attn.py 11.4 KB
Newer Older
1
import os
Casper Hansen's avatar
Casper Hansen committed
2
import math
Haotian Tang's avatar
Haotian Tang committed
3
import torch
4
import logging
Haotian Tang's avatar
Haotian Tang committed
5
6
import torch.nn as nn
import awq_inference_engine
Casper Hansen's avatar
Casper Hansen committed
7
from torch.nn import functional as F
Casper Hansen's avatar
Casper Hansen committed
8

Casper's avatar
Casper committed
9
10
11
12
13
try:
    import ft_inference_engine
    FT_INSTALLED = True
except:
    FT_INSTALLED = False
qwopqwop200's avatar
qwopqwop200 committed
14

Casper Hansen's avatar
Casper Hansen committed
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
def precompute_freqs_cis(dim: int, end: int, theta: float = 10000.0):
    freqs = 1.0 / (theta ** (torch.arange(0, dim, 2)[: (dim // 2)].float() / dim))
    t = torch.arange(end, device=freqs.device)  # type: ignore
    freqs = torch.outer(t, freqs).float()  # type: ignore
    freqs_cis = torch.polar(torch.ones_like(freqs), freqs)  # complex64
    return freqs_cis

def reshape_for_broadcast(freqs_cis: torch.Tensor, x: torch.Tensor):
    ndim = x.ndim
    assert 0 <= 1 < ndim
    assert freqs_cis.shape == (x.shape[1], x.shape[-1])
    shape = [d if i == 1 or i == ndim - 1 else 1 for i, d in enumerate(x.shape)]
    return freqs_cis.view(*shape)

def apply_rotary_emb(
    xq: torch.Tensor,
    xk: torch.Tensor,
    freqs_cis: torch.Tensor,
):
    xq_ = torch.view_as_complex(
        xq.float().reshape(*xq.shape[:-1], 2, -1).transpose(-2, -1).contiguous()
    )
    xk_ = torch.view_as_complex(
        xk.float().reshape(*xk.shape[:-1], 2, -1).transpose(-2, -1).contiguous()
    )
    freqs_cis = reshape_for_broadcast(freqs_cis, xq_)
    xq_out = torch.view_as_real(xq_ * freqs_cis).transpose(-2, -1).flatten(3)
    xk_out = torch.view_as_real(xk_ * freqs_cis).transpose(-2, -1).flatten(3)
    return xq_out.type_as(xq), xk_out.type_as(xk)

Casper Hansen's avatar
Casper Hansen committed
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
def gen_slopes(n_heads, alibi_bias_max=8):
    _n_heads = 2 ** math.ceil(math.log2(n_heads))
    m = torch.arange(1, _n_heads + 1, dtype=torch.float32)
    m = m.mul(alibi_bias_max / _n_heads)
    slopes = 1.0 / torch.pow(2, m)
    if _n_heads != n_heads:
        slopes = torch.concat([slopes[1::2], slopes[::2]])[:n_heads]
    return slopes.view(1, n_heads, 1, 1)


def build_alibi_bias(
    n_heads, seq_len, full=False, alibi_bias_max=8, dtype=torch.float32
):
    alibi_bias = torch.arange(1 - seq_len, 1, dtype=torch.int32).view(1, 1, 1, seq_len)
    if full:
        alibi_bias = alibi_bias - torch.arange(1 - seq_len, 1, dtype=torch.int32).view(
            1, 1, seq_len, 1
        )
        alibi_bias = alibi_bias.abs().mul(-1)
    slopes = gen_slopes(n_heads, alibi_bias_max)
    alibi_bias = alibi_bias * slopes
    slopes = slopes.squeeze(0).squeeze(-1).squeeze(-1)
    return slopes.to(dtype=dtype), alibi_bias.to(dtype=dtype)

