            B = torch.normal(0, 0.5, size=(32, dim2 // 32, dim1), device="cuda")
Tim Dettmers's avatar
Tim Dettmers committed
323
324
325
            maxA, Ac = quant_methods[0](A, 2)
            maxB, Bc = quant_methods[1](B, 1)
        else:
326
327
            A = torch.normal(0, 0.5, size=(dim1, dim2), device="cuda")
            B = torch.normal(0, 0.5, size=(dim2, dim1), device="cuda")
Tim Dettmers's avatar
Tim Dettmers committed
328
329
            maxA, Ac = quant_methods[0](A, 1)
            maxB, Bc = quant_methods[1](B, 0)
330
331
332
        torch.testing.assert_allclose(
            quant_methods[2](maxA, Ac), A, atol=0.025, rtol=0.05
        )
Tim Dettmers's avatar
Tim Dettmers committed
333
334
335
336
337
338
339
340
        if batched:
            out2 = torch.bmm(A, B)
            C = torch.bmm(Ac.float(), Bc.float())
        else:
            out2 = torch.mm(A, B)
            C = F.igemm(Ac, Bc)
        out = quant_methods[4](maxA, maxB, C)
        std = out2.std()
341
342
343
344
        out /= std
        out2 /= std
        err = torch.abs(out - out2)
        relerr = err / torch.abs(out2)
Tim Dettmers's avatar
Tim Dettmers committed
345
346
347
348
349
350
        errors.append(err.mean().item())
        relerrors.append(relerr.mean().item())
    print(mean(errors))
    print(mean(relerrors))


Tim Dettmers's avatar
Tim Dettmers committed
351
352
353
354
355
def test_stable_embedding():
    layer = bnb.nn.StableEmbedding(1024, 1024)
    layer.reset_parameters()


Tim Dettmers's avatar
Tim Dettmers committed
356
n = 2
357
358
359
hidden_dim = torch.randint(32, 256, size=(n,)).tolist()
batch_dim = torch.randint(16, 256, size=(n,)).tolist()
seq_dim = torch.randint(16, 256, size=(n,)).tolist()
Tim Dettmers's avatar
Tim Dettmers committed
360
transpose = [(False, False), (False, True), (True, False), (True, True)]
361
362
values = list(product(hidden_dim, batch_dim, transpose, seq_dim))
names = [
363
    "hidden_dim_{}_batch_dim_{},transpose_{}_seq_dim_{}".format(*vals)
364
365
366
367
    for vals in values
]


368
369
370
@pytest.mark.parametrize(
    "hidden_dim, batch_dim, transpose, seq_dim", values, ids=names
)
Tim Dettmers's avatar
Tim Dettmers committed
371
372
373
374
375
def test_igemm(hidden_dim, batch_dim, transpose, seq_dim):
    hidden_dim = hidden_dim - (hidden_dim % 32)
    batch_dim = batch_dim - (batch_dim % 16)
    seq_dim = seq_dim - (seq_dim % 16)
    for i in range(k):
376
        shapeA = (
377
378
379
            (batch_dim, hidden_dim)
            if not transpose[0]
            else (hidden_dim, batch_dim)
380
381
382
383
384
385
386
387
        )
        shapeB = (
            (32 * random.randint(1, 4), hidden_dim)
            if transpose[1]
            else (hidden_dim, 32 * random.randint(1, 4))
        )
        A = torch.randint(-128, 127, size=shapeA, device="cuda").to(torch.int8)
        B = torch.randint(-128, 127, size=shapeB, device="cuda").to(torch.int8)
Tim Dettmers's avatar
Tim Dettmers committed
388
389
390
391
392
393
394
395
396
397
398
399
        if not transpose[0] and not transpose[1]:
            out2 = torch.matmul(A.float(), B.float())
            out = F.igemm(A, B)
        elif not transpose[0] and transpose[1]:
            out2 = torch.matmul(A.float(), B.t().float())
            out = F.igemm(A, B.t())
        elif transpose[0] and not transpose[1]:
            out2 = torch.matmul(A.t().float(), B.float())
            out = F.igemm(A.t(), B)
        elif transpose[0] and transpose[1]:
            out2 = torch.matmul(A.t().float(), B.t().float())
            out = F.igemm(A.t(), B.t())
Tim Dettmers's avatar
Tim Dettmers committed
400

Tim Dettmers's avatar
Tim Dettmers committed
401
        torch.testing.assert_allclose(out.float(), out2)
Tim Dettmers's avatar
Tim Dettmers committed
402

Tim Dettmers's avatar
Tim Dettmers committed
403
404
    for i in range(k):
        shapeA = (batch_dim, seq_dim, hidden_dim)
405
406
407
408
409
410
411
        shapeB = (
            (32 * random.randint(1, 4), hidden_dim)
            if transpose[1]
            else (hidden_dim, 32 * random.randint(1, 4))
        )
        A = torch.randint(-128, 127, size=shapeA, device="cuda").to(torch.int8)
        B = torch.randint(-128, 127, size=shapeB, device="cuda").to(torch.int8)
Tim Dettmers's avatar
Tim Dettmers committed
412
413
414
415
416
417
418
419
420
421
422
        if not transpose[0] and not transpose[1]:
            out2 = torch.matmul(A.float(), B.float())
            out = F.igemm(A, B)
        elif not transpose[0] and transpose[1]:
            out2 = torch.matmul(A.float(), B.t().float())
            out = F.igemm(A, B.t())

        torch.testing.assert_allclose(out.float(), out2)


n = 3
423
424
425
426
seq_dim = torch.randint(32, 512, size=(n,)).tolist()
hidden_dim = torch.randint(32, 1024 * 4, size=(n,)).tolist()
batch_dim = torch.randint(2, 16, size=(n,)).tolist()
values = list(product(seq_dim, hidden_dim, batch_dim))
427
names = [
428
    "seq_dim{}_hidden_dim{}_batch_dim{}".format(*vals) for vals in values
429
]
430
431


Tim Dettmers's avatar
Tim Dettmers committed
432
433
434
435
436
437
@pytest.mark.parametrize("seq_dim, hidden_dim, batch_dim", values, ids=names)
def test_dim3_igemm(seq_dim, hidden_dim, batch_dim):
    seq_dim = seq_dim - (seq_dim % 32)
    hidden_dim = hidden_dim - (hidden_dim % 32)
    batch_dim = batch_dim - (batch_dim % 2)
    for i in range(25):
438
439
440
        A = torch.randint(
            -128, 127, size=(batch_dim, seq_dim, hidden_dim), device="cuda"
        ).to(torch.int8)
441
442
443
        B = torch.randint(
            -128, 127, size=(batch_dim, seq_dim, 1024), device="cuda"
        ).to(torch.int8)
444
        out2 = torch.einsum("bsi, bso->io", A.float(), B.float())
445
446
447
        iout = torch.empty(
            A.shape[2], B.shape[2], dtype=torch.int32, device=A.device
        )
Tim Dettmers's avatar
Tim Dettmers committed
448
449
450
451
        out = F.igemm(A, B, out=iout)

        torch.testing.assert_allclose(out.float(), out2)

452

Tim Dettmers's avatar
Tim Dettmers committed
453
n = 2
454
455
456
seq_dim = torch.randint(32, 512, size=(n,)).tolist()
hidden_dim = torch.randint(32, 1024 * 4, size=(n,)).tolist()
batch_dim = torch.randint(2, 16, size=(n,)).tolist()
Tim Dettmers's avatar
Tim Dettmers committed
457
transpose = [False, True]
458
459
values = list(product(seq_dim, hidden_dim, batch_dim, transpose))
names = [
460
    "seq_dim={}_hidden_dim={}_batch_dim={}_transpose{}".format(*vals)
461
462
463
464
    for vals in values
]


465
466
467
@pytest.mark.parametrize(
    "seq_dim, hidden_dim, batch_dim, transpose", values, ids=names
)
Tim Dettmers's avatar
Tim Dettmers committed
468
469
470
471
def test_minmax_igemm(seq_dim, hidden_dim, batch_dim, transpose):
    def min_max(x):
        maxA = torch.amax(x, dim=2, keepdim=True)
        minA = torch.amin(x, dim=2, keepdim=True)
472
473
        scale = (maxA - minA) / 2.0
        return (127 * (x - minA - scale) / scale).to(torch.int8), minA, scale
Tim Dettmers's avatar
Tim Dettmers committed
474
475
476
477
478
479
480
481
482

    seq_dim = seq_dim - (seq_dim % 16)
    hidden_dim = hidden_dim - (hidden_dim % 16)
    batch_dim = batch_dim - (batch_dim % 2)
    errs = []
    relerrs = []
    errs2 = []
    relerrs2 = []
    for i in range(k):
483
484
485
        A = torch.normal(
            0.0, 0.5, size=(batch_dim, seq_dim, hidden_dim), device="cuda"
        )
Tim Dettmers's avatar
Tim Dettmers committed
486
        if transpose:
487
            B = torch.normal(0, 0.5, size=(256, hidden_dim), device="cuda")
Tim Dettmers's avatar
Tim Dettmers committed
488
        else:
489
            B = torch.normal(0, 0.5, size=(hidden_dim, 256), device="cuda")
Tim Dettmers's avatar
Tim Dettmers committed
490
491
492
493
        Ac, minA, scale = min_max(A)
        if transpose:
            maxB, Bc = quant_multi(B, dim=(1 if transpose else 0))
            out = F.igemm(Ac, Bc.t())
494
495
            out2 = torch.matmul(A, B.t())
            offset = B.t().sum(0) * (minA + scale)
Tim Dettmers's avatar
Tim Dettmers committed
496
            out = out.float()
497
            out = (out * maxB.t() * scale / (127 * 127)) + offset
Tim Dettmers's avatar
Tim Dettmers committed
498
499
500
501
502
503

            maxA, Ac = quant_multi(A, dim=2)
            out3 = F.igemm(Ac, Bc.t())
            out3 = mm_dequant(maxA, maxB.t(), out3)
        else:
            maxB, Bc = quant_multi(B, dim=0)
504
            offset = B.sum(0) * (minA + scale)
Tim Dettmers's avatar
Tim Dettmers committed
505
            out = F.igemm(Ac, Bc)
506
            out2 = torch.matmul(A, B)
Tim Dettmers's avatar
Tim Dettmers committed
507
            out = out.float()
508
            out = (out * maxB * scale / (127 * 127)) + offset
Tim Dettmers's avatar
Tim Dettmers committed
509
510
511
512
513
514
515
516
517
518

            maxA, Ac = quant_multi(A, dim=2)
            out3 = F.igemm(Ac, Bc)
            out3 = mm_dequant(maxA, maxB, out3)

        std = out2.std()
        out2 /= std
        out /= std
        out3 /= std

519
520
        err = torch.abs(out - out2)
        relerr = err / (torch.abs(out2) + 1e-7)
Tim Dettmers's avatar
Tim Dettmers committed
521

522
523
        err2 = torch.abs(out3 - out2)
        relerr2 = err2 / (torch.abs(out2) + 1e-7)
Tim Dettmers's avatar
Tim Dettmers committed
524
525
526
527
528

        errs.append(err.mean().item())
        relerrs.append(relerr.mean().item())
        errs2.append(err2.mean().item())
        relerrs2.append(relerr2.mean().item())
529
530
531
532
    # print(mean(errs))
    # print(mean(relerrs))
    # print(mean(errs2))
    # print(mean(relerrs2))
Tim Dettmers's avatar
Tim Dettmers committed
533
534
535
    assert mean(errs) < 0.015
    assert mean(relerrs) < 0.3

536

Tim Dettmers's avatar
Tim Dettmers committed
537
n = 2
538
539
540
541
dim1 = torch.randint(1, 64, size=(n,)).tolist()
dim2 = torch.randint(32, 128, size=(n,)).tolist()
dim3 = torch.randint(32, 256, size=(n,)).tolist()
dim4 = torch.randint(32, 256, size=(n,)).tolist()
Tim Dettmers's avatar
Tim Dettmers committed
542
transpose = [(False, False), (True, False), (False, True), (True, True)]
543
544
values = list(product(dim1, dim2, dim3, dim4, transpose))
names = [
545
    "dim1_{}_dim2_{}_dim3_{}_dim4_{}_transpose_{}".format(*vals)
546
    for vals in values
547
548
549
]


Tim Dettmers's avatar
Tim Dettmers committed
550
551
552
553
554
555
556
557
@pytest.mark.parametrize("dim1, dim2, dim3, dim4, transpose", values, ids=names)
def test_ibmm(dim1, dim2, dim3, dim4, transpose):
    dim2 = dim2 - (dim2 % 16)
    dim3 = dim3 - (dim3 % 16)
    dim4 = dim4 - (dim4 % 16)
    for i in range(k):
        shapeA = (dim1, dim3, dim2) if transpose[0] else (dim1, dim2, dim3)
        shapeB = (dim1, dim4, dim3) if transpose[1] else (dim1, dim3, dim4)
558
559
        A = torch.randint(-128, 127, size=shapeA, device="cuda").to(torch.int8)
        B = torch.randint(-128, 127, size=shapeB, device="cuda").to(torch.int8)
Tim Dettmers's avatar
Tim Dettmers committed
560
561
562
563
564
565
566
567
568
569
570

        if not transpose[0] and not transpose[1]:
            out2 = torch.bmm(A.float(), B.float())
            out = F.igemm(A, B)
        elif not transpose[0] and transpose[1]:
            out2 = torch.bmm(A.float(), B.permute([0, 2, 1]).float())
            out = F.igemm(A, B.permute([0, 2, 1]))
        elif transpose[0] and not transpose[1]:
            out2 = torch.bmm(A.permute([0, 2, 1]).float(), B.float())
            out = F.igemm(A.permute([0, 2, 1]), B)
        elif transpose[0] and transpose[1]:
571
572
573
            out2 = torch.bmm(
                A.permute([0, 2, 1]).float(), B.permute([0, 2, 1]).float()
            )
Tim Dettmers's avatar
Tim Dettmers committed
574
575
576
            out = F.igemm(A.permute([0, 2, 1]), B.permute([0, 2, 1]))
        torch.testing.assert_allclose(out.float(), out2.float())

