Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
OpenDAS
AutoAWQ
Commits
a8c9afd5
Commit
a8c9afd5
authored
Sep 12, 2023
by
Casper Hansen
Browse files
Refactor view/reshaping into a predefined dict
parent
4517b3f2
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
31 additions
and
18 deletions
+31
-18
awq/modules/fused/attn.py
awq/modules/fused/attn.py
+31
-18
No files found.
awq/modules/fused/attn.py
View file @
a8c9afd5
...
@@ -124,19 +124,28 @@ class QuantAttentionFused(nn.Module):
...
@@ -124,19 +124,28 @@ class QuantAttentionFused(nn.Module):
self
.
start_pos
=
0
self
.
start_pos
=
0
self
.
use_alibi
=
use_alibi
self
.
use_alibi
=
use_alibi
self
.
cache_batch_size
=
1
self
.
cache_batch_size
=
1
self
.
attention_shapes
=
{
# following fastertransformer definition
# following fastertransformer definition
"cache_v"
:
(
self
.
cache_batch_size
,
self
.
n_local_heads
,
max_seq_len
,
self
.
head_dim
,),
# 8: pack 8 fp16 in FT, if fp32 then use 4
"cache_k"
:
(
self
.
cache_batch_size
,
self
.
n_local_heads
,
self
.
head_dim
//
8
,
max_seq_len
,
8
,),
"xqkv_view"
:
(
-
1
,
self
.
n_local_heads
,
self
.
head_dim
),
"xq_slice"
:
lambda
xqkv
:
xqkv
[:,
:,
0
],
"xk_slice"
:
lambda
xqkv
:
xqkv
[:,
:,
1
],
"xv_slice"
:
lambda
xqkv
:
xqkv
[:,
:,
2
],
"xk_view"
:
(
self
.
n_local_heads
,
self
.
head_dim
),
"xv_view"
:
(
self
.
n_local_heads
,
self
.
head_dim
),
"single_xq_view"
:
(
self
.
n_local_heads
,
self
.
head_dim
),
"single_xk_view"
:
(
self
.
n_local_heads
,
self
.
head_dim
),
"single_xv_view"
:
(
self
.
n_local_heads
,
self
.
head_dim
)
}
self
.
cache_v
=
(
self
.
cache_v
=
(
torch
.
zeros
(
torch
.
zeros
(
self
.
attention_shapes
[
"cache_v"
]).
to
(
dev
).
half
()
(
self
.
cache_batch_size
,
self
.
n_local_heads
,
max_seq_len
,
self
.
head_dim
,
)
).
to
(
dev
).
half
()
)
)
# 8: pack 8 fp16 in FT, if fp32 then use 4
self
.
cache_k
=
(
self
.
cache_k
=
(
torch
.
zeros
(
torch
.
zeros
(
self
.
attention_shapes
[
"cache_k"
]).
to
(
dev
).
half
()
(
self
.
cache_batch_size
,
self
.
n_local_heads
,
self
.
head_dim
//
8
,
max_seq_len
,
8
,
)
).
to
(
dev
).
half
()
)
)
if
use_alibi
:
if
use_alibi
:
...
@@ -160,15 +169,15 @@ class QuantAttentionFused(nn.Module):
...
@@ -160,15 +169,15 @@ class QuantAttentionFused(nn.Module):
):
):
bsz
,
seqlen
,
_
=
hidden_states
.
shape
bsz
,
seqlen
,
_
=
hidden_states
.
shape
xqkv
=
self
.
qkv_proj
(
hidden_states
)
xqkv
=
self
.
qkv_proj
(
hidden_states
)
xqkv
=
xqkv
.
view
(
bsz
,
seqlen
,
-
1
,
self
.
n_local_heads
,
self
.
head_dim
)
xqkv
=
xqkv
.
view
(
(
bsz
,
seqlen
)
+
self
.
attention_shapes
[
"xqkv_view"
]
)
xq
=
xqkv
[:,
:,
0
]
xq
=
self
.
attention_shapes
[
"xq_slice"
](
xqkv
)
xk
=
xqkv
[:,
:,
1
]
xk
=
self
.
attention_shapes
[
"xk_slice"
](
xqkv
)
xv
=
xqkv
[:,
:,
2
]
xv
=
self
.
attention_shapes
[
"xv_slice"
](
xqkv
)
if
seqlen
>
1
:
if
seqlen
>
1
:
xq
=
xq
.
view
(
bsz
,
seqlen
,
self
.
n_local_heads
,
self
.
head_dim
)
xq
=
xq
.
view
(
bsz
,
seqlen
,
self
.
n_local_heads
,
self
.
head_dim
)
xk
=
xk
.
view
(
bsz
,
seqlen
,
self
.
n_local_heads
,
self
.
head_dim
)
xk
=
xk
.
view
(
(
bsz
,
seqlen
)
+
self
.
attention_shapes
[
"xk_view"
]
)
xv
=
xv
.
view
(
bsz
,
seqlen
,
self
.
n_local_heads
,
self
.
head_dim
)
xv
=
xv
.
view
(
(
bsz
,
seqlen
)
+
self
.
attention_shapes
[
"xv_view"
]
)
if
not
self
.
use_alibi
:
if
not
self
.
use_alibi
:
xq
,
xk
=
apply_rotary_emb
(
xq
,
xk
,
freqs_cis
=
self
.
freqs_cis
[
self
.
start_pos
:
self
.
start_pos
+
seqlen
])
xq
,
xk
=
apply_rotary_emb
(
xq
,
xk
,
freqs_cis
=
self
.
freqs_cis
[
self
.
start_pos
:
self
.
start_pos
+
seqlen
])
...
@@ -205,9 +214,13 @@ class QuantAttentionFused(nn.Module):
...
@@ -205,9 +214,13 @@ class QuantAttentionFused(nn.Module):
output
=
torch
.
matmul
(
scores
,
values
)
# (bs, n_local_heads, slen, head_dim)
output
=
torch
.
matmul
(
scores
,
values
)
# (bs, n_local_heads, slen, head_dim)
attention_weight
=
output
.
transpose
(
1
,
2
).
contiguous
().
view
(
bsz
,
seqlen
,
-
1
)
attention_weight
=
output
.
transpose
(
1
,
2
).
contiguous
().
view
(
bsz
,
seqlen
,
-
1
)
else
:
else
:
xq
=
xq
[:,
0
,
:,
:]
# xq = xq[:, 0, :, :]
xk
=
xk
[:,
0
,
:,
:]
# xk = xk[:, 0, :, :]
xv
=
xv
[:,
0
,
:,
:]
# xv = xv[:, 0, :, :]
xq
=
xq
.
view
((
bsz
,)
+
self
.
attention_shapes
[
"single_xq_view"
])
xk
=
xk
.
view
((
bsz
,)
+
self
.
attention_shapes
[
"single_xk_view"
])
xv
=
xv
.
view
((
bsz
,)
+
self
.
attention_shapes
[
"single_xv_view"
])
past_key_value
=
(
xk
,
xv
)
if
use_cache
else
None
past_key_value
=
(
xk
,
xv
)
if
use_cache
else
None
attention_weight
=
awq_inference_engine
.
single_query_attention
(
attention_weight
=
awq_inference_engine
.
single_query_attention
(
xq
,
# query
xq
,
# query
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment