attn.py 9.53 KB
Newer Older
1
import os
Casper Hansen's avatar
Casper Hansen committed
2
import math
Haotian Tang's avatar
Haotian Tang committed
3
4
import torch
import torch.nn as nn
Casper Hansen's avatar
Casper Hansen committed
5
from torch.nn import functional as F
Casper Hansen's avatar
Casper Hansen committed
6
from awq.modules.fused.cache import WindowedCache
7
from awq.utils.fused_utils import get_attention_shapes
Casper Hansen's avatar
Casper Hansen committed
8

Casper's avatar
Casper committed
9
10
11
12
13
try:
    import ft_inference_engine
    FT_INSTALLED = True
except:
    FT_INSTALLED = False
qwopqwop200's avatar
qwopqwop200 committed
14

Casper Hansen's avatar
Casper Hansen committed
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
class RoPE(nn.Module):
    def __init__(self, hidden_size, n_heads, max_seq_len, device):
        super(RoPE, self).__init__()
        
        self.freqs_cis = nn.Parameter(
            self.precompute_freqs_cis(hidden_size // n_heads, max_seq_len * 2).to(device),
            requires_grad=False
        )

    @staticmethod
    def precompute_freqs_cis(dim: int, end: int, theta=10000.0):
        freqs = 1.0 / (theta ** (torch.arange(0, dim, 2)[: (dim // 2)].float() / dim))
        t = torch.arange(end)
        freqs = torch.outer(t, freqs).float()
        freqs_cis = torch.polar(torch.ones_like(freqs), freqs)
        return freqs_cis

    @staticmethod
    def reshape_for_broadcast(freqs_cis: torch.Tensor, x: torch.Tensor):
        ndim = x.ndim
        assert 0 <= 1 < ndim
        assert freqs_cis.shape == (x.shape[1], x.shape[-1])
        shape = [d if i == 1 or i == ndim - 1 else 1 for i, d in enumerate(x.shape)]
        return freqs_cis.view(*shape)

    def forward(self, xq: torch.Tensor, xk: torch.Tensor, start_pos: int, seqlen: int):
        xq_ = torch.view_as_complex(
            xq.float().reshape(*xq.shape[:-1], 2, -1).transpose(-2, -1).contiguous()
        )
        xk_ = torch.view_as_complex(
            xk.float().reshape(*xk.shape[:-1], 2, -1).transpose(-2, -1).contiguous()
        )
        freqs_cis = self.freqs_cis[start_pos : start_pos + seqlen]
        freqs_cis = self.reshape_for_broadcast(freqs_cis, xq_).to(xq_.device)
        
        xq_out = torch.view_as_real(xq_ * freqs_cis).transpose(-2, -1).flatten(3)
        xk_out = torch.view_as_real(xk_ * freqs_cis).transpose(-2, -1).flatten(3)
        
        return xq_out.type_as(xq), xk_out.type_as(xk)
Casper Hansen's avatar
Casper Hansen committed
54

Casper Hansen's avatar
Casper Hansen committed
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
class ALiBi(nn.Module):
    def __init__(self, n_heads, max_seq_len, device, alibi_bias_max=8):
        super(ALiBi, self).__init__()
        
        # Initialize ALiBi slopes and bias
        slopes, bias = self.build_alibi_bias(n_heads, max_seq_len, alibi_bias_max=alibi_bias_max)
        self.slopes = nn.Parameter(slopes.float().to(device), requires_grad=False)
        self.bias = nn.Parameter(bias.float().to(device), requires_grad=False)

    @staticmethod
    def gen_slopes(n_heads, alibi_bias_max=8):
        _n_heads = 2 ** math.ceil(math.log2(n_heads))
        m = torch.arange(1, _n_heads + 1, dtype=torch.float32)
        m = m.mul(alibi_bias_max / _n_heads)
        slopes = 1.0 / torch.pow(2, m)
        
        if _n_heads != n_heads:
            slopes = torch.cat([slopes[1::2], slopes[::2]])[:n_heads]
            
        return slopes.view(1, n_heads, 1, 1)

    @staticmethod
    def build_alibi_bias(n_heads, seq_len, alibi_bias_max=8, dtype=torch.float32):
        alibi_bias = torch.arange(1 - seq_len, 1, dtype=torch.int32).view(1, 1, 1, seq_len)
        slopes = ALiBi.gen_slopes(n_heads, alibi_bias_max)
        alibi_bias = alibi_bias * slopes
        slopes = slopes.squeeze(0).squeeze(-1).squeeze(-1)
        return slopes.to(dtype=dtype), alibi_bias.to(dtype=dtype)
    
    def forward(self, scores, seqlen):
        scores += self.bias[..., :seqlen]
        return scores
Casper Hansen's avatar
Casper Hansen committed
87
88