Haotian Tang's avatar
Haotian Tang committed
69

Casper Hansen's avatar
Casper Hansen committed
70
class QuantAttentionFused(nn.Module):
Casper Hansen's avatar
Casper Hansen committed
71
    def __init__(self, hidden_size, n_heads, n_kv_heads, qkv_layer, o_proj, dev, max_seq_len, 
72
                       use_alibi=False, attention_shapes=None):
Casper Hansen's avatar
Casper Hansen committed
73
74
        super().__init__()
        self.hidden_size = hidden_size
Casper Hansen's avatar
Casper Hansen committed
75
76
        self.n_heads = n_heads
        self.n_kv_heads = n_kv_heads
77
        self.n_kv_groups = n_heads // n_kv_heads if n_kv_heads != 0 else 0
Casper Hansen's avatar
Casper Hansen committed
78
        self.head_dim = self.hidden_size // n_heads
Casper Hansen's avatar
Casper Hansen committed
79
80
81
        self.qkv_proj = qkv_layer
        self.o_proj = o_proj
        self.start_pos = 0
Casper Hansen's avatar
Casper Hansen committed
82
        self.use_alibi = use_alibi
83
        self.cache_batch_size = int(os.getenv("AWQ_BATCH_SIZE", "1"))
84
85
86
        self.max_seq_len = max_seq_len
        self.attention_shapes = self._get_attention_shapes(attention_shapes, max_seq_len)
        self._initialize_cache(dev)
Casper Hansen's avatar
Casper Hansen committed
87

88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
        if use_alibi:
            alibi_slopes, alibi_bias = build_alibi_bias(self.n_heads, max_seq_len)
            self.alibi_slopes = alibi_slopes.float().to(dev)
            self.alibi_bias = alibi_bias.float().to(dev)
            self.rotary_dim = 0
            self.is_neox = False
        else:
            self.freqs_cis = precompute_freqs_cis(
                hidden_size // n_heads,
                max_seq_len * 2,
            ).to(dev)
            self.rotary_dim = self.head_dim
            self.alibi_slopes = None
            self.is_neox = True
    
    def _initialize_cache(self, dev):
        self.cache_v = (
            torch.zeros(self.attention_shapes["cache_v"]).to(dev).half()
        )
        
        self.cache_k = (
            torch.zeros(self.attention_shapes["cache_k"]).to(dev).half()
        )
    
    def _get_attention_shapes(self, attention_shapes, max_seq_len):
Casper Hansen's avatar
Casper Hansen committed
113
        if attention_shapes is not None:
114
            attention_shapes = attention_shapes
Casper Hansen's avatar
Casper Hansen committed
115
116

        elif self.n_kv_heads == 0:
117
            attention_shapes = {
Casper Hansen's avatar
Casper Hansen committed
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
                # following fastertransformer definition
                "cache_v": (self.cache_batch_size, self.n_heads, max_seq_len, self.head_dim,),
                # 8: pack 8 fp16 in FT, if fp32 then use 4
                "cache_k": (self.cache_batch_size, self.n_heads, self.head_dim // 8, max_seq_len, 8,),
                "xqkv_view": (-1, self.n_heads, self.head_dim),
                "xq_slice": lambda xqkv: xqkv[:, :, 0],
                "xk_slice": lambda xqkv: xqkv[:, :, 1],
                "xv_slice": lambda xqkv: xqkv[:, :, 2],
                "xq_view": (self.n_heads, self.head_dim),
                "xk_view": (self.n_heads, self.head_dim),
                "xv_view": (self.n_heads, self.head_dim),
                "xk_reshape": (self.n_heads, self.head_dim // 8, 8),
                "single_xq_view": (self.n_heads, self.head_dim),
                "single_xk_view": (self.n_heads, self.head_dim),
                "single_xv_view": (self.n_heads, self.head_dim)
            }