577

Tim Dettmers's avatar
Tim Dettmers committed
578
n = 1
579
580
581
582
dim1 = torch.randint(1, 64, size=(n,)).tolist()
dim2 = torch.randint(32, 128, size=(n,)).tolist()
dim3 = torch.randint(32, 256, size=(n,)).tolist()
values = list(product(dim1, dim2, dim3))
583
names = ["dim1_{}_dim2_{}_dim3_{}".format(*vals) for vals in values]
584
585


Tim Dettmers's avatar
Tim Dettmers committed
586
587
588
589
590
@pytest.mark.parametrize("dim1, dim2, dim3", values, ids=names)
def test_vector_quant(dim1, dim2, dim3):
    dim2 = dim2 - (dim2 % 16)
    dim3 = dim3 - (dim3 % 16)
    for i in range(k):
591
        A = torch.randn(size=(dim2, dim3), device="cuda")
Tim Dettmers's avatar
Tim Dettmers committed
592
593
        qA, SA = F.vectorwise_quant(A, dim=0)
        A1 = F.vectorwise_dequant(qA, SA)
594
595
596
597
        n = A1.numel()
        assert_all_approx_close(A1, A, atol=0.01, rtol=0.1, count=int(n*0.002))


Tim Dettmers's avatar
Tim Dettmers committed
598
599
600


n = 2
601
602
603
604
dim1 = torch.randint(2, 256, size=(n,)).tolist()
dim2 = torch.randint(2, 256, size=(n,)).tolist()
dim3 = torch.randint(2, 256, size=(n,)).tolist()
# dim1, dim2 = (256,), (256,)
Tim Dettmers's avatar
Tim Dettmers committed
605
dtype = [torch.int8, torch.int32]
606
607
a_order = ["row"]
out_order = ["col", "row", "col32"]
Tim Dettmers's avatar
Tim Dettmers committed
608
609
transpose = [False]
dims = [2, 3]
610
values = list(product(dim1, dim2, dim3, dims, dtype, a_order, out_order, transpose))
611

612
names = ["dim1_{}_dim2_{}_dim3_{}_dims_{}_dtype_{}_orderA_{}_orderOut_{}_transpose_{}".format(*vals)for vals in values]
613

Tim Dettmers's avatar
Tim Dettmers committed
614

615
616
@pytest.mark.parametrize("dim1, dim2, dim3, dims, dtype, orderA, orderOut, transpose",values,ids=names)
def test_nvidia_transform(dim1, dim2, dim3, dims, dtype, orderA, orderOut, transpose):
617
618
619
620
    if dims == 3 and out_order != "col32":
        return
    if dtype == torch.int32 and out_order != "col32":
        return
Tim Dettmers's avatar
Tim Dettmers committed
621
622
623
    func = F.get_transform_func(dtype, orderA, orderOut, transpose)

    if dims == 2:
624
        A = torch.randint(-128, 127, size=(dim1, dim2), device="cuda").to(dtype)
Tim Dettmers's avatar
Tim Dettmers committed
625
    elif dims == 3:
626
627
628
        A = torch.randint(-128, 127, size=(dim1, dim2, dim3), device="cuda").to(
            dtype
        )
Tim Dettmers's avatar
Tim Dettmers committed
629
630
631

    out, S = F.nvidia_transform(A, to_order=orderOut)

632
    if orderOut == "row":
Tim Dettmers's avatar
Tim Dettmers committed
633
        torch.testing.assert_allclose(A.flatten(), out.flatten())
634
    elif orderOut == "col":
Tim Dettmers's avatar
Tim Dettmers committed
635
        torch.testing.assert_allclose(A.t().flatten(), out.flatten())
636
    elif orderOut == "col32":
Tim Dettmers's avatar
Tim Dettmers committed
637
        if dims == 2:
638
            n = A.shape[0] * (A.shape[1] + (32 - (A.shape[1] % 32)))
Tim Dettmers's avatar
Tim Dettmers committed
639
        elif dims == 3:
640
641
642
643
644
            n = (
                A.shape[0]
                * A.shape[1]
                * (A.shape[2] + (32 - (A.shape[2] % 32)))
            )
Tim Dettmers's avatar
Tim Dettmers committed
645
        assert out.numel() == n
646
    elif orderOut == "col_turing":
Tim Dettmers's avatar
Tim Dettmers committed
647
        # 32 col 8 row tiles
648
649
650
        n = (A.shape[0] + (8 - A.shape[0] % 8)) * (
            A.shape[1] + (32 - (A.shape[1] % 32))
        )
Tim Dettmers's avatar
Tim Dettmers committed
651
652
653
654
        assert out.numel() == n
        total_coltile = (A.shape[1] // 32) + (1 if A.shape[1] % 32 != 0 else 0)
        for row in range(A.shape[0]):
            for col in range(A.shape[1]):
655
                i = row * A.shape[1]
Tim Dettmers's avatar
Tim Dettmers committed
656
657
658
                j = col

                coltile = (col // 32) + (1 if col % 32 != 0 else 0)
659
660
661
                rowtile = (
                    (row // 8) + (1 if row % 8 != 0 else 0)
                ) * total_coltile
662
                offset = 32 * 8 * (rowtile + coltile)
Tim Dettmers's avatar
Tim Dettmers committed
663
                col2 = col % 32
664
                row2 = (row % 8) * 32
Tim Dettmers's avatar
Tim Dettmers committed
665

666
667
668
669
                assert A.flatten()[i + j] == A[row, col]
                # assert A.flatten()[i+j] == out.flatten()[row2+col2]
                # torch.testing.assert_allclose(A.flatten()[i+j], A[row, col])
                # torch.testing.assert_allclose(A.flatten()[i+j], out.flatten()[row2+ col2+block_offset])
Tim Dettmers's avatar
Tim Dettmers committed
670

671
    if orderOut == "col32":
672
673
674
        out2, S = F.nvidia_transform(
            out, from_order=orderOut, to_order="row", state=S
        )
Tim Dettmers's avatar
Tim Dettmers committed
675
676
677
678
        torch.testing.assert_allclose(A, out2)


n = 1
679
680
681
682
dim1 = torch.randint(1, 256, size=(n,)).tolist()
dim2 = torch.randint(32, 512, size=(n,)).tolist()
dim3 = torch.randint(32, 1024, size=(n,)).tolist()
dim4 = torch.randint(32, 1024, size=(n,)).tolist()
Tim Dettmers's avatar
Tim Dettmers committed
683

684
685
686
687
# dim1 = [2]
# dim2 = [2]
# dim3 = [2]
# dim4 = [2]
Tim Dettmers's avatar
Tim Dettmers committed
688

689
dims = (2, 3)
Tim Dettmers's avatar
Tim Dettmers committed
690
ldb = [0]
691
692
693
# ldb = list(range(256, 1*1024, 256))
values = list(product(dim1, dim2, dim3, dim4, dims, ldb))
names = [
694
    "dim1_{}_dim2_{}_dim3_{}_dim4_{}_dims_{}_ldb_{}".format(*vals)
695
696
697
698
    for vals in values
]


Tim Dettmers's avatar
Tim Dettmers committed
699
700
701
702
@pytest.mark.parametrize("dim1, dim2, dim3, dim4, dims, ldb", values, ids=names)
def test_igemmlt_int(dim1, dim2, dim3, dim4, dims, ldb):
    for i in range(k):
        if dims == 2:
703
704
705
            A = torch.randint(-128, 127, size=(dim1, dim3), device="cuda").to(
                torch.int8
            )
Tim Dettmers's avatar
Tim Dettmers committed
706
        elif dims == 3:
707
708
709
710
711
712
            A = torch.randint(
                -128, 127, size=(dim1, dim2, dim3), device="cuda"
            ).to(torch.int8)
        B = torch.randint(-128, 127, size=(dim4, dim3), device="cuda").to(
            torch.int8
        )
Tim Dettmers's avatar
Tim Dettmers committed
713
714
        C1 = torch.matmul(A.float(), B.t().float())

715
716
        A2, SA = F.transform(A, "col32")
        B2, SB = F.transform(B, "col_turing")
Tim Dettmers's avatar
Tim Dettmers committed
717
        C2, SC = F.igemmlt(A2, B2, SA, SB)
718
        C3, S = F.nvidia_transform(C2, "row", state=SC)
Tim Dettmers's avatar
Tim Dettmers committed
719
720
721
        torch.testing.assert_allclose(C1, C3.float())

        # transpose
722
723
724
        B = torch.randint(-128, 127, size=(dim3, dim4), device="cuda").to(
            torch.int8
        )
Tim Dettmers's avatar
Tim Dettmers committed
725
726
        C1 = torch.matmul(A.float(), B.float())

727
        B2t, SBt = F.transform(B, "col_turing", transpose=True)
Tim Dettmers's avatar
Tim Dettmers committed
728
        C2, SC = F.igemmlt(A2, B2t, SA, SBt)
729
        C3, S = F.nvidia_transform(C2, "row", state=SC)
Tim Dettmers's avatar
Tim Dettmers committed
730
731
        torch.testing.assert_allclose(C1, C3.float())

732

Tim Dettmers's avatar
Tim Dettmers committed
733
734
735
736
737
738
dim1 = [32]
dim2 = [32]
dim3 = [32]
dim4 = [32]

dims = (2,)
739
740
741
# ldb = list(range(256, 1*1024, 256))
values = list(product(dim1, dim2, dim3, dim4, dims))
names = [
742
    "dim1_{}_dim2_{}_dim3_{}_dim4_{}_dims_{}".format(*vals)
743
    for vals in values
744
745
746
]


Tim Dettmers's avatar
Tim Dettmers committed
747
748
749
750
751
@pytest.mark.parametrize("dim1, dim2, dim3, dim4, dims", values, ids=names)
def test_igemmlt_half(dim1, dim2, dim3, dim4, dims):
    formatB = F.get_special_format_str()
    for i in range(k):
        if dims == 2:
752
            A = torch.normal(0, 0.5, size=(dim1, dim3), device="cuda").half()
Tim Dettmers's avatar
Tim Dettmers committed
753
        elif dims == 3:
754
755
756
            A = torch.normal(
                0, 0.5, size=(dim1, dim2, dim3), device="cuda"
            ).half()
757
        B = torch.randn((dim4, dim3), device="cuda").half()
Tim Dettmers's avatar
Tim Dettmers committed
758
759
760
761
762
763
764
765
        torch.nn.init.xavier_uniform_(B)
        C1 = torch.matmul(A, B.t())
        C2 = bnb.matmul(A, B.t())

        A = A.view(-1, A.shape[-1])

        CA, CAt, statsA, statsAt, coo_tensor = F.double_quant(A)
        CB, CBt, statsB, statsBt, coo_tensor = F.double_quant(B)
766
        C32A, SA = F.transform(CA, "col32")
Tim Dettmers's avatar
Tim Dettmers committed
767
768
769
770
        CxB, SB = F.transform(CB, to_order=formatB)
        out1_32, Sout1_32 = F.igemmlt(C32A, CxB, SA, SB)
        output = F.mm_dequant(out1_32, Sout1_32, statsAt, statsBt)

771
772
773
774
        # print('')
        # print(output.flatten()[:10])
        # print(C1.flatten()[:10])
        # print(C2.flatten()[:10])
Tim Dettmers's avatar
Tim Dettmers committed
775

776
        # torch.testing.assert_allclose(C1.view(-1, C1.shape[-1]), output, atol=0.025, rtol=0.05)
Tim Dettmers's avatar
Tim Dettmers committed
777
778

        # transpose
779
780
781
782
783
784
785
        # B = torch.randint(-128, 127, size=(dim3, dim4), device='cuda').to(torch.int8)
        # C1 = torch.matmul(A.float(), B.float())

        # B2t, SBt = F.transform2(B, 'col_turing', transpose=True)
        # C2, SC = F.igemmlt(A2, B2t, SA, SBt)
        # C3, S = F.transform(C2, 'row', state=SC)
        # torch.testing.assert_allclose(C1, C3.float())
Tim Dettmers's avatar
Tim Dettmers committed
786
787
788
789


batch_size = 2
seqdim = 512
790
791
792
793
794
795
796
797
798
# values = [(batch_size, seqdim, 4*1024, 16*1024),(batch_size, seqdim, 5120, 4*5120),(batch_size, seqdim, 12*1024, 4*12*1024)]
values = [
    (batch_size, seqdim, 4 * 1024, 3 * 4 * 1024),
    (batch_size, seqdim, 5120, 3 * 5120),
    (batch_size, seqdim, 12 * 1024, 4 * 12 * 1024),
]


# values = list(product(batch, seq, model, hidden))
799
names = [
800
    "batch_{}_seq_{}_model_{}_hidden_{}".format(*vals) for vals in values
801
]
Tim Dettmers's avatar
Tim Dettmers committed
802
803
804
805
806


@pytest.mark.parametrize("batch, seq, model, hidden", values, ids=names)
def test_bench_8bit_training(batch, seq, model, hidden):
    formatB = F.get_special_format_str()
807
808
809
810
811
    A = torch.randn(batch, seq, model, device="cuda").half()
    grad = torch.randn(batch, seq, model, device="cuda").half()
    w1 = torch.randint(-128, 127, size=(hidden, model), device="cuda").half()
    w2 = torch.randint(-128, 127, size=(model, hidden), device="cuda").half()
    print("")
Tim Dettmers's avatar
Tim Dettmers committed
812

