"src/vscode:/vscode.git/clone" did not exist on "a11ef66a570ee2bebbfdc19868474257c1749d44"
server_args.py 52.9 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
# Copyright 2023-2024 SGLang Team
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
Lianmin Zheng's avatar
Lianmin Zheng committed
14
15
"""The arguments of the server."""

Lianmin Zheng's avatar
Lianmin Zheng committed
16
17
import argparse
import dataclasses
18
import json
19
import logging
20
import os
21
import random
22
import tempfile
23
from typing import List, Literal, Optional
Lianmin Zheng's avatar
Lianmin Zheng committed
24

25
from sglang.srt.hf_transformers_utils import check_gguf_file
Xihuai Wang's avatar
Xihuai Wang committed
26
from sglang.srt.reasoning_parser import ReasoningParser
27
from sglang.srt.utils import (
Vincent's avatar
Vincent committed
28
    configure_ipv6,
HAI's avatar
HAI committed
29
    get_amdgpu_memory_capacity,
30
    get_device,
31
    get_hpu_memory_capacity,
HAI's avatar
HAI committed
32
    get_nvgpu_memory_capacity,
33
    is_cuda,
34
    is_flashinfer_available,
HAI's avatar
HAI committed
35
    is_hip,
36
    is_port_available,
37
    is_remote_url,
38
    is_valid_ipv6_address,
bjmsong's avatar
bjmsong committed
39
    nullable_str,
40
)
41

42
43
logger = logging.getLogger(__name__)

Lianmin Zheng's avatar
Lianmin Zheng committed
44
45
46

@dataclasses.dataclass
class ServerArgs:
Lianmin Zheng's avatar
Lianmin Zheng committed
47
    # Model and tokenizer
Lianmin Zheng's avatar
Lianmin Zheng committed
48
49
50
    model_path: str
    tokenizer_path: Optional[str] = None
    tokenizer_mode: str = "auto"
51
    skip_tokenizer_init: bool = False
Lianmin Zheng's avatar
Lianmin Zheng committed
52
    load_format: str = "auto"
53
    trust_remote_code: bool = False
Lianmin Zheng's avatar
Lianmin Zheng committed
54
    dtype: str = "auto"
55
    kv_cache_dtype: str = "auto"
Lianmin Zheng's avatar
Lianmin Zheng committed
56
    quantization: Optional[str] = None
Vincent's avatar
Vincent committed
57
    quantization_param_path: Optional[str] = None
58
    context_length: Optional[int] = None
59
    device: Optional[str] = None
60
    served_model_name: Optional[str] = None
Lianmin Zheng's avatar
Lianmin Zheng committed
61
    chat_template: Optional[str] = None
62
    completion_template: Optional[str] = None
63
    is_embedding: bool = False
64
    revision: Optional[str] = None
Lianmin Zheng's avatar
Lianmin Zheng committed
65

66
    # Port for the HTTP server
Lianmin Zheng's avatar
Lianmin Zheng committed
67
68
69
70
    host: str = "127.0.0.1"
    port: int = 30000

    # Memory and scheduling
Lianmin Zheng's avatar
Lianmin Zheng committed
71
    mem_fraction_static: Optional[float] = None
72
    max_running_requests: Optional[int] = None
73
    max_total_tokens: Optional[int] = None
74
    chunked_prefill_size: Optional[int] = None
75
    max_prefill_tokens: int = 16384
76
    schedule_policy: str = "fcfs"
77
    schedule_conservativeness: float = 1.0
78
    cpu_offload_gb: int = 0
79
    page_size: int = 1
Lianmin Zheng's avatar
Lianmin Zheng committed
80
81
82

    # Other runtime options
    tp_size: int = 1
83
    stream_interval: int = 1
84
    stream_output: bool = False
85
    random_seed: Optional[int] = None
86
    constrained_json_whitespace_pattern: Optional[str] = None
87
    watchdog_timeout: float = 300
88
    dist_timeout: Optional[int] = None  # timeout for torch.distributed
89
    download_dir: Optional[str] = None
90
    base_gpu_id: int = 0
91
    gpu_id_step: int = 1
Lianmin Zheng's avatar
Lianmin Zheng committed
92
93
94

    # Logging
    log_level: str = "info"
95
    log_level_http: Optional[str] = None
96
    log_requests: bool = False
97
    log_requests_level: int = 0
Liangsheng Yin's avatar
Liangsheng Yin committed
98
    show_time_cost: bool = False
99
    enable_metrics: bool = False
100
    decode_log_interval: int = 40
Liangsheng Yin's avatar
Liangsheng Yin committed
101

