attn.py 10.1 KB
Newer Older
1
import os
Casper Hansen's avatar
Casper Hansen committed
2
import math
Haotian Tang's avatar
Haotian Tang committed
3
4
import torch
import torch.nn as nn
Casper Hansen's avatar
Casper Hansen committed
5
from torch.nn import functional as F
Casper Hansen's avatar
Casper Hansen committed
6
from awq.modules.fused.cache import WindowedCache
Casper Hansen's avatar
Casper Hansen committed
7

Casper's avatar
Casper committed
8
9
10
11
12
try:
    import ft_inference_engine
    FT_INSTALLED = True
except:
    FT_INSTALLED = False
qwopqwop200's avatar
qwopqwop200 committed
13

Casper Hansen's avatar
Casper Hansen committed
14
15
16
17
18
19
20
21
22
23
24
25
26
27
def precompute_freqs_cis(dim: int, end: int, theta: float = 10000.0):
    freqs = 1.0 / (theta ** (torch.arange(0, dim, 2)[: (dim // 2)].float() / dim))
    t = torch.arange(end, device=freqs.device)  # type: ignore
    freqs = torch.outer(t, freqs).float()  # type: ignore
    freqs_cis = torch.polar(torch.ones_like(freqs), freqs)  # complex64
    return freqs_cis

def reshape_for_broadcast(freqs_cis: torch.Tensor, x: torch.Tensor):
    ndim = x.ndim
    assert 0 <= 1 < ndim
    assert freqs_cis.shape == (x.shape[1], x.shape[-1])
    shape = [d if i == 1 or i == ndim - 1 else 1 for i, d in enumerate(x.shape)]
    return freqs_cis.view(*shape)

Casper Hansen's avatar
Casper Hansen committed
28
def apply_rotary_emb(xq: torch.Tensor, xk: torch.Tensor, freqs_cis: torch.Tensor):
Casper Hansen's avatar
Casper Hansen committed
29
30
31
32
33
34
    xq_ = torch.view_as_complex(
        xq.float().reshape(*xq.shape[:-1], 2, -1).transpose(-2, -1).contiguous()
    )
    xk_ = torch.view_as_complex(
        xk.float().reshape(*xk.shape[:-1], 2, -1).transpose(-2, -1).contiguous()
    )
35
    freqs_cis = reshape_for_broadcast(freqs_cis, xq_).to(xq_.device)
Casper Hansen's avatar
Casper Hansen committed
36
37
38
39
    xq_out = torch.view_as_real(xq_ * freqs_cis).transpose(-2, -1).flatten(3)
    xk_out = torch.view_as_real(xk_ * freqs_cis).transpose(-2, -1).flatten(3)
    return xq_out.type_as(xq), xk_out.type_as(xk)

Casper Hansen's avatar
Casper Hansen committed
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
def gen_slopes(n_heads, alibi_bias_max=8):
    _n_heads = 2 ** math.ceil(math.log2(n_heads))
    m = torch.arange(1, _n_heads + 1, dtype=torch.float32)
    m = m.mul(alibi_bias_max / _n_heads)
    slopes = 1.0 / torch.pow(2, m)
    if _n_heads != n_heads:
        slopes = torch.concat([slopes[1::2], slopes[::2]])[:n_heads]
    return slopes.view(1, n_heads, 1, 1)


def build_alibi_bias(
    n_heads, seq_len, full=False, alibi_bias_max=8, dtype=torch.float32
):
    alibi_bias = torch.arange(1 - seq_len, 1, dtype=torch.int32).view(1, 1, 1, seq_len)
    if full:
        alibi_bias = alibi_bias - torch.arange(1 - seq_len, 1, dtype=torch.int32).view(
            1, 1, seq_len, 1
        )
        alibi_bias = alibi_bias.abs().mul(-1)
    slopes = gen_slopes(n_heads, alibi_bias_max)
    alibi_bias = alibi_bias * slopes
    slopes = slopes.squeeze(0).squeeze(-1).squeeze(-1)
    return slopes.to(dtype=dtype), alibi_bias.to(dtype=dtype)

Casper Hansen's avatar
Casper Hansen committed
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
def get_attention_shapes(attention_shapes, max_seq_len, cache_batch_size, n_heads, n_kv_heads, head_dim):
    if attention_shapes is not None:
        attention_shapes = attention_shapes

    elif n_kv_heads == 0:
        attention_shapes = {
            # following fastertransformer definition
            "cache_v": (cache_batch_size, n_heads, max_seq_len, head_dim,),
            # 8: pack 8 fp16 in FT, if fp32 then use 4
            "cache_k": (cache_batch_size, n_heads, head_dim // 8, max_seq_len, 8,),
            "xqkv_view": (-1, n_heads, head_dim),
            "xq_slice": lambda xqkv: xqkv[:, :, 0],
            "xk_slice": lambda xqkv: xqkv[:, :, 1],
            "xv_slice": lambda xqkv: xqkv[:, :, 2],
            "xq_view": (n_heads, head_dim),
            "xk_view": (n_heads, head_dim),
            "xv_view": (n_heads, head_dim),
            "xk_reshape": (n_heads, head_dim // 8, 8),
            "single_xq_view": (n_heads, head_dim),
            "single_xk_view": (n_heads, head_dim),
            "single_xv_view": (n_heads, head_dim)
        }