813
    # torch.cuda.synchronize()
Tim Dettmers's avatar
Tim Dettmers committed
814
    ## warmup
815
    # for i in range(100):
Tim Dettmers's avatar
Tim Dettmers committed
816
    #    torch.matmul(A, w1.t())
817
    # torch.cuda.synchronize()
Tim Dettmers's avatar
Tim Dettmers committed
818
819
820
821
822
823
824
825

    dtype = torch.int8
    A = A.view(-1, A.shape[-1]).contiguous()
    grad = grad.view(-1, grad.shape[-1]).contiguous()
    torch.cuda.synchronize()
    t0 = time.time()
    for i in range(k):

826
827
        out1 = torch.matmul(A, w1.t())  # fc1
        # out2 = torch.matmul(out1, w2.t())# fc2
Tim Dettmers's avatar
Tim Dettmers committed
828

829
830
        # d1 = torch.matmul(grad, w2) # delta1
        # d2 = torch.matmul(d1, w1) # delta2
Tim Dettmers's avatar
Tim Dettmers committed
831

832
833
        # grad1 = torch.einsum('bo,bh->oh', out1, grad) # grad w2
        # grad2 = torch.einsum('bh,bo->ho', A, d2) # grad w1
Tim Dettmers's avatar
Tim Dettmers committed
834
835
836
837
838

    torch.cuda.synchronize()
    t16 = time.time() - t0
    print(t16)

839
    # torch.cuda.empty_cache()
Tim Dettmers's avatar
Tim Dettmers committed
840

841
842
    # Cw1, Cw1t, statsw1, statsw1t, coo_tensor = F.double_quant(w1)
    # Cw2, Cw2t, statsw2, statsw2t, coo_tensor = F.double_quant(w2)
Tim Dettmers's avatar
Tim Dettmers committed
843

844
845
846
847
    # CTw1, Sw1 = F.transform2(Cw1, formatB)
    # CTw2, Sw2 = F.transform2(Cw2, formatB)
    # CTw2t, Sw2t = F.transform2(Cw2t, formatB, transpose=True)
    # CTw1t, Sw1t = F.transform2(Cw1t, formatB, transpose=True)
Tim Dettmers's avatar
Tim Dettmers committed
848

849
850
    # CA, CAt, statsA, statsAt, coo_tensor = F.double_quant(A)
    # C32A, SA = F.transform2(CA, 'col32')
Tim Dettmers's avatar
Tim Dettmers committed
851
    ## fc1
852
    # out1_32, Sout1_32 = F.igemmlt(C32A, CTw1, SA, Sw1, dtype=dtype)
Tim Dettmers's avatar
Tim Dettmers committed
853
854
855
    ##out1 = F.mm_dequant(out1_32, Sout1_32, statsAt, statsw1t)

    ## fc2
856
857
858
    # Cout1, Cout1t, statsout1, statsout1t, coo_tensor = F.double_quant(out1)
    # C32out1, Sout1 = F.transform2(Cout1, 'col32')
    # out2_32, Sout2_32 = F.igemmlt(C32out1, CTw2, Sout1, Sw2, dtype=dtype)
Tim Dettmers's avatar
Tim Dettmers committed
859
860
861
    ##out2 = F.mm_dequant(out2_32, Sout2_32, statsout1t, statsw2t)

    ## delta1
862
863
    # Cgrad, Cgradt, statsgrad, statsgradt, coo_tensor = F.double_quant(grad)
    # C32grad, Sgrad = F.transform2(Cgrad, 'col32')
Tim Dettmers's avatar
Tim Dettmers committed
864
865
866
867
    ##d1_32, Sd1_32 = F.igemmlt(C32grad, CTw2t, Sgrad, Sw2t, dtype=dtype)
    ##d1 = F.mm_dequant(d1_32, Sd1_32, statsgradt, statsw2)

    ## delta2
868
869
    # Cd1, Cd1t, statsd1, statsd1t, coo_tensor = F.double_quant(d1)
    # C32d1, Sd1 = F.transform2(Cd1, 'col32')
Tim Dettmers's avatar
Tim Dettmers committed
870
871
872
873
    ##d2_32, Sd2_32 = F.igemmlt(C32d1, CTw1t, Sd1, Sw1t, dtype=dtype)
    ##d2 = F.mm_dequant(d2_32, Sd2_32, statsd1t, statsw1)

    ## grad1
874
875
    # C32out1t, Sout1t = F.transform2(Cout1t, 'col32', transpose=True)
    # CTgradt, Sgradt = F.transform2(Cgradt, formatB, transpose=True)
Tim Dettmers's avatar
Tim Dettmers committed
876
877
878
879
    ##grad1_32, Sgrad1_32 = F.igemmlt(C32out1t, CTgradt, Sout1t, Sgradt, dtype=dtype)
    ##grad1 = F.mm_dequant(grad1_32, Sgrad1_32, statsout1, statsgrad)

    ## grad2
880
881
    # C32At, SAt = F.transform2(CAt, 'col32', transpose=True)
    # CTd1t, Sd1t = F.transform2(Cd1t, formatB, transpose=True)
Tim Dettmers's avatar
Tim Dettmers committed
882
883
884
    ##grad2_32, Sgrad2_32 = F.igemmlt(C32At, CTd1t, SAt, Sd1t, dtype=dtype)
    ##grad2 = F.mm_dequant(grad2_32, Sgrad2_32, statsA, statsd1)

885
    # Cw2, Cw2t, statsw2, statsw2t, coo_tensor = F.double_quant(w2)
Tim Dettmers's avatar
Tim Dettmers committed
886

887
888
    # Cw1, Cw1t, statsw1, statsw1t, coo_tensor = F.double_quant(w1)
    # Cw2, Cw2t, statsw2, statsw2t, coo_tensor = F.double_quant(w2)
Tim Dettmers's avatar
Tim Dettmers committed
889

890
891
892
893
894
895
896
    # CTw1, Sw1 = F.transform2(Cw1, formatB)
    # CTw1t, Sw1t = F.transform2(Cw1t, formatB, transpose=True)
    # CTw2, Sw2 = F.transform2(Cw2, formatB)
    # CTw2t, Sw2t = F.transform2(Cw2t, formatB, transpose=True)
    # torch.cuda.synchronize()
    # t0 = time.time()
    # for i in range(k):
Tim Dettmers's avatar
Tim Dettmers committed
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
    #    #Cw1, Cw1t, statsw1, statsw1t, coo_tensor = F.double_quant(w1)
    #    #CTw1, Sw1 = F.transform2(Cw1, formatB)
    #    #Cw1, Cw1t, statsw1, statsw1t, coo_tensor = F.double_quant(w1)
    #    #CTw1, Sw1 = F.transform2(Cw1, formatB)

    #    #CA, CAt, statsA, statsAt, coo_tensor = F.double_quant(A, threshold=3.5)
    #    CA, CAt, statsA, statsAt, coo_tensor = F.double_quant(A)
    #    #CTw1t, Sw1t = F.transform2(Cw1t, formatB, transpose=True)
    #    #CTw2, Sw2 = F.transform2(Cw2, formatB)
    #    #CTw2t, Sw2t = F.transform2(Cw2t, formatB, transpose=True)

    #    C32A, SA = F.transform2(CA, 'col32')

    #    # fc1
    #    out1_32, Sout1_32 = F.igemmlt(C32A, CTw1, SA, Sw1, dtype=dtype)
    #    #out1dn = F.mm_dequant(out1_32, Sout1_32, statsA, statsw1)

    #    #print(coo_tensor.nnz)
    #    #out1sp = F.spmm_coo(coo_tensor, w1.t())
    #    #print(w1.t().shape)
    #    #out1 = out1dn + out1sp

    #    # fc2
    #    Cout1, Cout1t, statsout1, statsout1t, coo_tensor = F.double_quant(out1)
    #    C32out1, Sout1 = F.transform2(Cout1, 'col32')
    #    out2_32, Sout2_32 = F.igemmlt(C32out1, CTw2, Sout1, Sw2, dtype=dtype)
    #    #out2 = F.mm_dequant(out2_32, Sout2_32, statsout1, statsw2)

    #    # delta1
    #    Cgrad, Cgradt, statsgrad, statsgradt, coo_tensor = F.double_quant(grad)
    #    C32grad, Sgrad = F.transform2(Cgrad, 'col32')
    #    d1_32, Sd1_32 = F.igemmlt(C32grad, CTw2t, Sgrad, Sw2t, dtype=dtype)
    #    #d1 = F.mm_dequant(d1_32, Sd1_32, statsgrad, statsw2t)

    #    # delta2
    #    Cd1, Cd1t, statsd1, statsd1t, coo_tensor = F.double_quant(d1)
    #    C32d1, Sd1 = F.transform2(Cd1, 'col32')
    #    d2_32, Sd2_32 = F.igemmlt(C32d1, CTw1t, Sd1, Sw1t, dtype=dtype)
    #    #d2 = F.mm_dequant(d2_32, Sd2_32, statsd1, statsw1t)

    #    # grad1
    #    #C32out1t, Sout1t = F.transform2(Cout1t, 'col32', transpose=True)
    #    #CTgradt, Sgradt = F.transform2(Cgradt, formatB, transpose=True)
    #    #grad1_32, Sgrad1_32 = F.igemmlt(C32out1t, CTgradt, Sout1t, Sgradt, dtype=dtype)
    #    #grad1 = F.mm_dequant(grad1_32, Sgrad1_32, statsout1t, statsgradt)

    #    ## grad2
    #    #C32At, SAt = F.transform2(CAt, 'col32', transpose=True)
    #    #CTd1t, Sd1t = F.transform2(Cd1t, formatB, transpose=True)
    #    #grad2_32, Sgrad2_32 = F.igemmlt(C32At, CTd1t, SAt, Sd1t, dtype=dtype)
    #    #grad2 = F.mm_dequant(grad2_32, Sgrad2_32, statsAt, statsd1t)

949
950
951
    # torch.cuda.synchronize()
    # t8 = time.time() - t0
    # print(t8)
Tim Dettmers's avatar
Tim Dettmers committed
952
953
954


n = 2
955
956
dim1 = torch.randint(64, 256, size=(n,)).tolist()
dim4 = torch.randint(64, 1024, size=(n,)).tolist()
Tim Dettmers's avatar
Tim Dettmers committed
957

958
959
#dim1 = [2*1024]
#dim4 = [2*1024]
Tim Dettmers's avatar
Tim Dettmers committed
960

Tim Dettmers's avatar
Tim Dettmers committed
961
962
#dim1 = [4]
#dim4 = [4]
Tim Dettmers's avatar
Tim Dettmers committed
963
964

dims = (2,)
965
formatB = ["col_turing", "col_ampere"]
966
967
has_bias = [True, False]
values = list(product(dim1, dim4, dims, formatB, has_bias))
968
names = ["dim1_{}_dim4_{}_dims_{}_formatB_{}_has_bias_{}".format(*vals) for vals in values]
969
970


971
972
@pytest.mark.parametrize("dim1, dim4, dims, formatB, has_bias", values, ids=names)
def test_dequant_mm(dim1, dim4, dims, formatB, has_bias):
Tim Dettmers's avatar
Tim Dettmers committed
973
    inner = torch.randint(1, 128, size=(1,)).item()
974
975
    bias = None
    if has_bias: bias = torch.randn(dim4, device='cuda', dtype=torch.float16)
Tim Dettmers's avatar
Tim Dettmers committed
976
    formatB = F.get_special_format_str()
Tim Dettmers's avatar
Tim Dettmers committed
977
    for i in range(1):
978
979
        A = torch.randn(dim1, inner, device="cuda")
        B = torch.randn(dim4, inner, device="cuda")
Tim Dettmers's avatar
Tim Dettmers committed
980
        C1 = torch.matmul(A.half(), B.t().half())
981
        if has_bias: C1 += bias
Tim Dettmers's avatar
Tim Dettmers committed
982
983
984
985

        A1, maxA = F.vectorwise_quant(A, dim=1)
        B1, maxB = F.vectorwise_quant(B, dim=1)

986
        A2, SA = F.nvidia_transform(A1, "col32")
Tim Dettmers's avatar
Tim Dettmers committed
987
988
989
        B2, SB = F.nvidia_transform(B1, formatB)
        C2, SC = F.igemmlt(A2, B2, SA, SB)

990
        C3, S = F.nvidia_transform(C2, "row", state=SC)
Tim Dettmers's avatar
Tim Dettmers committed
991
        C4 = F.vectorwise_mm_dequant(C3.float(), maxA, maxB.t())
992
        if has_bias: C4 += bias
Tim Dettmers's avatar
Tim Dettmers committed
993

994
995
996
997
998
999
1000
        # TODO: is something wrong here? If so, the problem goes deeper
        #n = C1.numel()
        #p = 0.06
        std = C1.std(0).view(1, -1)
        C1 /= std
        C4 /= std
        #assert_all_approx_close(C1, C4, atol=0.02, rtol=0.1, count=int(n*0.06))
Tim Dettmers's avatar
Tim Dettmers committed
1001
        #assert (count / n < p), f"error in more than {p} of elements: {count}/{n}={count/n}"
Tim Dettmers's avatar
Tim Dettmers committed
1002

1003
        C5 = F.mm_dequant(C2, SC, maxA.flatten(), maxB.flatten(), bias=bias)
1004
1005
1006
        #torch.testing.assert_allclose(C5, C4, atol=0.015, rtol=0.1)
        n = C5.numel()
        assert_all_approx_close(C1, C4, atol=0.015, rtol=0.1, count=int(0.01*n))
Tim Dettmers's avatar
Tim Dettmers committed
1007
1008
1009


n = 2
1010
1011
1012
1013
dim1 = [1 * 1024]
dim2 = [1 * 1024]
# dim1 = torch.randint(1,4*1024, size=(n,)).tolist()
# dim2 = torch.randint(1,4*1024, size=(n,)).tolist()
Tim Dettmers's avatar
Tim Dettmers committed
1014
1015

dims = (2,)
1016
1017
# ldb = list(range(256, 1*1024, 256))
values = list(product(dim1, dim2, dims))
1018
names = ["dim1_{}_dim2_{}_dims_{}".format(*vals) for vals in values]
1019
1020