102
    # API related
103
    api_key: Optional[str] = None
104
    file_storage_path: str = "sglang_storage"
105
    enable_cache_report: bool = False
Xihuai Wang's avatar
Xihuai Wang committed
106
    reasoning_parser: Optional[str] = None
Lianmin Zheng's avatar
Lianmin Zheng committed
107

108
109
110
    # Data parallelism
    dp_size: int = 1
    load_balance_method: str = "round_robin"
111

xiaobochen's avatar
xiaobochen committed
112
113
    # Expert parallelism
    ep_size: int = 1
114

115
    # Multi-node distributed serving
116
    dist_init_addr: Optional[str] = None
Lianmin Zheng's avatar
Lianmin Zheng committed
117
    nnodes: int = 1
118
    node_rank: int = 0
Lianmin Zheng's avatar
Lianmin Zheng committed
119
120
121
122

    # Model override args in JSON
    json_model_override_args: str = "{}"

123
124
125
    # LoRA
    lora_paths: Optional[List[str]] = None
    max_loras_per_batch: int = 8
126
    lora_backend: str = "triton"
127
128

    # Kernel backend
129
130
    attention_backend: Optional[str] = None
    sampling_backend: Optional[str] = None
131
    grammar_backend: Optional[str] = None
132

133
134
    # Speculative decoding
    speculative_algorithm: Optional[str] = None
135
    speculative_draft_model_path: Optional[str] = None
136
137
138
    speculative_num_steps: Optional[int] = None
    speculative_eagle_topk: Optional[int] = None
    speculative_num_draft_tokens: Optional[int] = None
139
140
    speculative_accept_threshold_single: float = 1.0
    speculative_accept_threshold_acc: float = 1.0
141
    speculative_token_map: Optional[str] = None
142
143
144

    # Double Sparsity
    enable_double_sparsity: bool = False
Vincent's avatar
Vincent committed
145
    ds_channel_config_path: Optional[str] = None
146
147
148
149
150
    ds_heavy_channel_num: int = 32
    ds_heavy_token_num: int = 256
    ds_heavy_channel_type: str = "qk"
    ds_sparse_decode_threshold: int = 4096

151
    # Optimization/debug options
Lianmin Zheng's avatar
Lianmin Zheng committed
152
    disable_radix_cache: bool = False
153
    disable_cuda_graph: bool = False
154
    disable_cuda_graph_padding: bool = False
155
    enable_nccl_nvls: bool = False
156
    disable_outlines_disk_cache: bool = False
157
    disable_custom_all_reduce: bool = False
158
    enable_llama4_multimodal: Optional[bool] = None
159
    disable_overlap_schedule: bool = False
160
    enable_mixed_chunk: bool = False
Ke Bao's avatar
Ke Bao committed
161
    enable_dp_attention: bool = False
xiaobochen's avatar
xiaobochen committed
162
    enable_ep_moe: bool = False
163
    enable_deepep_moe: bool = False
164
    deepep_mode: Optional[Literal["auto", "normal", "low_latency"]] = "auto"
165
    enable_torch_compile: bool = False
166
    torch_compile_max_bs: int = 32
167
    cuda_graph_max_bs: Optional[int] = None
168
    cuda_graph_bs: Optional[List[int]] = None
169
    torchao_config: str = ""
170
    enable_nan_detection: bool = False
171
    enable_p2p_check: bool = False
172
    triton_attention_reduce_in_fp32: bool = False
173
    triton_attention_num_kv_splits: int = 8
174
    num_continuous_decode_steps: int = 1
175
    delete_ckpt_after_loading: bool = False
176
    enable_memory_saver: bool = False
177
    allow_auto_truncate: bool = False
178
    enable_custom_logit_processor: bool = False
Vincent's avatar
Vincent committed
179
    tool_call_parser: Optional[str] = None
180
    enable_hierarchical_cache: bool = False
181
    hicache_ratio: float = 2.0
182
    flashinfer_mla_disable_ragged: bool = False
183
    warmups: Optional[str] = None
184
    moe_dense_tp_size: Optional[int] = None
185
    n_share_experts_fusion: int = 0
186
    disable_chunked_prefix_cache: bool = False
Lianmin Zheng's avatar
Lianmin Zheng committed
187
    disable_fast_image_processor: bool = False
188
189
190
191
192

    # Debug tensor dumps
    debug_tensor_dump_output_folder: Optional[str] = None
    debug_tensor_dump_input_file: Optional[str] = None
    debug_tensor_dump_inject: bool = False
193

