attn.py 9.4 KB
Newer Older
1
import os
Casper Hansen's avatar
Casper Hansen committed
2
import math
Haotian Tang's avatar
Haotian Tang committed
3
4
import torch
import torch.nn as nn
Casper Hansen's avatar
Casper Hansen committed
5
from torch.nn import functional as F
Casper Hansen's avatar
Casper Hansen committed
6
from awq.modules.fused.cache import WindowedCache
7
from awq.utils.fused_utils import get_attention_shapes
Casper Hansen's avatar
Casper Hansen committed
8

Casper's avatar
Casper committed
9
10
11
12
13
try:
    import ft_inference_engine
    FT_INSTALLED = True
except:
    FT_INSTALLED = False
qwopqwop200's avatar
qwopqwop200 committed
14

Casper Hansen's avatar
Casper Hansen committed
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
class RoPE(nn.Module):
    def __init__(self, hidden_size, n_heads, max_seq_len, device):
        super(RoPE, self).__init__()
        
        self.freqs_cis = nn.Parameter(
            self.precompute_freqs_cis(hidden_size // n_heads, max_seq_len * 2).to(device),
            requires_grad=False
        )

    @staticmethod
    def precompute_freqs_cis(dim: int, end: int, theta=10000.0):
        freqs = 1.0 / (theta ** (torch.arange(0, dim, 2)[: (dim // 2)].float() / dim))
        t = torch.arange(end)
        freqs = torch.outer(t, freqs).float()
        freqs_cis = torch.polar(torch.ones_like(freqs), freqs)
        return freqs_cis

    @staticmethod
    def reshape_for_broadcast(freqs_cis: torch.Tensor, x: torch.Tensor):
        ndim = x.ndim
        assert 0 <= 1 < ndim
        assert freqs_cis.shape == (x.shape[1], x.shape[-1])
        shape = [d if i == 1 or i == ndim - 1 else 1 for i, d in enumerate(x.shape)]
        return freqs_cis.view(*shape)

    def forward(self, xq: torch.Tensor, xk: torch.Tensor, start_pos: int, seqlen: int):
        xq_ = torch.view_as_complex(
            xq.float().reshape(*xq.shape[:-1], 2, -1).transpose(-2, -1).contiguous()
        )
        xk_ = torch.view_as_complex(
            xk.float().reshape(*xk.shape[:-1], 2, -1).transpose(-2, -1).contiguous()
        )
        freqs_cis = self.freqs_cis[start_pos : start_pos + seqlen]
        freqs_cis = self.reshape_for_broadcast(freqs_cis, xq_).to(xq_.device)
        
        xq_out = torch.view_as_real(xq_ * freqs_cis).transpose(-2, -1).flatten(3)
        xk_out = torch.view_as_real(xk_ * freqs_cis).transpose(-2, -1).flatten(3)
        
        return xq_out.type_as(xq), xk_out.type_as(xk)
Casper Hansen's avatar
Casper Hansen committed
54

Casper Hansen's avatar
Casper Hansen committed
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
class ALiBi(nn.Module):
    def __init__(self, n_heads, max_seq_len, device, alibi_bias_max=8):
        super(ALiBi, self).__init__()
        
        # Initialize ALiBi slopes and bias
        slopes, bias = self.build_alibi_bias(n_heads, max_seq_len, alibi_bias_max=alibi_bias_max)
        self.slopes = nn.Parameter(slopes.float().to(device), requires_grad=False)
        self.bias = nn.Parameter(bias.float().to(device), requires_grad=False)

    @staticmethod
    def gen_slopes(n_heads, alibi_bias_max=8):
        _n_heads = 2 ** math.ceil(math.log2(n_heads))
        m = torch.arange(1, _n_heads + 1, dtype=torch.float32)
        m = m.mul(alibi_bias_max / _n_heads)
        slopes = 1.0 / torch.pow(2, m)
        
        if _n_heads != n_heads:
            slopes = torch.cat([slopes[1::2], slopes[::2]])[:n_heads]
            
        return slopes.view(1, n_heads, 1, 1)

    @staticmethod
    def build_alibi_bias(n_heads, seq_len, alibi_bias_max=8, dtype=torch.float32):
        alibi_bias = torch.arange(1 - seq_len, 1, dtype=torch.int32).view(1, 1, 1, seq_len)
        slopes = ALiBi.gen_slopes(n_heads, alibi_bias_max)
        alibi_bias = alibi_bias * slopes
        slopes = slopes.squeeze(0).squeeze(-1).squeeze(-1)
        return slopes.to(dtype=dtype), alibi_bias.to(dtype=dtype)
    
    def forward(self, scores, seqlen):
        scores += self.bias[..., :seqlen]
        return scores
Casper Hansen's avatar
Casper Hansen committed
87
88