Tim Dettmers's avatar
Tim Dettmers committed
1021
1022
1023
1024
@pytest.mark.parametrize("dim1, dim2, dims", values, ids=names)
def test_colrow_absmax(dim1, dim2, dims):
    for i in range(k):
        threshold = 3.0
1025
        A = torch.randn(dim1, dim2, device="cuda").half()
Tim Dettmers's avatar
Tim Dettmers committed
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
        A_truncated = A.clone()
        A_truncated[torch.abs(A_truncated) >= 3.0] = 0.0
        if dims == 2:
            row_stats1, _ = torch.abs(A.float()).max(1)
            col_stats1, _ = torch.abs(A.float()).max(0)
            row_stats1_trunc, _ = torch.abs(A_truncated.float()).max(1)
            col_stats1_trunc, _ = torch.abs(A_truncated.float()).max(0)
        else:
            assert False

1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
        row_stats2, col_stats2, nnz_block_ptr2 = F.get_colrow_absmax(
            A, threshold=threshold
        )

        A_blocked = einops.rearrange(
            torch.abs(A),
            "(rows row_tiles) (cols block_size)-> rows cols row_tiles block_size",
            row_tiles=16,
            block_size=64 * 4,
        )
        nnz_rows1_counts = (torch.abs(A_blocked) >= threshold).sum(3).flatten()
        nnz_block_ptr1 = torch.zeros(
            nnz_rows1_counts.shape[0] + 1,
            dtype=nnz_rows1_counts.dtype,
            device=nnz_rows1_counts.device,
        )
Tim Dettmers's avatar
Tim Dettmers committed
1052
1053
1054
1055
1056
1057
        nnz_block_ptr1[1:] = nnz_rows1_counts.cumsum(0)

        torch.testing.assert_allclose(col_stats1_trunc, col_stats2)
        torch.testing.assert_allclose(row_stats1_trunc, row_stats2)
        torch.testing.assert_allclose(nnz_block_ptr1, nnz_block_ptr2)

1058
1059
1060
        row_stats2, col_stats2, nnz_block_ptr2 = F.get_colrow_absmax(
            A, threshold=0.0
        )
Tim Dettmers's avatar
Tim Dettmers committed
1061
1062
1063
1064
1065
1066
1067

        torch.testing.assert_allclose(col_stats1, col_stats2)
        torch.testing.assert_allclose(row_stats1, row_stats2)
        assert nnz_block_ptr2 is None


n = 2
1068
1069
1070
1071
1072
1073
# dim1 = [8*1024]
# dim2 = [4*1024]
dim1 = torch.randint(1, 4 * 1024, size=(n,)).tolist()
dim2 = torch.randint(1, 4 * 1024, size=(n,)).tolist()

values = list(product(dim1, dim2))
1074
names = ["dim1_{}_dim2_{}".format(*vals) for vals in values]
1075

Tim Dettmers's avatar
Tim Dettmers committed
1076
1077
1078
1079

@pytest.mark.parametrize("dim1, dim2", values, ids=names)
def test_double_quant(dim1, dim2):
    for i in range(k):
1080
        A = torch.randn(dim1, dim2, device="cuda").half()
Tim Dettmers's avatar
Tim Dettmers committed
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
        out_col1, Scol = F.vectorwise_quant(A, dim=0)
        out_row1, Srow = F.vectorwise_quant(A, dim=1)

        CA, CAt, statsA, statsAt, coo_tensor = F.double_quant(A)

        # max difference is 1 due to rounding differences
        torch.testing.assert_allclose(CA, out_row1, atol=1, rtol=0)
        torch.testing.assert_allclose(CAt, out_col1, atol=1, rtol=0)

        n = CAt.numel()
1091
1092
1093
1094
1095
1096
        num_not_close_rows = (
            (torch.isclose(CA, out_row1, atol=1) == 0).sum().item()
        )
        num_not_close_cols = (
            (torch.isclose(CAt, out_col1, atol=1) == 0).sum().item()
        )
Tim Dettmers's avatar
Tim Dettmers committed
1097
1098

        # allow for 1:500 error due to rounding differences
1099
1100
1101
1102
1103
        min_error = 1 / 500
        if num_not_close_cols > (min_error * n):
            print(
                f"Min error exceeded {num_not_close_cols} elements are different. Error: {num_not_close_cols/n:.4f}"
            )
Tim Dettmers's avatar
Tim Dettmers committed
1104
            assert False
1105
1106
1107
1108
        if num_not_close_rows > (min_error * n):
            print(
                f"Min error exceeded {num_not_close_rows} elements are different. Error: {num_not_close_rows/n:.4f}"
            )
Tim Dettmers's avatar
Tim Dettmers committed
1109
1110
1111
1112
1113
1114
1115
            assert False

        torch.testing.assert_allclose(Srow.flatten(), statsA)
        torch.testing.assert_allclose(Scol.flatten(), statsAt)


n = 4
1116
1117
1118
dim1 = torch.randint(1, 4 * 1024, size=(n,)).tolist()
dim4 = torch.randint(1, 4 * 1024, size=(n,)).tolist()
inner = torch.randint(1, 4 * 1024, size=(n,)).tolist()
Tim Dettmers's avatar
Tim Dettmers committed
1119
1120

values = list(zip(dim1, dim4, inner))
1121
names = ["dim1_{}_dim4_{}_inner_{}".format(*vals) for vals in values]
1122
1123


Tim Dettmers's avatar
Tim Dettmers committed
1124
1125
1126
@pytest.mark.parametrize("dim1, dim4, inner", values, ids=names)
def test_integrated_igemmlt(dim1, dim4, inner):
    for i in range(k):
1127
1128
        A = torch.randn(dim1, inner, device="cuda").half()
        B = torch.randn(dim4, inner, device="cuda").half()
Tim Dettmers's avatar
Tim Dettmers committed
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141

        out1 = torch.matmul(A.half(), B.t().half())

        C1a, C1b, stats1a, stats1b, coo_tensor = F.double_quant(A)
        C2a, C2b, stats2a, stats2b, coo_tensor = F.double_quant(B)
        A1, maxA = F.vectorwise_quant(A, dim=1)
        B1, maxB = F.vectorwise_quant(B, dim=1)

        torch.testing.assert_allclose(maxA.flatten(), stats1a)
        torch.testing.assert_allclose(maxB.flatten(), stats2a)
        torch.testing.assert_allclose(C1a, A1, rtol=0, atol=1)
        torch.testing.assert_allclose(C2a, B1, rtol=0, atol=1)

1142
1143
        A2, SA = F.nvidia_transform(C1a, "col32")
        B2, SB = F.nvidia_transform(C2a, "col_turing")
Tim Dettmers's avatar
Tim Dettmers committed
1144
1145
1146
        outC32, SC = F.igemmlt(A2, B2, SA, SB)
        out2 = F.mm_dequant(outC32, SC, stats1a, stats2a)

1147
1148
        A2, SA = F.nvidia_transform(A1, "col32")
        B2, SB = F.nvidia_transform(B1, "col_turing")
Tim Dettmers's avatar
Tim Dettmers committed
1149
1150
        C2, SC = F.igemmlt(A2, B2, SA, SB)

1151
        C3, S = F.nvidia_transform(C2, "row", state=SC)
Tim Dettmers's avatar
Tim Dettmers committed
1152
1153
        out3 = F.vectorwise_mm_dequant(C3.float(), maxA, maxB.t())

1154
1155
        err1 = torch.abs(out1 - out2).mean().item()
        err2 = torch.abs(out1 - out3).mean().item()
1156
        assert err2 <= err1 * 1.025
Tim Dettmers's avatar
Tim Dettmers committed
1157
1158
1159


n = 6
1160
1161
1162
dim1 = torch.randint(1, 4 * 1024, size=(n,)).tolist()
dim4 = torch.randint(1, 4 * 1024, size=(n,)).tolist()
inner = torch.randint(1, 4 * 1024, size=(n,)).tolist()
Tim Dettmers's avatar
Tim Dettmers committed
1163
1164

values = list(zip(dim1, dim4, inner))
1165
names = ["dim1_{}_dim4_{}_inner_{}".format(*vals) for vals in values]
1166
1167


Tim Dettmers's avatar
Tim Dettmers committed
1168
@pytest.mark.parametrize("dim1, dim4, inner", values, ids=names)
1169
@pytest.mark.skip("Row scale has some bugs for ampere")
Tim Dettmers's avatar
Tim Dettmers committed
1170
1171
1172
1173
1174
1175
def test_igemmlt_row_scale(dim1, dim4, inner):
    formatB = F.get_special_format_str()
    err1, err2, err3 = [], [], []
    relerr1, relerr2 = [], []
    scale = 1
    for i in range(k):
1176
1177
        A = torch.randn(dim1, inner, device="cuda").half()
        B = torch.randn(dim4, inner, device="cuda").half()
Tim Dettmers's avatar
Tim Dettmers committed
1178
1179
1180
1181
1182
1183
        torch.nn.init.xavier_uniform_(B)
        C1 = torch.matmul(A, B.t())

        out1 = torch.matmul(A.half(), B.t().half())

        C1a, C1b, stats1a, stats1b, coo_tensor = F.double_quant(A)
1184
1185
        CB, absmaxB = F.vectorwise_quant(B, quant_type="linear")
        A2, SA = F.nvidia_transform(C1a, "col32")
Tim Dettmers's avatar
Tim Dettmers committed
1186
1187
1188
        B2, SB = F.nvidia_transform(CB, formatB)
        A1, maxA = F.vectorwise_quant(A, dim=1)

1189
1190
        c = 10.0 * inner * scale
        row_scale = torch.ones_like(maxA) / c
1191
1192
1193
        outC32, SC = F.igemmlt(
            A2, B2, SA, SB, dtype=torch.int8, row_scale=row_scale
        )
1194
        C3, S = F.nvidia_transform(outC32, "row", state=SC)
Tim Dettmers's avatar
Tim Dettmers committed
1195
1196
1197
1198
        maxval = torch.abs(C3).max()
        if maxval == 127:
            scale = 1.5
        else:
1199
1200
            scale = maxval / 120
        out3 = C3 * maxA * absmaxB * c / (127 * 127)
Tim Dettmers's avatar
Tim Dettmers committed
1201
1202
1203
1204
1205
1206
1207
1208

        C4 = torch.matmul(C1a.float(), CB.float().t())

        C2a, C2b, stats2a, stats2b, coo_tensor = F.double_quant(B)
        B2, SB = F.nvidia_transform(C2a, formatB)
        outC32, SC = F.igemmlt(A2, B2, SA, SB)
        out2 = F.mm_dequant(outC32, SC, stats1a, stats2a)

1209
1210
        CA, SA = F.vectorwise_quant(A, dim=1, quant_type="vector")
        CB, SB = F.vectorwise_quant(B, dim=1, quant_type="linear")
Tim Dettmers's avatar
Tim Dettmers committed
1211
1212

        C = torch.matmul(CA.float(), CB.t().float())
1213
1214
        out4 = C * SA * SB / (127 * 127)
        # out4 = torch.clip(torch.round(C*SA/c), -127, 127)*c*SB/(127*127)
Tim Dettmers's avatar
Tim Dettmers committed
1215

1216
1217
1218
1219
        # print('='*80)
        # print(out1)
        # print(out2)
        # print(out3)
Tim Dettmers's avatar
Tim Dettmers committed
1220

1221
1222
1223
1224
1225
1226
        # print(out1)
        # print(out2)
        # print(out3)
        err1.append(torch.abs(out1 - out2).mean().item())
        err2.append(torch.abs(out1 - out3).mean().item())
        err3.append(torch.abs(out1 - out4).mean().item())
Tim Dettmers's avatar
Tim Dettmers committed
1227

1228
1229
1230
1231
1232
        # assert_all_approx_close(C3.float(), torch.round(C4*row_scale), rtol=0, atol=0, count=10)
    print("")
    print(sum(err1) / len(err1))
    print(sum(err2) / len(err2))
    print(sum(err3) / len(err3))
Tim Dettmers's avatar
Tim Dettmers committed
1233
1234
1235


dim1 = [1024, 2048]
1236
inner = [12288 * 4, 4096 * 4]
Tim Dettmers's avatar
Tim Dettmers committed
1237
1238
1239
dim4 = [12288, 4096]

values = list(zip(dim1, dim4, inner))
1240
names = ["dim1_{}_dim4_{}_inner_{}".format(*vals) for vals in values]
1241
1242


Tim Dettmers's avatar
Tim Dettmers committed
1243
@pytest.mark.parametrize("dim1, dim4, inner", values, ids=names)
1244
@pytest.mark.skip("Row scale has some bugs for ampere")
Tim Dettmers's avatar
Tim Dettmers committed
1245
1246
1247
1248
def test_row_scale_bench(dim1, dim4, inner):
    err1, err2, err3 = [], [], []
    relerr1, relerr2 = [], []
    scale = 1
1249
1250
    A = torch.randn(dim1, inner, device="cuda").half()
    B = torch.randn(dim4, inner, device="cuda").half()
Tim Dettmers's avatar
Tim Dettmers committed
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
    torch.nn.init.xavier_uniform_(B)
    # warmpup
    for i in range(k):
        C1 = torch.matmul(A, B.t())

    torch.cuda.synchronize()
    t0 = time.time()
    for i in range(k):
        C1 = torch.matmul(A, B.t())
    torch.cuda.synchronize()
1261
    print("16", time.time() - t0)
Tim Dettmers's avatar
Tim Dettmers committed
1262
1263