    else:
        attention_shapes = {
            # following fastertransformer definition
            "cache_v": (cache_batch_size, n_kv_heads, max_seq_len, head_dim,),
            # 8: pack 8 fp16 in FT, if fp32 then use 4
            "cache_k": (cache_batch_size, n_kv_heads, head_dim // 8, max_seq_len, 8,),
            "xqkv_view": (n_heads + n_kv_heads * 2, head_dim),
            "xq_slice": lambda xqkv: xqkv[:, :, 0 : n_heads],
            "xk_slice": lambda xqkv: xqkv[:, :, n_heads : (n_heads + n_kv_heads)],
            "xv_slice": lambda xqkv: xqkv[:, :, -n_kv_heads :],
            "xq_view": (n_heads, head_dim),
            "xk_view": (n_kv_heads, head_dim),
            "xv_view": (n_kv_heads, head_dim),
            "xk_reshape": (n_kv_heads, head_dim // 8, 8),
            "single_xq_view": (n_heads, head_dim),
            "single_xk_view": (n_kv_heads, head_dim),
            "single_xv_view": (n_kv_heads, head_dim)
        }
    
    return attention_shapes
Haotian Tang's avatar
Haotian Tang committed
107

Casper Hansen's avatar
Casper Hansen committed
108
class QuantAttentionFused(nn.Module):
Casper Hansen's avatar
Casper Hansen committed
109
    def __init__(self, hidden_size, n_heads, n_kv_heads, qkv_layer, o_proj, dev, max_seq_len, 
110
                       use_alibi=False, attention_shapes=None):
Casper Hansen's avatar
Casper Hansen committed
111
112
        super().__init__()
        self.hidden_size = hidden_size
Casper Hansen's avatar
Casper Hansen committed
113
114
        self.n_heads = n_heads
        self.n_kv_heads = n_kv_heads
115
        self.n_kv_groups = n_heads // n_kv_heads if n_kv_heads != 0 else 0
Casper Hansen's avatar
Casper Hansen committed
116
        self.head_dim = self.hidden_size // n_heads
Casper Hansen's avatar
Casper Hansen committed
117
118
119
        self.qkv_proj = qkv_layer
        self.o_proj = o_proj
        self.start_pos = 0
Casper Hansen's avatar
Casper Hansen committed
120
        self.use_alibi = use_alibi
121
        self.cache_batch_size = int(os.getenv("AWQ_BATCH_SIZE", "1"))
122
        self.max_seq_len = max_seq_len
Casper Hansen's avatar
Casper Hansen committed
123
124
125
126
127
128
129
130
131

        # attention shapes for self attention
        self.attention_shapes = get_attention_shapes(
            attention_shapes, max_seq_len, self.cache_batch_size, n_heads, n_kv_heads, self.head_dim
        )
        # cache store that rolls cache
        self.cache = WindowedCache(
            self.attention_shapes["cache_v"], self.attention_shapes["cache_k"], dev
        )
Casper Hansen's avatar
Casper Hansen committed
132

133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
        if use_alibi:
            alibi_slopes, alibi_bias = build_alibi_bias(self.n_heads, max_seq_len)
            self.alibi_slopes = alibi_slopes.float().to(dev)
            self.alibi_bias = alibi_bias.float().to(dev)
            self.rotary_dim = 0
            self.is_neox = False
        else:
            self.freqs_cis = precompute_freqs_cis(
                hidden_size // n_heads,
                max_seq_len * 2,
            ).to(dev)
            self.rotary_dim = self.head_dim
            self.alibi_slopes = None
            self.is_neox = True
    
Casper Hansen's avatar
Casper Hansen committed
148
    def forward(self, hidden_states:torch.Tensor, attention_mask=None, *args, **kwargs):
Casper Hansen's avatar
Casper Hansen committed
149
        bsz, seqlen, _ = hidden_states.shape
150
151
152
153
154
        if bsz != self.cache_batch_size:
            raise RuntimeError(
                f"Batch size is incorrectly set - input batch size {bsz}, kv-cache batch size {self.cache_batch_size}. "
                f"Use: AutoAWQForCausalLM.from_quantized(batch_size={bsz})"
            )
155

Casper Hansen's avatar
Casper Hansen committed
156
        if self.start_pos > self.max_seq_len or self.start_pos + seqlen > self.max_seq_len:
Casper Hansen's avatar
Casper Hansen committed
157
158
            excess_length = self.start_pos + seqlen - self.max_seq_len
            self.start_pos = self.cache.roll_kv(excess_length, self.start_pos)
159
            
Casper Hansen's avatar
Casper Hansen committed
160
        xqkv = self.qkv_proj(hidden_states)
161
        xqkv = xqkv.view((bsz, seqlen) + self.attention_shapes["xqkv_view"])
Casper Hansen's avatar
Casper Hansen committed
162
        