        else:
136
            attention_shapes = {
Casper Hansen's avatar
Casper Hansen committed
137
138
139
140
141
                # following fastertransformer definition
                "cache_v": (self.cache_batch_size, self.n_kv_heads, max_seq_len, self.head_dim,),
                # 8: pack 8 fp16 in FT, if fp32 then use 4
                "cache_k": (self.cache_batch_size, self.n_kv_heads, self.head_dim // 8, max_seq_len, 8,),
                "xqkv_view": (self.n_heads + self.n_kv_heads * 2, self.head_dim),
142
                "xq_slice": lambda xqkv: xqkv[:, :, 0 : self.n_heads],
Casper Hansen's avatar
Casper Hansen committed
143
144
                "xk_slice": lambda xqkv: xqkv[:, :, self.n_heads : (self.n_heads + self.n_kv_heads)],
                "xv_slice": lambda xqkv: xqkv[:, :, -self.n_kv_heads :],
145
                "xq_view": (self.n_heads, self.head_dim),
Casper Hansen's avatar
Casper Hansen committed
146
147
148
                "xk_view": (self.n_kv_heads, self.head_dim),
                "xv_view": (self.n_kv_heads, self.head_dim),
                "xk_reshape": (self.n_kv_heads, self.head_dim // 8, 8),
149
                "single_xq_view": (self.n_heads, self.head_dim),
Casper Hansen's avatar
Casper Hansen committed
150
151
152
                "single_xk_view": (self.n_kv_heads, self.head_dim),
                "single_xv_view": (self.n_kv_heads, self.head_dim)
            }
153
        
154
        return attention_shapes
155
    
Casper Hansen's avatar
Casper Hansen committed
156
157
    def forward(
        self,
158
        hidden_states:torch.Tensor, past_key_value=None, attention_mask=None, position_ids=None, output_attentions=False, use_cache=False
Casper Hansen's avatar
Casper Hansen committed
159
160
    ):
        bsz, seqlen, _ = hidden_states.shape
161
162
163
164
165
        if bsz != self.cache_batch_size:
            raise RuntimeError(
                f"Batch size is incorrectly set - input batch size {bsz}, kv-cache batch size {self.cache_batch_size}. "
                f"Use: AutoAWQForCausalLM.from_quantized(batch_size={bsz})"
            )
166
167
168
169
170
171
172
173
174
175
176
177

        if self.start_pos > self.max_seq_len:
            logging.warning('You have exceeded max_new_tokens, resetting cache...')
            self._initialize_cache(hidden_states.device)
            self.start_pos = 0

        elif seqlen > self.max_seq_len:
            logging.warning('Sequence length > max_seq_len, increasing and resetting cache...')
            self.max_seq_len *= 2
            self._initialize_cache(hidden_states.device)
            self.start_pos = 0
            
Casper Hansen's avatar
Casper Hansen committed
178
        xqkv = self.qkv_proj(hidden_states)
179
        xqkv = xqkv.view((bsz, seqlen) + self.attention_shapes["xqkv_view"])
Casper Hansen's avatar
Casper Hansen committed
180
        
181
182
183
        xq = self.attention_shapes["xq_slice"](xqkv)
        xk = self.attention_shapes["xk_slice"](xqkv)
        xv = self.attention_shapes["xv_slice"](xqkv)
Haotian Tang's avatar
Haotian Tang committed
184

Casper's avatar
Casper committed
185
        if seqlen > 1 or not FT_INSTALLED:
Casper Hansen's avatar
Casper Hansen committed
186
            xq = xq.view((bsz, seqlen) + self.attention_shapes["xq_view"])
187
188
            xk = xk.view((bsz, seqlen) + self.attention_shapes["xk_view"])
            xv = xv.view((bsz, seqlen) + self.attention_shapes["xv_view"])
Haotian Tang's avatar
Haotian Tang committed
189

190
191
            if not self.use_alibi:
                xq, xk = apply_rotary_emb(xq, xk, freqs_cis=self.freqs_cis[self.start_pos : self.start_pos + seqlen])
Haotian Tang's avatar
Haotian Tang committed
192

Casper Hansen's avatar
Casper Hansen committed
193
194
            self.cache_k = self.cache_k.to(xq)
            self.cache_v = self.cache_v.to(xq)
Haotian Tang's avatar
Haotian Tang committed
195

Casper Hansen's avatar
Casper Hansen committed
196
197
            values_store = xv.transpose(2, 1)
            keys_store = (
Casper Hansen's avatar
Casper Hansen committed
198
                xk.reshape((bsz, seqlen) + self.attention_shapes["xk_reshape"])
Casper Hansen's avatar
Casper Hansen committed
199
200
201
                .permute(0, 2, 3, 1, 4)
                .contiguous()
            )
Haotian Tang's avatar
Haotian Tang committed
202