    C1a, C1b, stats1a, stats1b, coo_tensor = F.double_quant(A)
1264
1265
    CB, absmaxB = F.vectorwise_quant(B, quant_type="linear")
    A2, SA = F.nvidia_transform(C1a, "col32")
Tim Dettmers's avatar
Tim Dettmers committed
1266
1267
1268
    B2, SB = F.nvidia_transform(CB, formatB)
    A1, maxA = F.vectorwise_quant(A, dim=1)

1269
1270
    c = 10.0 * inner * scale
    row_scale = maxA / c
Tim Dettmers's avatar
Tim Dettmers committed
1271
1272
1273
    torch.cuda.synchronize()
    t0 = time.time()
    for i in range(k):
1274
1275
1276
        outC32, SC = F.igemmlt(
            A2, B2, SA, SB, dtype=torch.int8, row_scale=row_scale
        )
Tim Dettmers's avatar
Tim Dettmers committed
1277
    torch.cuda.synchronize()
1278
    print("row-wise", time.time() - t0)
Tim Dettmers's avatar
Tim Dettmers committed
1279
1280
1281
1282
1283
1284
1285
1286

    C2a, C2b, stats2a, stats2b, coo_tensor = F.double_quant(B)
    B2, SB = F.nvidia_transform(C2a, formatB)
    torch.cuda.synchronize()
    t0 = time.time()
    for i in range(k):
        outC32, SC = F.igemmlt(A2, B2, SA, SB)
    torch.cuda.synchronize()
1287
    print("vector-wise", time.time() - t0)
Tim Dettmers's avatar
Tim Dettmers committed
1288
1289
1290


n = 2
1291
1292
1293
1294
dim1 = torch.randint(2, 1024, size=(n,)).tolist()
dim2 = torch.randint(2, 1024, size=(n,)).tolist()
# dim1 = [8*1024]
# dim2 = [4*1024]
Tim Dettmers's avatar
Tim Dettmers committed
1295
1296
1297

dim3 = [0]
dtype = [torch.int8]
1298
1299
a_order = ["row"]
out_order = ["col32", "col_turing", "col_ampere"]
Tim Dettmers's avatar
Tim Dettmers committed
1300
1301
transpose = [False, True]
dims = [2]
1302
1303
1304
values = list(
    product(dim1, dim2, dim3, dims, dtype, a_order, out_order, transpose)
)
1305
names = [
1306
    "dim1_{}_dim2_{}_dim3_{}_dims_{}_dtype_{}_orderA_{}_orderOut_{}_{}".format(
1307
1308
1309
1310
1311
1312
1313
        *vals
    )
    for vals in values
]


@pytest.mark.parametrize(
1314
1315
1316
    "dim1, dim2, dim3, dims, dtype, orderA, orderOut, transpose",
    values,
    ids=names,
1317
)
Tim Dettmers's avatar
Tim Dettmers committed
1318
1319
1320
def test_transform(dim1, dim2, dim3, dims, dtype, orderA, orderOut, transpose):
    for i in range(k):
        if dims == 2:
1321
1322
1323
            A = torch.randint(10, 99, size=(dim1, dim2), device="cuda").to(
                dtype
            )
Tim Dettmers's avatar
Tim Dettmers committed
1324
        elif dims == 3:
1325
1326
1327
            A = torch.randint(
                10, 99, size=(dim1, dim2, dim3), device="cuda"
            ).to(dtype)
Tim Dettmers's avatar
Tim Dettmers committed
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338

        A.view(-1)[-1] = -1
        if transpose:
            At = A.t().contiguous()
            out1, S1 = F.nvidia_transform(At, to_order=orderOut)
        else:
            out1, S1 = F.nvidia_transform(A, to_order=orderOut)
        out2, S2 = F.transform(A, to_order=orderOut, transpose=transpose)

        assert S1[0][0] == S2[0][0]
        assert S1[0][1] == S2[0][1]
1339
1340
        # print(out1)
        # print(out2)
Tim Dettmers's avatar
Tim Dettmers committed
1341
1342
1343

        torch.testing.assert_allclose(out1, out2)

1344

Tim Dettmers's avatar
Tim Dettmers committed
1345
n = 2
1346
1347
# dim1 = torch.randint(2,1024, size=(n,)).tolist()
# dim2 = torch.randint(2,1024, size=(n,)).tolist()
Tim Dettmers's avatar
Tim Dettmers committed
1348
1349
1350
1351
dim1 = [1]
dim2 = [33]

dtype = [torch.int8]
1352
1353
1354
1355
1356
# a_order = ['col_turing', 'col_ampere']
a_order = ["col_turing"]
out_order = ["row"]
values = list(product(dim1, dim2, dtype, a_order, out_order))
names = [
1357
    "dim1_{}_dim2_{}_dtype_{}_orderA_{}_orderOut_{}".format(*vals)
1358
1359
1360
1361
    for vals in values
]


Tim Dettmers's avatar
Tim Dettmers committed
1362
1363
def test_overflow():
    formatB = F.get_special_format_str()
1364
    print(formatB)
Tim Dettmers's avatar
Tim Dettmers committed
1365
    for i in range(2):
1366
1367
        a = torch.arange(5, 15).cuda().to(torch.int8).view(-1, 1)
        b = torch.arange(5, 15).cuda().to(torch.int8).view(-1, 1)
Tim Dettmers's avatar
Tim Dettmers committed
1368

1369
        Ca, Sa = F.nvidia_transform(a, "col32")
Tim Dettmers's avatar
Tim Dettmers committed
1370
1371
1372
1373
1374
1375
1376
        Cb, Sb = F.nvidia_transform(b, formatB)

        c = F.igemmlt(Ca, Cb, Sa, Sb, dtype=torch.int8)
        c2 = torch.matmul(a.float(), b.float().t())


n = 2
1377
1378
1379
1380
1381
1382
dim1 = torch.randint(1, 4 * 1024, size=(n,)).tolist()
dim2 = torch.randint(1, 4 * 1024, size=(n,)).tolist()
# dim1 = [4]
# dim2 = [5]

values = list(product(dim1, dim2))
1383
names = ["dim1_{}_dim2_{}".format(*vals) for vals in values]
1384

Tim Dettmers's avatar
Tim Dettmers committed
1385
1386
1387
1388
1389

@pytest.mark.parametrize("dim1, dim2", values, ids=names)
def test_coo_double_quant(dim1, dim2):
    threshold = 3.00
    for i in range(k):
1390
        A = torch.randn(dim1, dim2, device="cuda").half()
Tim Dettmers's avatar
Tim Dettmers committed
1391

1392
        idx = torch.abs(A) >= threshold
Tim Dettmers's avatar
Tim Dettmers committed
1393
        CA2, CAt, statsA, statsAt, coo_tensor = F.double_quant(A)
1394
1395
1396
        CA, CAt, statsA, statsAt, coo_tensor = F.double_quant(
            A, threshold=threshold
        )
Tim Dettmers's avatar
Tim Dettmers committed
1397
1398

        if coo_tensor is not None:
1399
            A1 = A * idx
Tim Dettmers's avatar
Tim Dettmers committed
1400
            A2 = torch.zeros_like(A)
1401
1402
1403
            A2[
                coo_tensor.rowidx.long(), coo_tensor.colidx.long()
            ] = coo_tensor.values
Tim Dettmers's avatar
Tim Dettmers committed
1404
1405
            torch.testing.assert_allclose(A1, A2)

1406
1407
            A1 = A * (idx == 0)
            A2 = (CA.float() * statsA.unsqueeze(1) / 127).half()
1408
1409
1410
            torch.testing.assert_allclose(
                A * (idx == 0), A2, rtol=0.05, atol=1.5e-2
            )
1411

Tim Dettmers's avatar
Tim Dettmers committed
1412
1413

n = 2
1414
1415
1416
1417
dim1 = torch.randint(1, 1 * 1024, size=(n,)).tolist()
dim2 = torch.randint(1, 1 * 1024, size=(n,)).tolist()
# dim1 = [7]
# dim2 = [11]
Tim Dettmers's avatar
Tim Dettmers committed
1418
transposed_B = [False, True]
1419
values = list(product(dim1, dim2, transposed_B))
1420
names = ["dim1_{}_dim2_{}_transposed_B_{}".format(*vals) for vals in values]
1421
1422


Tim Dettmers's avatar
Tim Dettmers committed
1423
1424
1425
1426
@pytest.mark.parametrize("dim1, dim2, transposed_B", values, ids=names)
def test_spmm_coo(dim1, dim2, transposed_B):
    threshold = 1.5
    dim3 = torch.randint(32, 128, size=(1,)).item()
1427
    # dim3 = 17
Tim Dettmers's avatar
Tim Dettmers committed
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
    for i in range(k):
        A = torch.randn(dim1, dim2).cuda().half()
        if transposed_B:
            B = torch.randn(dim3, dim2).cuda().half()
        else:
            B = torch.randn(dim2, dim3).cuda().half()

        idx = torch.abs(A) >= threshold
        nnz = (idx == 1).sum().item()
        rows, cols = torch.where(idx)
        values = A[idx]
1439
1440
1441
1442
        cooA = F.COOSparseTensor(
            A.shape[0], A.shape[1], nnz, rows.int(), cols.int(), values
        )
        A2 = A * idx
Tim Dettmers's avatar
Tim Dettmers committed
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455

        if transposed_B:
            out2 = F.spmm_coo(cooA, B.t())
            out1 = torch.matmul(A2, B.t())
        else:
            out2 = F.spmm_coo(cooA, B)
            out1 = torch.matmul(A2, B)

        assert_all_approx_close(out1, out2, rtol=0.01, atol=3.0e-2, count=30)


def test_spmm_bench():
    batch = 2
1456
1457
    model = 1024 * 1
    hidden = model * 4
Tim Dettmers's avatar
Tim Dettmers committed
1458
    seq = 1024
1459
    dim1 = batch * seq
Tim Dettmers's avatar
Tim Dettmers committed
1460
1461
1462
    dim2 = model
    dim3 = hidden
    threshold = 4
1463
1464
    A = torch.randn(dim1, dim2, device="cuda").half()
    B = torch.randn(dim2, dim3, device="cuda").half()
Tim Dettmers's avatar
Tim Dettmers committed
1465
    for i in range(10):
1466
        C1 = bnb.matmul(A, B.t())
Tim Dettmers's avatar
Tim Dettmers committed
1467
1468
1469
1470

    torch.cuda.synchronize()
    t0 = time.time()
    for i in range(k):
1471
        C1 = bnb.matmul(A, B.t())
Tim Dettmers's avatar
Tim Dettmers committed
1472
    torch.cuda.synchronize()
1473
    t8 = time.time() - t0
Tim Dettmers's avatar
Tim Dettmers committed
1474
1475
1476

    idx = torch.abs(A) >= threshold
    nnz = (idx == 1).sum().item()
1477
    print(nnz / idx.numel())
Tim Dettmers's avatar
Tim Dettmers committed
1478
1479
    rows, cols = torch.where(idx)
    values = A[idx]
1480
1481
1482
    cooA = F.COOSparseTensor(
        A.shape[0], A.shape[1], nnz, rows.int(), cols.int(), values
    )
Tim Dettmers's avatar
Tim Dettmers committed
1483
1484

    for i in range(10):
Tim Dettmers's avatar
Tim Dettmers committed
1485
1486
1487
1488
1489
1490
1491
        out2 = F.spmm_coo(cooA, B)

    torch.cuda.synchronize()
    t0 = time.time()
    for i in range(k):
        out2 = F.spmm_coo(cooA, B)
    torch.cuda.synchronize()
1492
    tsp = time.time() - t0
Tim Dettmers's avatar
Tim Dettmers committed
1493
    print(tsp, t8)
1494
    print(tsp / t8)
Tim Dettmers's avatar
Tim Dettmers committed
1495
1496
1497


n = 2
1498
1499
1500
dim1 = torch.randint(256, 1 * 1024, size=(n,)).tolist()
dim2 = torch.randint(256, 1 * 1024, size=(n,)).tolist()
values = list(product(dim1, dim2))
1501
names = ["dim1_{}_dim2_{}".format(*vals) for vals in values]
1502
1503


Tim Dettmers's avatar
Tim Dettmers committed
1504
1505
1506
@pytest.mark.parametrize("dim1, dim2", values, ids=names)
def test_integrated_sparse_decomp(dim1, dim2):
    threshold = 3.0
1507
    formatB = "col_turing"
Tim Dettmers's avatar
Tim Dettmers committed
1508
1509
1510
1511
1512
1513
1514
1515
1516
    for i in range(k):
        A = torch.randn(dim1, dim2).cuda().half()
        w1 = torch.randn(dim1, dim2).cuda().half()
        out1 = torch.matmul(A, w1.t())

        Cw1, Cw1t, statsw1, statsw1t, coo_tensor = F.double_quant(w1)
        CTw1, Sw1 = F.transform(Cw1, formatB)

        CA, CAt, statsA, statsAt, coo_tensor = F.double_quant(A)
1517
        C32A, SA = F.transform(CA, "col32")
Tim Dettmers's avatar
Tim Dettmers committed
1518
1519
1520
1521

        out1_32, Sout1_32 = F.igemmlt(C32A, CTw1, SA, Sw1)
        out2 = F.mm_dequant(out1_32, Sout1_32, statsA, statsw1)