class QuantAttentionFused(nn.Module):
Casper Hansen's avatar
Casper Hansen committed
89
    def __init__(self, hidden_size, n_heads, n_kv_heads, qkv_layer, o_proj, dev, max_seq_len, 
90
                       use_alibi=False, attention_shapes=None):
Casper Hansen's avatar
Casper Hansen committed
91
92
        super().__init__()
        self.hidden_size = hidden_size
Casper Hansen's avatar
Casper Hansen committed
93
94
        self.n_heads = n_heads
        self.n_kv_heads = n_kv_heads
95
        self.n_kv_groups = n_heads // n_kv_heads if n_kv_heads != 0 else 0
Casper Hansen's avatar
Casper Hansen committed
96
        self.head_dim = self.hidden_size // n_heads
Casper Hansen's avatar
Casper Hansen committed
97
98
99
        self.qkv_proj = qkv_layer
        self.o_proj = o_proj
        self.start_pos = 0
Casper Hansen's avatar
Casper Hansen committed
100
        self.use_alibi = use_alibi
101
        self.cache_batch_size = int(os.getenv("AWQ_BATCH_SIZE", "1"))
102
        self.max_seq_len = max_seq_len
103
        self.is_hf_transformers = False
Casper Hansen's avatar
Casper Hansen committed
104
105
106
107
108
109
110

        # attention shapes for self attention
        self.attention_shapes = get_attention_shapes(
            attention_shapes, max_seq_len, self.cache_batch_size, n_heads, n_kv_heads, self.head_dim
        )
        # cache store that rolls cache
        self.cache = WindowedCache(
Casper's avatar
Casper committed
111
            self.attention_shapes["cache_v"], self.attention_shapes["cache_k"], self.max_seq_len, dev
Casper Hansen's avatar
Casper Hansen committed
112
        )
Casper Hansen's avatar
Casper Hansen committed
113

114
        if use_alibi:
Casper Hansen's avatar
Casper Hansen committed
115
            self.alibi = ALiBi(n_heads, max_seq_len, dev)
116
117
118
            self.rotary_dim = 0
            self.is_neox = False
        else:
Casper Hansen's avatar
Casper Hansen committed
119
120
            self.alibi = None
            self.rope = RoPE(hidden_size, n_heads, max_seq_len, dev)
121
122
123
            self.rotary_dim = self.head_dim
            self.is_neox = True
    
Casper Hansen's avatar
Casper Hansen committed
124
    def forward(self, hidden_states:torch.Tensor, attention_mask=None, *args, **kwargs):
Casper Hansen's avatar
Casper Hansen committed
125
        bsz, seqlen, _ = hidden_states.shape
126

Casper's avatar
Casper committed
127
        # Reallocate cache if batch size changes
128
        if bsz != self.cache_batch_size:
Casper's avatar
Casper committed
129
130
131
132
133
134
            if bsz > self.cache_batch_size:
                self.cache.increase_batch_size(bsz)
                self.cache_batch_size = bsz
            elif bsz < self.cache_batch_size:
                self.cache.decrease_batch_size(bsz)
                self.cache_batch_size = bsz
135
136
137
138
139
140
141

            # Always reset to 0
            self.start_pos = 0 

        # In case we re-generate, we need to refresh the starting position 
        # to 0. We detect it by checking if `past_key_values` is set to None, 
        # which indicates that we are on the first step of `generate()`.
142
143
        # This is only applicable for `transformers` integration
        if self.is_hf_transformers and "past_key_value" in kwargs and kwargs["past_key_value"] is None:
144
145
            self.start_pos = 0

Casper Hansen's avatar
Casper Hansen committed
146
        xqkv = self.qkv_proj(hidden_states)
147
        xqkv = xqkv.view((bsz, seqlen) + self.attention_shapes["xqkv_view"])
Casper Hansen's avatar
Casper Hansen committed
148
        
149
150
151
        xq = self.attention_shapes["xq_slice"](xqkv)
        xk = self.attention_shapes["xk_slice"](xqkv)
        xv = self.attention_shapes["xv_slice"](xqkv)
Haotian Tang's avatar
Haotian Tang committed
152

Casper's avatar
Casper committed
153
        if seqlen > 1 or not FT_INSTALLED:
Casper Hansen's avatar
Casper Hansen committed
154
            xq = xq.view((bsz, seqlen) + self.attention_shapes["xq_view"])
155
156
            xk = xk.view((bsz, seqlen) + self.attention_shapes["xk_view"])
            xv = xv.view((bsz, seqlen) + self.attention_shapes["xv_view"])
Haotian Tang's avatar
Haotian Tang committed
157

158
            if not self.use_alibi:
Casper Hansen's avatar
Casper Hansen committed
159
                xq, xk = self.rope.forward(xq, xk, self.start_pos, seqlen)
Haotian Tang's avatar
Haotian Tang committed
160