class QuantAttentionFused(nn.Module):
Casper Hansen's avatar
Casper Hansen committed
89
    def __init__(self, hidden_size, n_heads, n_kv_heads, qkv_layer, o_proj, dev, max_seq_len, 
90
                       use_alibi=False, attention_shapes=None):
Casper Hansen's avatar
Casper Hansen committed
91
92
        super().__init__()
        self.hidden_size = hidden_size
Casper Hansen's avatar
Casper Hansen committed
93
94
        self.n_heads = n_heads
        self.n_kv_heads = n_kv_heads
95
        self.n_kv_groups = n_heads // n_kv_heads if n_kv_heads != 0 else 0
Casper Hansen's avatar
Casper Hansen committed
96
        self.head_dim = self.hidden_size // n_heads
Casper Hansen's avatar
Casper Hansen committed
97
98
99
        self.qkv_proj = qkv_layer
        self.o_proj = o_proj
        self.start_pos = 0
Casper Hansen's avatar
Casper Hansen committed
100
        self.use_alibi = use_alibi
101
        self.cache_batch_size = int(os.getenv("AWQ_BATCH_SIZE", "1"))
102
        self.max_seq_len = max_seq_len
Casper Hansen's avatar
Casper Hansen committed
103
104
105
106
107
108
109

        # attention shapes for self attention
        self.attention_shapes = get_attention_shapes(
            attention_shapes, max_seq_len, self.cache_batch_size, n_heads, n_kv_heads, self.head_dim
        )
        # cache store that rolls cache
        self.cache = WindowedCache(
Casper's avatar
Casper committed
110
            self.attention_shapes["cache_v"], self.attention_shapes["cache_k"], self.max_seq_len, dev
Casper Hansen's avatar
Casper Hansen committed
111
        )
Casper Hansen's avatar
Casper Hansen committed
112

113
        if use_alibi:
Casper Hansen's avatar
Casper Hansen committed
114
            self.alibi = ALiBi(n_heads, max_seq_len, dev)
115
116
117
            self.rotary_dim = 0
            self.is_neox = False
        else:
Casper Hansen's avatar
Casper Hansen committed
118
119
            self.alibi = None
            self.rope = RoPE(hidden_size, n_heads, max_seq_len, dev)
120
121
122
            self.rotary_dim = self.head_dim
            self.is_neox = True
    
Casper Hansen's avatar
Casper Hansen committed
123
    def forward(self, hidden_states:torch.Tensor, attention_mask=None, *args, **kwargs):
Casper Hansen's avatar
Casper Hansen committed
124
        bsz, seqlen, _ = hidden_states.shape
125

Casper's avatar
Casper committed
126
        # Reallocate cache if batch size changes
127
        if bsz != self.cache_batch_size:
Casper's avatar
Casper committed
128
129
130
131
132
133
            if bsz > self.cache_batch_size:
                self.cache.increase_batch_size(bsz)
                self.cache_batch_size = bsz
            elif bsz < self.cache_batch_size:
                self.cache.decrease_batch_size(bsz)
                self.cache_batch_size = bsz
134
135
136
137
138
139
140
141
142
143

            # Always reset to 0
            self.start_pos = 0 

        # In case we re-generate, we need to refresh the starting position 
        # to 0. We detect it by checking if `past_key_values` is set to None, 
        # which indicates that we are on the first step of `generate()`.
        if"past_key_value" in kwargs and kwargs["past_key_value"] is None:
            self.start_pos = 0

Casper Hansen's avatar
Casper Hansen committed
144
        xqkv = self.qkv_proj(hidden_states)
145
        xqkv = xqkv.view((bsz, seqlen) + self.attention_shapes["xqkv_view"])
Casper Hansen's avatar
Casper Hansen committed
146
        
147
148
149
        xq = self.attention_shapes["xq_slice"](xqkv)
        xk = self.attention_shapes["xk_slice"](xqkv)
        xv = self.attention_shapes["xv_slice"](xqkv)
Haotian Tang's avatar
Haotian Tang committed
150

Casper's avatar
Casper committed
151
        if seqlen > 1 or not FT_INSTALLED:
Casper Hansen's avatar
Casper Hansen committed
152
            xq = xq.view((bsz, seqlen) + self.attention_shapes["xq_view"])
153
154
            xk = xk.view((bsz, seqlen) + self.attention_shapes["xk_view"])
            xv = xv.view((bsz, seqlen) + self.attention_shapes["xv_view"])
Haotian Tang's avatar
Haotian Tang committed
155

156
            if not self.use_alibi:
Casper Hansen's avatar
Casper Hansen committed
157
                xq, xk = self.rope.forward(xq, xk, self.start_pos, seqlen)
Haotian Tang's avatar
Haotian Tang committed
158