1522
1523
1524
        CA, CAt, statsA, statsAt, coo_tensor = F.double_quant(
            A, threshold=threshold
        )
1525
        C32A, SA = F.transform(CA, "col32")
Tim Dettmers's avatar
Tim Dettmers committed
1526
1527
1528
1529
1530
1531
1532
1533
1534

        out1_32, Sout1_32 = F.igemmlt(C32A, CTw1, SA, Sw1)
        out3 = F.mm_dequant(out1_32, Sout1_32, statsA, statsw1)

        assert coo_tensor is not None

        out4 = F.spmm_coo(coo_tensor, w1.t())
        out5 = out3 + out4

1535
1536
        err1 = torch.abs(out1 - out2).mean().item()
        err2 = torch.abs(out1 - out5).mean().item()
Tim Dettmers's avatar
Tim Dettmers committed
1537
1538
1539
1540
        assert err2 < err1


def test_matmuls():
1541
1542
1543
    a = torch.randn(256, 512).half().cuda()
    b = torch.randn(256, 512).half().cuda()
    c1 = torch.matmul(a, b.t())
Tim Dettmers's avatar
Tim Dettmers committed
1544
    c2 = bnb.matmul(a, b)
1545
    c3 = bnb.matmul_cublas(a, b.t())
Tim Dettmers's avatar
Tim Dettmers committed
1546

1547
1548
    err1 = torch.abs(c1 - c2).mean().item()
    err2 = torch.abs(c1 - c3).mean().item()
Tim Dettmers's avatar
Tim Dettmers committed
1549
1550
    assert err1 < 0.2
    assert err2 < 0.2
1551
    print(err1, err2)
Tim Dettmers's avatar
Tim Dettmers committed
1552
1553
1554


n = 2
1555
1556
1557
# dim1 = torch.randint(1,1*1024, size=(n,)).tolist()
# dim2 = torch.randint(1,4*1024, size=(n,)).tolist()
dim1 = [1 * 2048]
Tim Dettmers's avatar
Tim Dettmers committed
1558
dim2 = [12288]
1559
1560
1561
# dim1 = [32]
# dim2 = [32]
# dtype = [torch.float16, torch.int8]
Tim Dettmers's avatar
Tim Dettmers committed
1562
dtype = [torch.float16]
1563
1564
out_function = ["zeros", "ones"]
values = list(product(dim1, dim2, dtype, out_function))
1565
names = [
1566
    "dim1_{}_dim2_{}_dtype_{}_out_func_{}".format(*vals) for vals in values
1567
]
1568
1569


Tim Dettmers's avatar
Tim Dettmers committed
1570
1571
1572
1573
1574
@pytest.mark.parametrize("dim1, dim2, dtype, out_func", values, ids=names)
def test_spmm_coo_very_sparse(dim1, dim2, dtype, out_func):
    out_func = getattr(torch, out_func)

    threshold = 3.3
1575
1576
1577
    # threshold = 2.8
    # threshold = 0.0
    A = torch.randn(dim1, dim2, device="cuda").half()
Tim Dettmers's avatar
Tim Dettmers committed
1578
    if dtype == torch.float16:
1579
        B = torch.randn(dim2, dim2 * 4, device="cuda").half()
Tim Dettmers's avatar
Tim Dettmers committed
1580
1581
        torch.nn.init.xavier_uniform_(B)
    else:
1582
        B = torch.randn(dim2, dim2 * 4, device="cuda").half()
Tim Dettmers's avatar
Tim Dettmers committed
1583
        torch.nn.init.xavier_uniform_(B)
1584
1585
        B, SB = F.vectorwise_quant(B, quant_type="linear")
        # B = torch.randint(-127, 127, size=(dim2, dim2*4), device='cuda').to(torch.int8)
Tim Dettmers's avatar
Tim Dettmers committed
1586

1587
    print("")
Tim Dettmers's avatar
Tim Dettmers committed
1588
1589
1590
1591
    idx = torch.abs(A) >= threshold
    nnz = (idx == 1).sum().item()
    rows, cols = torch.where(idx)
    values = A[idx]
1592
1593
1594
1595
    cooA = F.COOSparseTensor(
        A.shape[0], A.shape[1], nnz, rows.int(), cols.int(), values
    )
    A2 = A * idx
Tim Dettmers's avatar
Tim Dettmers committed
1596
1597
1598
1599
    out1 = torch.matmul(A2.half(), B.half())
    out = out_func(out1.shape, dtype=torch.float16, device=out1.device)
    out1 += out.clone()
    out2 = F.spmm_coo_very_sparse(cooA, B, out=out)
1600
1601
1602
1603
    # print(B)
    # print(out1)
    # print(out2)
    p = 200 / (2048 * 12288 * 4)
Tim Dettmers's avatar
Tim Dettmers committed
1604
    n = out1.numel()
1605
    count = math.ceil(p * n)
Tim Dettmers's avatar
Tim Dettmers committed
1606
1607
1608
    std = out1.std()
    out1 /= std
    out2 /= std
1609
1610
1611
    assert_all_approx_close(
        out1, out2.half(), rtol=0.01, atol=3.0e-2, count=count
    )
1612
    # assert_all_approx_close(out1, out2.half(), rtol=0.05, atol=0.01, count=count)
Tim Dettmers's avatar
Tim Dettmers committed
1613
1614
1615

    idx_col = torch.randint(0, A2.shape[-1], size=(15,))

1616
    # torch.testing.assert_allclose(out1, out2.half(), rtol=0.05, atol=0.001)
Tim Dettmers's avatar
Tim Dettmers committed
1617

1618
1619
1620
1621
1622
    # Bt = torch.randn(dim2*4, dim2, device='cuda').half()
    # torch.cuda.synchronize()
    # t0 = time.time()
    # print(A2.shape, B.shape)
    # for i in range(100):
Tim Dettmers's avatar
Tim Dettmers committed
1623
1624
1625
1626
1627
    #   #out3 = F.spmm_coo(cooA, Bt.t())
    #   #out2 = F.spmm_coo(cooA, B)
    #   #out2 = F.spmm_coo_very_sparse(cooA, B)
    #   #out1 = torch.matmul(A, Bt.t())

1628
1629
1630
    # torch.cuda.synchronize()
    # print(time.time() - t0)

Tim Dettmers's avatar
Tim Dettmers committed
1631
1632
1633
1634
1635
1636
1637
1638

def test_coo2csr():
    threshold = 1
    A = torch.randn(128, 128).half().cuda()
    idx = torch.abs(A) >= threshold
    nnz = (idx == 1).sum().item()
    rows, cols = torch.where(idx)
    values = A[idx]
1639
1640
1641
1642
    cooA = F.COOSparseTensor(
        A.shape[0], A.shape[1], nnz, rows.int(), cols.int(), values
    )
    A2 = A * idx
Tim Dettmers's avatar
Tim Dettmers committed
1643
1644
1645
1646
    csrA = F.coo2csr(cooA)
    counts = csrA.rowptr[1:] - csrA.rowptr[:-1]
    assert counts.numel() == A.shape[0]

1647
1648
    torch.testing.assert_allclose(counts, (A2 != 0).sum(1))
    idx = A2 != 0
Tim Dettmers's avatar
Tim Dettmers committed
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
    torch.testing.assert_allclose(A2[idx], csrA.values)


def test_coo2csc():
    threshold = 1
    A = torch.randn(128, 128).half().cuda()
    idx = torch.abs(A) >= threshold
    nnz = (idx == 1).sum().item()
    rows, cols = torch.where(idx)
    values = A[idx]
1659
1660
1661
1662
    cooA = F.COOSparseTensor(
        A.shape[0], A.shape[1], nnz, rows.int(), cols.int(), values
    )
    A2 = A * idx
Tim Dettmers's avatar
Tim Dettmers committed
1663
1664
1665
1666
    cscA = F.coo2csc(cooA)
    counts = cscA.colptr[1:] - cscA.colptr[:-1]
    assert counts.numel() == A.shape[1]

1667
    torch.testing.assert_allclose(counts, (A2 != 0).sum(0))
Tim Dettmers's avatar
Tim Dettmers committed
1668
    # torch uses row-major -> use transpose to transfer to col-major
1669
    idx = A2.t() != 0
Tim Dettmers's avatar
Tim Dettmers committed
1670
1671
1672
1673
    torch.testing.assert_allclose(A2.t()[idx], cscA.values)


n = 2
1674
1675
1676
1677
# dim1 = torch.randint(1,1*1024, size=(n,)).tolist()
# dim2 = torch.randint(1,4*1024, size=(n,)).tolist()
dim1 = [1 * 2048]
# dim2 = [12288]
Tim Dettmers's avatar
Tim Dettmers committed
1678
dim2 = [2048]
1679
1680
# dim1 = [2]
# dim2 = [2]
Tim Dettmers's avatar
Tim Dettmers committed
1681
dtype = [torch.int8]
1682
values = list(product(dim1, dim2, dtype))
1683
names = ["dim1_{}_dim2_{}_dtype_{}".format(*vals) for vals in values]
1684
1685


Tim Dettmers's avatar
Tim Dettmers committed
1686
1687
1688
@pytest.mark.parametrize("dim1, dim2, dtype", values, ids=names)
def test_spmm_coo_dequant(dim1, dim2, dtype):
    threshold = 6.0
1689
1690
1691
1692
    # threshold = 2.8
    # threshold = 0.0
    A = torch.randn(dim1, dim2, device="cuda").half()
    B = torch.empty(dim2, dim2 * 4, device="cuda", dtype=torch.float16)
Tim Dettmers's avatar
Tim Dettmers committed
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
    torch.nn.init.xavier_uniform_(B)
    Bt = B.t().contiguous()

    CB, CBt, statsB, statsBt, coo_tensor = F.double_quant(B)

    rowidx = torch.randint(0, A.shape[-1], size=(15,))

    A[:, rowidx] = 8.0

    idx = torch.abs(A) >= threshold
    nnz = (idx == 1).sum().item()
    rows, cols = torch.where(idx)
    values = A[idx]
1706
1707
1708
1709
    cooA = F.COOSparseTensor(
        A.shape[0], A.shape[1], nnz, rows.int(), cols.int(), values
    )
    A2 = A * idx
Tim Dettmers's avatar
Tim Dettmers committed
1710
1711
1712
    out2 = F.spmm_coo_very_sparse(cooA, CBt, dequant_stats=statsBt)
    out1 = torch.matmul(A2, B.half())
    out3 = F.spmm_coo_very_sparse(cooA, CBt.half())
1713
    out3 = out3 * statsBt.half() / 127
Tim Dettmers's avatar
Tim Dettmers committed
1714
1715
1716
1717
1718
1719
1720
1721

    values, counts = torch.unique(cooA.rowidx, return_counts=True)
    offset = counts.cumsum(0).int()
    max_count, max_idx = torch.sort(counts, descending=True)
    print(torch.median(max_count.float()))

    torch.testing.assert_allclose(out2, out3, rtol=0.05, atol=0.001)

1722
    p = 200 / (2048 * 12288 * 4)
Tim Dettmers's avatar
Tim Dettmers committed
1723
    n = out1.numel()
1724
    count = math.ceil(p * n)
Tim Dettmers's avatar
Tim Dettmers committed
1725
1726
    assert_all_approx_close(out1, out2, rtol=0.01, atol=3.0e-2, count=count)

1727
1728
1729
    # torch.cuda.synchronize()
    # t0 = time.time()
    # for i in range(100):
Tim Dettmers's avatar
Tim Dettmers committed
1730
    #   out2 = F.spmm_coo_very_sparse(cooA, B)
1731
1732
    # torch.cuda.synchronize()
    # print('fp16', time.time() - t0)
Tim Dettmers's avatar
Tim Dettmers committed
1733
1734
1735
1736

    torch.cuda.synchronize()
    t0 = time.time()
    for i in range(100):
1737
        out2 = F.spmm_coo(cooA, B)
Tim Dettmers's avatar
Tim Dettmers committed
1738
    torch.cuda.synchronize()
1739
    print("cusparse fp16", time.time() - t0)
Tim Dettmers's avatar
Tim Dettmers committed
1740
1741
1742
1743

    torch.cuda.synchronize()
    t0 = time.time()
    for i in range(100):
1744
        out2 = F.spmm_coo_very_sparse(cooA, CBt)
Tim Dettmers's avatar
Tim Dettmers committed
1745
    torch.cuda.synchronize()
1746
    print("int8", time.time() - t0)
Tim Dettmers's avatar
Tim Dettmers committed
1747
1748
1749
1750

    torch.cuda.synchronize()
    t0 = time.time()
    for i in range(100):
1751
        out2 = F.spmm_coo_very_sparse(cooA, CBt, dequant_stats=statsBt)
Tim Dettmers's avatar
Tim Dettmers committed
1752
    torch.cuda.synchronize()
1753
    print("int8+dequant", time.time() - t0)
Tim Dettmers's avatar
Tim Dettmers committed
1754
1755
1756
1757

    torch.cuda.synchronize()
    t0 = time.time()
    for i in range(100):
1758
        out2 = torch.matmul(A, B)
Tim Dettmers's avatar
Tim Dettmers committed
1759
    torch.cuda.synchronize()
1760
    print("matmul", time.time() - t0)
Tim Dettmers's avatar
Tim Dettmers committed
1761
1762
1763
1764
1765
1766

    torch.cuda.synchronize()
    t0 = time.time()
    for i in range(100):
        out1 = bnb.matmul(A, Bt)
        out2 = F.spmm_coo_very_sparse(cooA, CBt, dequant_stats=statsBt)
1767
        out = out1 + out2
Tim Dettmers's avatar
Tim Dettmers committed
1768
    torch.cuda.synchronize()
1769
    print("sparse+ matmul", time.time() - t0)
Tim Dettmers's avatar
Tim Dettmers committed
1770
1771
1772
1773
1774
1775
1776

    torch.cuda.synchronize()
    t0 = time.time()
    for i in range(100):
        out1 = bnb.matmul(A, Bt)
        torch.matmul(A[:, rowidx], Bt.t()[rowidx], out=out1)
    torch.cuda.synchronize()
1777
    print("partial matmul", time.time() - t0)
Tim Dettmers's avatar
Tim Dettmers committed
1778
1779
1780
1781
1782
1783

    torch.cuda.synchronize()
    t0 = time.time()
    for i in range(100):
        out1 = bnb.matmul(A, Bt)
    torch.cuda.synchronize()
1784
1785
    print("partial matmul", time.time() - t0)