Casper Hansen's avatar
Casper Hansen committed
161
            self.cache.to(xq)
Haotian Tang's avatar
Haotian Tang committed
162

Casper Hansen's avatar
Casper Hansen committed
163
164
            values_store = xv.transpose(2, 1)
            keys_store = (
Casper Hansen's avatar
Casper Hansen committed
165
                xk.reshape((bsz, seqlen) + self.attention_shapes["xk_reshape"])
Casper Hansen's avatar
Casper Hansen committed
166
167
168
                .permute(0, 2, 3, 1, 4)
                .contiguous()
            )
Casper Hansen's avatar
Casper Hansen committed
169
            
Casper Hansen's avatar
Casper Hansen committed
170
            self.cache.update_kv(values_store, keys_store, bsz, self.start_pos, seqlen)
Casper Hansen's avatar
Casper Hansen committed
171

Casper's avatar
Casper committed
172
            # Only necessary to retrieve from cache when we are not processing context
qwopqwop200's avatar
fix bug  
qwopqwop200 committed
173
            if seqlen == 1:
Casper Hansen's avatar
Casper Hansen committed
174
                xv, xk = self.cache.get_kv(bsz, self.start_pos, seqlen, self.head_dim)
175

Casper's avatar
Casper committed
176
            
Casper Hansen's avatar
Casper Hansen committed
177
178
            keys = xk
            values = xv
179
180
181
182
183

            if self.n_kv_groups != 0:
                keys = torch.repeat_interleave(keys, dim=2, repeats=self.n_kv_groups)
                values = torch.repeat_interleave(values, dim=2, repeats=self.n_kv_groups)
            
Casper Hansen's avatar
Casper Hansen committed
184
185
186
187
188
189
            xq = xq.transpose(1, 2)
            keys = keys.transpose(1, 2)
            values = values.transpose(1, 2)
            scores = torch.matmul(xq, keys.transpose(2, 3)) / math.sqrt(self.head_dim)

            if self.use_alibi:
Casper Hansen's avatar
Casper Hansen committed
190
                scores = self.alibi.forward(scores, seqlen)
Casper Hansen's avatar
Casper Hansen committed
191

192
193
            # When seqlen is 1, there is nothing else to attend to
            if attention_mask is not None and seqlen > 1:
Casper Hansen's avatar
Casper Hansen committed
194
195
196
197
                scores = scores + attention_mask  # (bs, n_local_heads, slen, cache_len + slen)
            scores = F.softmax(scores.float(), dim=-1).type_as(xq)
            output = torch.matmul(scores, values)  # (bs, n_local_heads, slen, head_dim)
            attention_weight = output.transpose(1, 2).contiguous().view(bsz, seqlen, -1)
Casper Hansen's avatar
Casper Hansen committed
198
        else:
199
200
201
202
            xq = xq.view((bsz,) + self.attention_shapes["single_xq_view"])
            xk = xk.view((bsz,) + self.attention_shapes["single_xk_view"])
            xv = xv.view((bsz,) + self.attention_shapes["single_xv_view"])

Casper Hansen's avatar
Casper Hansen committed
203
            alibi_slopes = self.alibi.slopes if self.alibi is not None else None
Casper's avatar
Casper committed
204
            attention_weight = ft_inference_engine.single_query_attention(
Casper Hansen's avatar
Casper Hansen committed
205
206
207
                xq, # query
                xk, # key
                xv, # value
Casper Hansen's avatar
Casper Hansen committed
208
209
                self.cache.k, # key cache
                self.cache.v, # value cache
Casper Hansen's avatar
Casper Hansen committed
210
                None, # length per sample
Casper Hansen's avatar
Casper Hansen committed
211
                alibi_slopes, # alibi slopes
Casper Hansen's avatar
Casper Hansen committed
212
213
214
                self.start_pos, # timestep
                self.rotary_dim, # rotary embedding dimension
                10000, # rotary embedding base
215
                self.is_neox, # is neox
Casper Hansen's avatar
Casper Hansen committed
216
            )
Casper Hansen's avatar
Casper Hansen committed
217
            attention_weight = attention_weight.reshape(bsz, 1, -1)
Casper Hansen's avatar
Casper Hansen committed
218
        
Casper Hansen's avatar
Casper Hansen committed
219
        attn_output = self.o_proj(attention_weight)
Casper Hansen's avatar
Casper Hansen committed
220
        self.start_pos += seqlen
Haotian Tang's avatar
Haotian Tang committed
221

Casper Hansen's avatar
Casper Hansen committed
222
        # past_key_value is replaced with cache_v, cache_k, returning empty data
223
224
225
        # we pass a dummy past kv cache for transformers to be able to retrieve the correct info 
        # about past key length
        past_key_value = [torch.zeros(1, 1, self.start_pos, 1)]
226
        return attn_output, attention_weight, past_key_value