Casper Hansen's avatar
Casper Hansen committed
159
            self.cache.to(xq)
Haotian Tang's avatar
Haotian Tang committed
160

Casper Hansen's avatar
Casper Hansen committed
161
162
            values_store = xv.transpose(2, 1)
            keys_store = (
Casper Hansen's avatar
Casper Hansen committed
163
                xk.reshape((bsz, seqlen) + self.attention_shapes["xk_reshape"])
Casper Hansen's avatar
Casper Hansen committed
164
165
166
                .permute(0, 2, 3, 1, 4)
                .contiguous()
            )
Casper Hansen's avatar
Casper Hansen committed
167
            
Casper Hansen's avatar
Casper Hansen committed
168
            self.cache.update_kv(values_store, keys_store, bsz, self.start_pos, seqlen)
Casper Hansen's avatar
Casper Hansen committed
169

Casper's avatar
Casper committed
170
            # Only necessary to retrieve from cache when we are not processing context
qwopqwop200's avatar
fix bug  
qwopqwop200 committed
171
            if seqlen == 1:
Casper Hansen's avatar
Casper Hansen committed
172
                xv, xk = self.cache.get_kv(bsz, self.start_pos, seqlen, self.head_dim)
173

Casper's avatar
Casper committed
174
            
Casper Hansen's avatar
Casper Hansen committed
175
176
            keys = xk
            values = xv
177
178
179
180
181

            if self.n_kv_groups != 0:
                keys = torch.repeat_interleave(keys, dim=2, repeats=self.n_kv_groups)
                values = torch.repeat_interleave(values, dim=2, repeats=self.n_kv_groups)
            
Casper Hansen's avatar
Casper Hansen committed
182
183
184
185
186
187
            xq = xq.transpose(1, 2)
            keys = keys.transpose(1, 2)
            values = values.transpose(1, 2)
            scores = torch.matmul(xq, keys.transpose(2, 3)) / math.sqrt(self.head_dim)

            if self.use_alibi:
Casper Hansen's avatar
Casper Hansen committed
188
                scores = self.alibi.forward(scores, seqlen)
Casper Hansen's avatar
Casper Hansen committed
189

190
191
            # When seqlen is 1, there is nothing else to attend to
            if attention_mask is not None and seqlen > 1:
Casper Hansen's avatar
Casper Hansen committed
192
193
194
195
                scores = scores + attention_mask  # (bs, n_local_heads, slen, cache_len + slen)
            scores = F.softmax(scores.float(), dim=-1).type_as(xq)
            output = torch.matmul(scores, values)  # (bs, n_local_heads, slen, head_dim)
            attention_weight = output.transpose(1, 2).contiguous().view(bsz, seqlen, -1)
Casper Hansen's avatar
Casper Hansen committed
196
        else:
197
198
199
200
            xq = xq.view((bsz,) + self.attention_shapes["single_xq_view"])
            xk = xk.view((bsz,) + self.attention_shapes["single_xk_view"])
            xv = xv.view((bsz,) + self.attention_shapes["single_xv_view"])

Casper Hansen's avatar
Casper Hansen committed
201
            alibi_slopes = self.alibi.slopes if self.alibi is not None else None
Casper's avatar
Casper committed
202
            attention_weight = ft_inference_engine.single_query_attention(
Casper Hansen's avatar
Casper Hansen committed
203
204
205
                xq, # query
                xk, # key
                xv, # value
Casper Hansen's avatar
Casper Hansen committed
206
207
                self.cache.k, # key cache
                self.cache.v, # value cache
Casper Hansen's avatar
Casper Hansen committed
208
                None, # length per sample
Casper Hansen's avatar
Casper Hansen committed
209
                alibi_slopes, # alibi slopes
Casper Hansen's avatar
Casper Hansen committed
210
211
212
                self.start_pos, # timestep
                self.rotary_dim, # rotary embedding dimension
                10000, # rotary embedding base
213
                self.is_neox, # is neox
Casper Hansen's avatar
Casper Hansen committed
214
            )
Casper Hansen's avatar
Casper Hansen committed
215
            attention_weight = attention_weight.reshape(bsz, 1, -1)
Casper Hansen's avatar
Casper Hansen committed
216
        
Casper Hansen's avatar
Casper Hansen committed
217
        attn_output = self.o_proj(attention_weight)
Casper Hansen's avatar
Casper Hansen committed
218
        self.start_pos += seqlen
Haotian Tang's avatar
Haotian Tang committed
219

Casper Hansen's avatar
Casper Hansen committed
220
        # past_key_value is replaced with cache_v, cache_k, returning empty data
221
222
223
        # we pass a dummy past kv cache for transformers to be able to retrieve the correct info 
        # about past key length
        past_key_value = [torch.zeros(1, 1, self.start_pos, 1)]
224
        return attn_output, attention_weight, past_key_value