Tim Dettmers's avatar
Tim Dettmers committed
1786

Tim Dettmers's avatar
Tim Dettmers committed
1787
1788
batch_size = 4
seqdim = 256
Tim Dettmers's avatar
Tim Dettmers committed
1789
values = []
1790
values.append((batch_size, seqdim, 768, 4 * 768))
Tim Dettmers's avatar
Tim Dettmers committed
1791
1792
1793
1794
1795
1796
1797
values.append((batch_size, seqdim, 1024, 4*1024))
values.append((batch_size, seqdim, 1536, 4*1536))
values.append((batch_size, seqdim, 2048, 4*2048))
values.append((batch_size, seqdim, 2560, 4*2560))
values.append((batch_size, seqdim, 4096, 4*4096))
values.append((batch_size, seqdim, 5140, 4*5140))
values.append((batch_size, seqdim, 12288, 4*12288))
1798
names = ["batch_{}_seq_{}_model_{}_hidden_{}".format(*vals) for vals in values]
Tim Dettmers's avatar
Tim Dettmers committed
1799
1800
@pytest.mark.parametrize("batch, seq, model, hidden", values, ids=names)
def test_bench_matmul(batch, seq, model, hidden):
1801
    iters = 128
Tim Dettmers's avatar
Tim Dettmers committed
1802
1803
    formatB = F.get_special_format_str()

1804
1805
    A = torch.randn(batch, seq, model, device="cuda").half()
    B = torch.empty(hidden, model, dtype=torch.float16, device="cuda")
Tim Dettmers's avatar
Tim Dettmers committed
1806
1807
    torch.nn.init.xavier_uniform_(B)

1808
    B_fp4, state = F.quantize_fp4(B)
1809
    B_fp4_c, state_c = F.quantize_fp4(B, compress_statistics=True)
1810

Tim Dettmers's avatar
Tim Dettmers committed
1811
1812
1813
1814
1815
1816
    linear8bit = bnb.nn.Linear8bitLt(model, hidden, False).cuda().half()
    linear8bit.eval()

    outliers = torch.randint(0, model, size=(5,)).cuda()
    A[:, :, outliers] = 8.0

1817
    linearMixedBit = (bnb.nn.Linear8bitLt(model, hidden, False, threshold=6.0).cuda().half())
Tim Dettmers's avatar
Tim Dettmers committed
1818
1819
    linearMixedBit.eval()

1820
1821
1822
    linear8bit_train = bnb.nn.Linear8bitLt(model, hidden, False).cuda().half()
    linear8bit_train_thresh = bnb.nn.Linear8bitLt(model, hidden, False, threshold=6.0).cuda().half()

Tim Dettmers's avatar
Tim Dettmers committed
1823
    # warmup
1824
    for i in range(iters):
Tim Dettmers's avatar
Tim Dettmers committed
1825
1826
        torch.matmul(A, B.t())
    torch.cuda.synchronize()
1827
    print("")
Tim Dettmers's avatar
Tim Dettmers committed
1828
1829
1830

    torch.cuda.synchronize()
    t0 = time.time()
1831
    for i in range(iters):
Tim Dettmers's avatar
Tim Dettmers committed
1832
1833
        torch.matmul(A, B.t())
    torch.cuda.synchronize()
1834
1835
1836
1837
1838
    print( f"pytorch fp16: [{batch},{seq},{model}], [{model},{hidden}]->[{batch},{seq},{hidden}]: {time.time()-t0:.4f}s" )

    torch.cuda.synchronize()
    t0 = time.time()
    for i in range(iters):
Tim Dettmers's avatar
Tim Dettmers committed
1839
        bnb.matmul_fp4(A, B_fp4.t(), quant_state=state)
1840
1841
    torch.cuda.synchronize()
    print( f"bnb fp4: [{batch},{seq},{model}], [{model},{hidden}]->[{batch},{seq},{hidden}]: {time.time()-t0:.4f}s" )
Tim Dettmers's avatar
Tim Dettmers committed
1842

1843
1844
1845
1846
1847
1848
1849
    torch.cuda.synchronize()
    t0 = time.time()
    for i in range(iters):
        bnb.matmul_fp4(A, B_fp4.t(), quant_state=state_c)
    torch.cuda.synchronize()
    print( f"bnb fp4 + compressed stats: [{batch},{seq},{model}], [{model},{hidden}]->[{batch},{seq},{hidden}]: {time.time()-t0:.4f}s" )

Tim Dettmers's avatar
Tim Dettmers committed
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
    #torch.cuda.synchronize()
    #t0 = time.time()
    #for i in range(iters):
    #    bnb.matmul(A, B)
    #torch.cuda.synchronize()
    #print(f"CB -> CxB conversion (each iteration): [{batch},{seq},{model}], [{model},{hidden}]->[{batch},{seq},{hidden}]: {time.time()-t0:.4f}s")

    #torch.cuda.synchronize()
    #t0 = time.time()
    #for i in range(iters):
    #    bnb.matmul(A, B, threshold=6.0)
    #torch.cuda.synchronize()
    #print(f"CB -> CxB conversion + threshold: [{batch},{seq},{model}], [{model},{hidden}]->[{batch},{seq},{hidden}]: {time.time()-t0:.4f}s")

    #CA, CAt, SCA, SCAt, coo_tensorA = F.double_quant(A, threshold=0.0)
    #C32A, SA = F.transform(CA, "col32")
    #CB, CBt, SCB, SCBt, coo_tensorB = F.double_quant(B)
    #CxB, SB = F.transform(CB, to_order=formatB)
    #torch.cuda.synchronize()
    #t0 = time.time()
    #for i in range(iters):
    #    out32, Sout32 = F.igemmlt(C32A, CxB, SA, SB)
    #torch.cuda.synchronize()
    #print(f"no overhead matmul-lt: [{batch},{seq},{model}], [{model},{hidden}]->[{batch},{seq},{hidden}]: {time.time()-t0:.4f}s")

    #BA, statsB = F.vectorwise_quant(B, dim=1)
    #CxB, SB = F.nvidia_transform(CB, to_order=formatB)
    #torch.cuda.synchronize()
    #t0 = time.time()
    #for i in range(iters):
    #    A2 = A.view(-1, A.shape[-1]).contiguous()
    #    CA, statsA = F.vectorwise_quant(A2, dim=1)
    #    C32A, SA = F.nvidia_transform(CA, "col32")
    #    out32, Sout32 = F.igemmlt(C32A, CxB, SA, SB)
    #    Cout, Sout = F.nvidia_transform(out32, "row", state=Sout32)
    #    F.vectorwise_mm_dequant(Cout, statsA, statsB.t())
    #torch.cuda.synchronize()
    #print(f"vector pytorch + nvidia: [{batch},{seq},{model}], [{model},{hidden}]->[{batch},{seq},{hidden}]: {time.time()-t0:.4f}s")

    #BA, statsB = F.vectorwise_quant(B, dim=1, quant_type="linear")
    #CxB, SB = F.nvidia_transform(CB, to_order=formatB)
    #torch.cuda.synchronize()
    #t0 = time.time()
    #for i in range(iters):
    #    A2 = A.view(-1, A.shape[-1]).contiguous()
    #    CA, statsA = F.vectorwise_quant(A2, dim=1, quant_type="linear")
    #    C32A, SA = F.nvidia_transform(CA, "col32")
    #    out32, Sout32 = F.igemmlt(C32A, CxB, SA, SB)
    #    Cout, Sout = F.nvidia_transform(out32, "row", state=Sout32)
    #    out = Cout * statsB * statsA * (1.0 / (127 * 127))
    #torch.cuda.synchronize()
    #print(f"linear pytorch + nvidia: [{batch},{seq},{model}], [{model},{hidden}]->[{batch},{seq},{hidden}]: {time.time()-t0:.4f}s")

    #linear8bit(A)
    #torch.cuda.synchronize()
    #t0 = time.time()
    #for i in range(iters):
    #    linear8bit(A)
    #torch.cuda.synchronize()
    #print( f"bnb linear8bitlt (eval): [{batch},{seq},{model}], [{model},{hidden}]->[{batch},{seq},{hidden}]: {time.time()-t0:.4f}s")

    #linearMixedBit(A)
    #torch.cuda.synchronize()
    #t0 = time.time()
    #for i in range(iters):
    #    linearMixedBit(A)
    #torch.cuda.synchronize()
    #print( f"bnb linear8bitlt with threshold (eval): [{batch},{seq},{model}], [{model},{hidden}]->[{batch},{seq},{hidden}]: {time.time()-t0:.4f}s")

    #linear8bit_train(A)
    #torch.cuda.synchronize()
    #t0 = time.time()
    #for i in range(iters):
    #    linear8bit_train(A)
    #torch.cuda.synchronize()
    #print( f"bnb linear8bitlt (training): [{batch},{seq},{model}], [{model},{hidden}]->[{batch},{seq},{hidden}]: {time.time()-t0:.4f}s")

    #linear8bit_train_thresh(A)
    #torch.cuda.synchronize()
    #t0 = time.time()
    #for i in range(iters):
    #    linear8bit_train(A)
    #torch.cuda.synchronize()
    #print( f"bnb linear8bitlt with threshold (training): [{batch},{seq},{model}], [{model},{hidden}]->[{batch},{seq},{hidden}]: {time.time()-t0:.4f}s")
Tim Dettmers's avatar
Tim Dettmers committed
1934
1935
1936
1937
1938
1939

def test_zeropoint():
    def quant_zp(x):
        dtype = x.dtype
        x = x.float()
        dyna = x.max() - x.min()
1940
1941
1942
        if dyna == 0:
            dyna = 1
        qx = 254.0 / dyna
Tim Dettmers's avatar
Tim Dettmers committed
1943
        minx = x.min()
1944
1945
1946
1947
        # zpx = torch.round(minx* qx)
        # zpx = 127 - torch.round(x.max()* qx)
        zpx = torch.round(x.min() * qx) - 127
        x = (qx * x) + zpx
Tim Dettmers's avatar
Tim Dettmers committed
1948
        return x, qx, zpx
1949

Tim Dettmers's avatar
Tim Dettmers committed
1950
1951
1952
    batch = 2
    seq = 512
    model = 1024
1953
1954
1955
    hidden = 4 * model
    A = torch.randn(batch * seq, model, device="cuda").half() * 0.1
    B = torch.randn(model, hidden, device="cuda").half() * 0.1
Tim Dettmers's avatar
Tim Dettmers committed
1956
1957
1958

    C0 = torch.matmul(A, B)

1959
1960
    # A, SA = F.vectorwise_quant(A, quant_type='linear')
    # B, SB = F.vectorwise_quant(B, quant_type='linear')
Tim Dettmers's avatar
Tim Dettmers committed
1961
1962
1963
1964
1965
1966
1967
    A = A.float()
    B = B.float()

    C1 = torch.matmul(A, B)
    C3 = bnb.matmul(A.half(), B.t().contiguous().half())

    zp = 1
1968
1969
1970
1971
    # C2 = torch.matmul(A-zp, B)
    # C2 += B.sum(0).view(1, -1)*zp
    C2 = torch.matmul(A, B - zp)
    C2 -= A.sum(1).view(-1, 1) * zp
Tim Dettmers's avatar
Tim Dettmers committed
1972
1973
1974

    ca, cqa, cza = quant_zp(A)
    print(ca.min(), ca.max())
1975
    print((ca - cza).min(), (ca - cza).max())
Tim Dettmers's avatar
Tim Dettmers committed
1976
1977
1978

    zp = 1
    scale = 2.0
1979
1980
    C5 = torch.matmul((A * scale) - zp, B)
    C5 += B.sum(0) * zp
Tim Dettmers's avatar
Tim Dettmers committed
1981
1982
1983
1984
    C5 /= scale

    CA, qa, zpa = quant_zp(A)
    C4 = torch.matmul(CA, B)
1985
    C4 -= B.sum(0) * zpa
Tim Dettmers's avatar
Tim Dettmers committed
1986
    C4 /= qa
Tim Dettmers's avatar
Tim Dettmers committed
1987

Tim Dettmers's avatar
Tim Dettmers committed
1988
1989
1990
1991
    zpb = 1
    zpa = 1
    qa = 2
    qb = 2
1992
1993
1994
1995
    C6 = torch.matmul((A * qa) + zpa, (B * qb) + zpb)
    C6 -= (qb * B.sum(0).view(1, -1) * zpa) + (qa * A.sum(1).view(-1, 1) * zpb)
    C6 -= zpa * zpb * A.shape[1]
    C6 /= qa * qb
Tim Dettmers's avatar
Tim Dettmers committed
1996

Tim Dettmers's avatar
Tim Dettmers committed
1997
1998
1999
    CA, qa, zpa = quant_zp(A)
    CB, qb, zpb = quant_zp(B)
    C7 = torch.matmul(CA, CB)
2000
2001
2002
    C7 -= (qb * B.sum(0).view(1, -1) * zpa) + (qa * A.sum(1).view(-1, 1) * zpb)
    C7 -= zpa * zpb * A.shape[1]
    C7 /= qa * qb
Tim Dettmers's avatar
Tim Dettmers committed
2003