163
164
165
        xq = self.attention_shapes["xq_slice"](xqkv)
        xk = self.attention_shapes["xk_slice"](xqkv)
        xv = self.attention_shapes["xv_slice"](xqkv)
Haotian Tang's avatar
Haotian Tang committed
166

Casper's avatar
Casper committed
167
        if seqlen > 1 or not FT_INSTALLED:
Casper Hansen's avatar
Casper Hansen committed
168
            xq = xq.view((bsz, seqlen) + self.attention_shapes["xq_view"])
169
170
            xk = xk.view((bsz, seqlen) + self.attention_shapes["xk_view"])
            xv = xv.view((bsz, seqlen) + self.attention_shapes["xv_view"])
Haotian Tang's avatar
Haotian Tang committed
171

172
173
            if not self.use_alibi:
                xq, xk = apply_rotary_emb(xq, xk, freqs_cis=self.freqs_cis[self.start_pos : self.start_pos + seqlen])
Haotian Tang's avatar
Haotian Tang committed
174

Casper Hansen's avatar
Casper Hansen committed
175
            self.cache.to(xq)
Haotian Tang's avatar
Haotian Tang committed
176

Casper Hansen's avatar
Casper Hansen committed
177
178
            values_store = xv.transpose(2, 1)
            keys_store = (
Casper Hansen's avatar
Casper Hansen committed
179
                xk.reshape((bsz, seqlen) + self.attention_shapes["xk_reshape"])
Casper Hansen's avatar
Casper Hansen committed
180
181
182
                .permute(0, 2, 3, 1, 4)
                .contiguous()
            )
Casper Hansen's avatar
Casper Hansen committed
183
            
Casper Hansen's avatar
Casper Hansen committed
184
            self.cache.update_kv(values_store, keys_store, bsz, self.start_pos, seqlen)
Casper Hansen's avatar
Casper Hansen committed
185

qwopqwop200's avatar
fix bug  
qwopqwop200 committed
186
            if seqlen == 1:
Casper Hansen's avatar
Casper Hansen committed
187
                xv, xk = self.cache.get_kv(bsz, self.start_pos, seqlen, self.head_dim)
Casper's avatar
Casper committed
188
            
Casper Hansen's avatar
Casper Hansen committed
189
190
            keys = xk
            values = xv
191
192
193
194
195

            if self.n_kv_groups != 0:
                keys = torch.repeat_interleave(keys, dim=2, repeats=self.n_kv_groups)
                values = torch.repeat_interleave(values, dim=2, repeats=self.n_kv_groups)
            
Casper Hansen's avatar
Casper Hansen committed
196
197
198
199
200
201
202
203
204
205
206
207
208
209
            xq = xq.transpose(1, 2)
            keys = keys.transpose(1, 2)
            values = values.transpose(1, 2)
            scores = torch.matmul(xq, keys.transpose(2, 3)) / math.sqrt(self.head_dim)

            if self.use_alibi:
                scores += self.alibi_bias[..., :seqlen]

            if attention_mask is not None:
                scores = scores + attention_mask  # (bs, n_local_heads, slen, cache_len + slen)
                
            scores = F.softmax(scores.float(), dim=-1).type_as(xq)
            output = torch.matmul(scores, values)  # (bs, n_local_heads, slen, head_dim)
            attention_weight = output.transpose(1, 2).contiguous().view(bsz, seqlen, -1)
Casper Hansen's avatar
Casper Hansen committed
210
        else:
211
212
213
214
            xq = xq.view((bsz,) + self.attention_shapes["single_xq_view"])
            xk = xk.view((bsz,) + self.attention_shapes["single_xk_view"])
            xv = xv.view((bsz,) + self.attention_shapes["single_xv_view"])

Casper's avatar
Casper committed
215
            attention_weight = ft_inference_engine.single_query_attention(
Casper Hansen's avatar
Casper Hansen committed
216
217
218
                xq, # query
                xk, # key
                xv, # value
Casper Hansen's avatar
Casper Hansen committed
219
220
                self.cache.k, # key cache
                self.cache.v, # value cache
Casper Hansen's avatar
Casper Hansen committed
221
222
223
224
225
                None, # length per sample
                self.alibi_slopes, # alibi slopes
                self.start_pos, # timestep
                self.rotary_dim, # rotary embedding dimension
                10000, # rotary embedding base
226
                self.is_neox, # is neox
Casper Hansen's avatar
Casper Hansen committed
227
            )
Casper Hansen's avatar
Casper Hansen committed
228
            attention_weight = attention_weight.reshape(bsz, 1, -1)
Casper Hansen's avatar
Casper Hansen committed
229
        
Casper Hansen's avatar
Casper Hansen committed
230
        attn_output = self.o_proj(attention_weight)
Casper Hansen's avatar
Casper Hansen committed
231
        self.start_pos += seqlen
Haotian Tang's avatar
Haotian Tang committed
232

Casper Hansen's avatar
Casper Hansen committed
233
234
235
        # past_key_value is replaced with cache_v, cache_k, returning empty data
        past_key_value = [torch.Tensor([ [ [[0]], [[0]], [[0]] ] ])]
        return attn_output, attention_weight, past_key_value