Casper Hansen's avatar
Casper Hansen committed
203
204
205
            self.cache_v[:bsz, :, self.start_pos : self.start_pos + seqlen, :] = values_store
            self.cache_k[:bsz, :, :, self.start_pos : self.start_pos + seqlen, :] = keys_store

qwopqwop200's avatar
fix bug  
qwopqwop200 committed
206
207
208
209
            if seqlen == 1:
                xv = self.cache_v[:bsz, :, : self.start_pos + seqlen, :].transpose(1, 2).contiguous()
                xk = self.cache_k[:bsz, :, :, : self.start_pos + seqlen, :].transpose(2, 3).contiguous()
                xk = xk.reshape(xk.shape[:-2] + (self.head_dim,)).transpose(1, 2).contiguous()
Casper's avatar
Casper committed
210
            
Casper Hansen's avatar
Casper Hansen committed
211
212
            keys = xk
            values = xv
213
214
215
216
217

            if self.n_kv_groups != 0:
                keys = torch.repeat_interleave(keys, dim=2, repeats=self.n_kv_groups)
                values = torch.repeat_interleave(values, dim=2, repeats=self.n_kv_groups)
            
Casper Hansen's avatar
Casper Hansen committed
218
            past_key_value = (xk, xv) if use_cache else None
Casper Hansen's avatar
Casper Hansen committed
219
220
221
222
223
224
225
226
227
228
229
230
231
232
            xq = xq.transpose(1, 2)
            keys = keys.transpose(1, 2)
            values = values.transpose(1, 2)
            scores = torch.matmul(xq, keys.transpose(2, 3)) / math.sqrt(self.head_dim)

            if self.use_alibi:
                scores += self.alibi_bias[..., :seqlen]

            if attention_mask is not None:
                scores = scores + attention_mask  # (bs, n_local_heads, slen, cache_len + slen)
                
            scores = F.softmax(scores.float(), dim=-1).type_as(xq)
            output = torch.matmul(scores, values)  # (bs, n_local_heads, slen, head_dim)
            attention_weight = output.transpose(1, 2).contiguous().view(bsz, seqlen, -1)
Casper Hansen's avatar
Casper Hansen committed
233
        else:
234
235
236
237
238
239
240
            # xq = xq[:, 0, :, :]
            # xk = xk[:, 0, :, :]
            # xv = xv[:, 0, :, :]
            xq = xq.view((bsz,) + self.attention_shapes["single_xq_view"])
            xk = xk.view((bsz,) + self.attention_shapes["single_xk_view"])
            xv = xv.view((bsz,) + self.attention_shapes["single_xv_view"])

Casper Hansen's avatar
Casper Hansen committed
241
            past_key_value = (xk, xv) if use_cache else None
Casper's avatar
Casper committed
242
            attention_weight = ft_inference_engine.single_query_attention(
Casper Hansen's avatar
Casper Hansen committed
243
244
245
246
247
248
249
250
251
252
                xq, # query
                xk, # key
                xv, # value
                self.cache_k, # key cache
                self.cache_v, # value cache
                None, # length per sample
                self.alibi_slopes, # alibi slopes
                self.start_pos, # timestep
                self.rotary_dim, # rotary embedding dimension
                10000, # rotary embedding base
253
                self.is_neox, # is neox
Casper Hansen's avatar
Casper Hansen committed
254
            )
Casper Hansen's avatar
Casper Hansen committed
255
            attention_weight = attention_weight.reshape(bsz, 1, -1)
Casper Hansen's avatar
Casper Hansen committed
256
        
Casper Hansen's avatar
Casper Hansen committed
257
        attn_output = self.o_proj(attention_weight)
Casper Hansen's avatar
Casper Hansen committed
258
259
260
261
262
        
        if use_cache:
            self.start_pos += seqlen
        else:
            self.start_pos = 0
Haotian Tang's avatar
Haotian Tang committed
263

qwopqwop200's avatar
fix bug  
qwopqwop200 committed
264
        return attn_output, attention_weight, past_key_value