2004
2005
    print("")
    # print(C0.flatten()[:10])
Tim Dettmers's avatar
Tim Dettmers committed
2006
2007
2008
2009
2010
2011
    print(C1.flatten()[:10])
    print(C2.flatten()[:10])
    print(C3.flatten()[:10])
    print(C5.flatten()[:10])
    print(C6.flatten()[:10])
    print(C7.flatten()[:10])
2012
2013
2014
2015
2016
2017
    err1 = torch.abs(C1 - C2).mean().item()
    err2 = torch.abs(C1 - C3).mean().item()
    err3 = torch.abs(C1 - C4).mean().item()
    err4 = torch.abs(C1 - C5).mean().item()
    err5 = torch.abs(C1 - C6).mean().item()
    err6 = torch.abs(C1 - C7).mean().item()
Tim Dettmers's avatar
Tim Dettmers committed
2018
    print(err1, err2, err3, err4, err5, err6)
Tim Dettmers's avatar
Tim Dettmers committed
2019
2020


2021
def test_extract_outliers():
2022
    for i in range(k):
2023
        shapeA = (4096, 4096 * 4)
2024
        idx = torch.unique(torch.randint(0, shapeA[1], size=(10,)).int()).cuda()
2025
2026
        # idx = torch.Tensor([0]).int().cuda()
        A = torch.randint(-128, 127, size=shapeA, device="cuda").to(torch.int8)
2027
        outliers1 = A[:, idx.long()]
2028

2029
        CA, SA = F.transform(A, "col_turing")
2030

2031
        outliers2 = F.extract_outliers(CA, SA, idx)
2032

2033
2034
        assert outliers2.shape[0] == shapeA[0]
        assert outliers2.shape[1] == idx.numel()
2035

2036
2037
        torch.testing.assert_allclose(outliers1, outliers2)

2038
        CA, SA = F.transform(A, "col_ampere")
2039
2040
2041
2042
2043

        outliers2 = F.extract_outliers(CA, SA, idx)

        assert outliers2.shape[0] == shapeA[0]
        assert outliers2.shape[1] == idx.numel()
2044

2045
        torch.testing.assert_allclose(outliers1, outliers2)
2046
2047
2048
2049
2050
2051
2052
2053



def test_blockwise_cpu_large():
    diffs = []
    reldiffs = []
    batch = 128
    seq = 128
2054
    for hidden in [128]:#, 14336]:
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
        for blocksize in [4096, 16384]:
            for i in range(2):
                A1 = torch.randn(batch, seq, hidden, device='cpu')
                t0 = time.time()
                C, S = F.quantize_blockwise(A1, blocksize=blocksize)
                A2 = F.dequantize_blockwise(C, S, blocksize=blocksize)
                print(time.time() - t0)
                diff = torch.abs(A1 - A2)
                reldiff = diff / torch.abs(A1 + 1e-8)
                diffs.append(diff.mean().item())
                reldiffs.append(reldiff.mean().item())
                assert diffs[-1] < 0.011
            # print(sum(diffs)/len(diffs))
            # print(sum(reldiffs)/len(reldiffs))
Tim Dettmers's avatar
Tim Dettmers committed
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087



def test_fp8_quant():
    for e_bits in range(1, 7):
        p_bits = 7-e_bits
        code = F.create_fp8_map(True, e_bits, p_bits).cuda()

        abserr = []
        relerr = []
        for i in range(100):
            A1 = torch.randn(1024, 1024, device="cuda")
            C, SC = F.quantize_blockwise(A1, code=code)
            A2 = F.dequantize_blockwise(C, SC)
            diff = torch.abs(A1 - A2)
            reldiff = diff/torch.abs(A1+1e-8)
            abserr.append(diff.mean().item())
            relerr.append(reldiff.mean().item())
            #assert diff < 0.0075
2088
2089
        #print(sum(abserr)/len(abserr))
        #print(sum(relerr)/len(relerr))
Tim Dettmers's avatar
Tim Dettmers committed
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101

        abserr = []
        relerr = []
        for i in range(100):
            A1 = torch.rand(1024, 1024, device="cuda")
            C, SC = F.quantize_blockwise(A1, code=code)
            A2 = F.dequantize_blockwise(C, SC)
            diff = torch.abs(A1 - A2)
            reldiff = diff/torch.abs(A1+1e-8)
            abserr.append(diff.mean().item())
            relerr.append(reldiff.mean().item())
            #assert diff < 0.0075
2102
2103
        #print(sum(abserr)/len(abserr))
        #print(sum(relerr)/len(relerr))
Tim Dettmers's avatar
Tim Dettmers committed
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115

        abserr = []
        relerr = []
        for i in range(100):
            A1 = torch.randn(1024, 1024, device="cuda")
            C, SC = F.quantize_blockwise(A1)
            A2 = F.dequantize_blockwise(C, SC)
            diff = torch.abs(A1 - A2)
            reldiff = diff/torch.abs(A1+1e-8)
            abserr.append(diff.mean().item())
            relerr.append(reldiff.mean().item())
            #assert diff < 0.0075
2116
2117
        #print(3, sum(abserr)/len(abserr))
        #print(3, sum(relerr)/len(relerr))
Tim Dettmers's avatar
Tim Dettmers committed
2118

2119
2120
2121

def test_few_bit_quant():

2122
    #print('')
2123
    for bits in range(2, 9):
2124
        #print('='*30, bits, '='*30)
Tim Dettmers's avatar
Tim Dettmers committed
2125
2126
2127
        for method in ['linear', 'fp8', 'dynamic', 'quantile']:
            abserrs = []
            relerrs = []
Tim Dettmers's avatar
Tim Dettmers committed
2128
2129
            code = None
            if method == 'linear':
2130
                code = F.create_linear_map(True, total_bits=bits).cuda()
Tim Dettmers's avatar
Tim Dettmers committed
2131
2132
2133
2134
            elif method == 'fp8':
                ebits = math.ceil(bits/2)
                pbits = bits-ebits-1
                code = F.create_fp8_map(True, ebits, pbits, bits).cuda()
Tim Dettmers's avatar
Tim Dettmers committed
2135
2136
2137
2138
            elif method == 'dynamic':
                code = F.create_dynamic_map(True, bits-0, bits).cuda()
            elif method == 'quantile':
                values = torch.randn(2048, 2048, device='cuda')
Tim Dettmers's avatar
Tim Dettmers committed
2139
2140
2141
2142
2143
                code = F.create_quantile_map(values, bits).cuda()
            # for some data types we have no zero
            # for some data types we have one zero
            # for some data types we have two zeros
            assert torch.unique(code).numel() in [2**bits, 2**bits-1], f'bits: {bits}, method: {method}'
2144
            #print(method, (code==0).sum())
Tim Dettmers's avatar
Tim Dettmers committed
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
            assert code.numel() == 256
            for i in range(10):

                values = torch.randn(1, 32, device='cuda')
                values /= values.abs().max()
                #values[values.abs() < 1e-6] += 1e-5

                q1 = []
                v1 = []
                for v in values[0]:
                    idx = torch.abs(v-code).argmin()
                    q1.append(idx.item())
                    v1.append(code[idx].item())

                q1 = torch.Tensor(q1).cuda()
                v1 = torch.Tensor(v1).cuda()

Tim Dettmers's avatar
Tim Dettmers committed
2162
2163
                q2, S2 = F.quantize_blockwise(values, code=code)
                v2 = F.dequantize_blockwise(q2, S2)
Tim Dettmers's avatar
Tim Dettmers committed
2164
2165

                idx = torch.isclose(q1.int(), q2.int())
Tim Dettmers's avatar
Tim Dettmers committed
2166
2167
2168
                err2 = torch.abs(v2-values)
                abserrs.append(err2.mean().item())
                relerrs.append((err2/(1e-10+values).abs()).mean().item())
Tim Dettmers's avatar
Tim Dettmers committed
2169
2170
2171
                if idx.sum():
                    # some weird cases
                    err1 = torch.abs(v1-values).mean()
Tim Dettmers's avatar
Tim Dettmers committed
2172
                    #assert err2.mean() <= err1
Tim Dettmers's avatar
Tim Dettmers committed
2173
2174
2175

                else:
                    torch.testing.assert_allclose(q1, q2)
2176
            #print(method, 'abserr:', sum(abserrs)/len(abserrs), 'relerr:', sum(relerrs)/len(relerrs))
Tim Dettmers's avatar
Tim Dettmers committed
2177
    #assert False
Tim Dettmers's avatar
Tim Dettmers committed
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187


def test_kbit_quantile_estimation():
    for i in range(100):
        data = torch.randn(1024, 1024, device='cuda')
        for bits in range(2, 9):
            p = np.linspace(1.3e-4, 1-1.3e-4, 2**bits)
            val1 = torch.Tensor(norm.ppf(p)).cuda()
            val2 = F.estimate_quantiles(data, offset=0, num_quantiles=2**bits)
            err = torch.abs(val1-val2).mean()
Tim Dettmers's avatar
Tim Dettmers committed
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
            assert err < 0.038

    for i in range(100):
        data = torch.randn(1024, 1024, device='cuda')
        for bits in range(2, 4):
            total_values = 2**bits-1
            p = np.linspace(0, 1, 2*total_values+1)
            idx = np.arange(1, 2*total_values+1, 2)
            p = p[idx]
            offset = 1/(2*total_values)
            p = np.linspace(offset, 1-offset, total_values)
            val1 = torch.Tensor(norm.ppf(p)).cuda()
            val2 = F.estimate_quantiles(data, num_quantiles=2**bits-1)
            err = torch.abs(val1-val2).mean()
Tim Dettmers's avatar
Tim Dettmers committed
2202
            assert err < 0.035
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214


def test_bench_dequantization():
    a = torch.rand(1024, 1024, device='cuda').half()
    qa, SA = F.quantize_blockwise(a)

    max_theoretical_mu =  1024*1024*2/1024**3/672*1000*1000
    #print(max_theoretical_mu)

    torch.cuda.synchronize()
    t0 = time.time()
    for i in range(100):
2215
        qa, SA = F.quantize_blockwise(a)
2216
2217
2218
    torch.cuda.synchronize()
    #print((time.time()-t0)/1e6)

2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248


def test_fp4_quant():
    vals = list(product([0, 1], repeat=4))

    code = {}
    for bits in vals:
        result = 0
        bias = 3
        sign, e1, e2, p1 = bits
        idx = sign*8 + e1*4 + e2*2 + p1*1
        sign = -1.0 if sign else 1.0
        exp = e1*2 + e2*1
        if exp == 0:
            # sub-normal
            if p1 == 0: result = 0
            else: result = sign*0.0625
        else:
            # normal
            exp = 2**(-exp + bias + 1)
            frac = 1.5 if p1 else 1.0
            result = sign*exp*frac
        code[idx] = result

    A1 = torch.randn(1024, 1024, device='cuda').half()
    qa, SA = F.quantize_fp4(A1, blocksize=64)
    A2 = F.dequantize_fp4(qa, SA)

    err = (A1 - A2).abs().float()
    relerr = (err/A1.abs().float()).mean()
Tim Dettmers's avatar
Tim Dettmers committed
2249
    idx = err > 1.0
2250
2251
    err = err.mean()

Tim Dettmers's avatar
Tim Dettmers committed
2252

Tim Dettmers's avatar
Tim Dettmers committed
2253
2254
    assert err.item() < 0.1
    assert relerr.item() < 0.28
2255
2256


2257
2258
2259
2260
def test_fp4_compressed_stats():
    for blocksize in [128, 64]:
        errs1 = []
        errs2 = []
Tim Dettmers's avatar
Tim Dettmers committed
2261
        for i in range(10000):
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
            A1 = torch.randn(1024, 1024, device='cuda').half()
            q2, SA2 = F.quantize_fp4(A1, blocksize=blocksize)
            q3, SA3= F.quantize_fp4(A1, blocksize=blocksize, compress_statistics=True)
            A2 = F.dequantize_fp4(q2, SA2)
            A3 = F.dequantize_fp4(q3, SA3)


            err = (A1 - A2).abs().float()
            relerr = (err/(A1.abs().float()+1e-15)).mean()
            err = err.mean()

Tim Dettmers's avatar
Tim Dettmers committed
2273
            errs1.append(relerr.item())
2274
2275
2276
2277
2278
2279
2280
2281

            assert err.item() < 0.11
            assert relerr.item() < 0.28

            err = (A1 - A3).abs().float()
            relerr = (err/(A1.abs().float()+1e-15)).mean()
            err = err.mean()

Tim Dettmers's avatar
Tim Dettmers committed
2282
            errs2.append(relerr.item())
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292

            assert err.item() < 0.11
            assert relerr.item() < 0.28

        #print(sum(errs1)/len(errs1), blocksize)
        #print(sum(errs2)/len(errs2), blocksize)




2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
def test_bench_fp4_dequant():
    blocksize = 256
    a = torch.rand(1024*12*4, 1024*12, device='cuda').half()
    qa, SA = F.quantize_fp4(a, blocksize=blocksize)

    input_size = a.numel()/2
    output_size = a.numel()*2
    num_bytes = input_size+output_size
    GB = num_bytes/1e9
    max_theoretical_s =  GB/768
2303
    #print(max_theoretical_s*1e6)
2304
2305
    b = torch.randn(128, 1024*12, device='cuda').half()

Tim Dettmers's avatar
Tim Dettmers committed
2306
    iters = 500
2307
2308
2309
2310
2311
2312
    torch.cuda.synchronize()
    t0 = time.time()
    for i in range(iters):
        F.dequantize_fp4(qa, SA, blocksize=blocksize)
        #b.copy_(a)
    torch.cuda.synchronize()
2313
2314
2315
2316
2317
2318
2319
2320
    #print((time.time()-t0)/iters*1e6)

    #torch.cuda.synchronize()
    #t0 = time.time()
    #for i in range(iters):
    #    torch.matmul(b, a.t())
    #torch.cuda.synchronize()
    #print((time.time()-t0)/iters*1e6)