Byron Hsu's avatar
Byron Hsu committed
194
195
196
    # For PD disaggregation: can be "null" (not disaggregated), "prefill" (prefill-only), or "decode" (decode-only)
    disaggregation_mode: str = "null"
    disaggregation_bootstrap_port: int = 8998
197
    disaggregation_transfer_backend: str = "mooncake"
198
    disaggregation_ib_device: Optional[str] = None
Byron Hsu's avatar
Byron Hsu committed
199

Lianmin Zheng's avatar
Lianmin Zheng committed
200
    def __post_init__(self):
201
202
203
204
205
206
207
        # Expert parallelism
        if self.enable_ep_moe:
            self.ep_size = self.tp_size
            logger.info(
                f"EP MoE is enabled. The expert parallel size is adjusted to be the same as the tensor parallel size[{self.tp_size}]."
            )

208
        # Set missing default values
Lianmin Zheng's avatar
Lianmin Zheng committed
209
210
        if self.tokenizer_path is None:
            self.tokenizer_path = self.model_path
211

212
213
214
        if self.device is None:
            self.device = get_device()

215
216
217
        if self.served_model_name is None:
            self.served_model_name = self.model_path

218
219
220
        if self.random_seed is None:
            self.random_seed = random.randint(0, 1 << 30)

221
        if is_cuda():
222
            gpu_mem = get_nvgpu_memory_capacity()
223
224
        elif is_hip():
            gpu_mem = get_amdgpu_memory_capacity()
225
226
        elif self.device == "hpu":
            gpu_mem = get_hpu_memory_capacity()
227
228
229
        else:
            # GPU memory is not known yet or no GPU is available.
            gpu_mem = None
230
231

        # Set mem fraction static, which depends on the tensor parallelism size
Lianmin Zheng's avatar
Lianmin Zheng committed
232
        if self.mem_fraction_static is None:
233
            if self.tp_size >= 16:
234
                self.mem_fraction_static = 0.79
235
            elif self.tp_size >= 8:
236
                self.mem_fraction_static = 0.81
Lianmin Zheng's avatar
Lianmin Zheng committed
237
            elif self.tp_size >= 4:
238
                self.mem_fraction_static = 0.85
Lianmin Zheng's avatar
Lianmin Zheng committed
239
            elif self.tp_size >= 2:
240
                self.mem_fraction_static = 0.87
Ying Sheng's avatar
Ying Sheng committed
241
            else:
242
                self.mem_fraction_static = 0.88
243

244
245
        # Set chunked prefill size, which depends on the gpu memory capacity
        if self.chunked_prefill_size is None:
246
            if gpu_mem is not None and gpu_mem < 25_000:
247
248
249
                self.chunked_prefill_size = 2048
            else:
                self.chunked_prefill_size = 8192
250

Lianmin Zheng's avatar
Lianmin Zheng committed
251
252
        assert self.chunked_prefill_size % self.page_size == 0

253
254
255
256
257
        assert self.moe_dense_tp_size in {
            1,
            None,
        }, f"moe_dense_tp_size only support 1 and None currently"

258
        if self.attention_backend == "flashmla":
259
260
261
262
            logger.warning(
                "FlashMLA only supports a page_size of 64, change page_size to 64."
            )
            self.page_size = 64
263
264
        # Set cuda graph max batch size
        if self.cuda_graph_max_bs is None:
265
            # Based on detailed statistics, when serving TP1/TP2 models on lower-end GPUs with HBM<25G, you can either disable cuda graph or set `cuda_graph_max_bs` to a very small value to reduce the memory overhead of creating cuda graphs, with almost no impact on performance. However, when serving models with TP4 or TP8, we need to enable cuda graph to maintain high performance. In this case, we can set `cuda_graph_max_bs` to 80 (half of the default value 160) to reduce the memory overhead of creating cuda graphs. Looking at the logs from TP4 serving of qwen2-72b, a value of 80 is sufficient and can reduce the memory overhead of creating cuda graphs on lower-end GPUs compared to the original 160, avoiding OOM issues.
266
            if gpu_mem is not None and gpu_mem < 25_000:
267
268
269
270
                if self.tp_size < 4:
                    self.cuda_graph_max_bs = 8
                else:
                    self.cuda_graph_max_bs = 80
271
272
            else:
                self.cuda_graph_max_bs = 160
273

274
        # Set kernel backends for hpu device
275
276
277
278
        if self.device == "hpu":
            self.attention_backend = "torch_native"
            self.sampling_backend = "pytorch"

279
        if self.sampling_backend is None:
280
281
282
283
284
            self.sampling_backend = (
                "flashinfer" if is_flashinfer_available() else "pytorch"
            )

        if self.attention_backend == "torch_native":
285
            logger.warning(
286
287
288
                "Cuda graph is disabled because of using torch native attention backend"
            )
            self.disable_cuda_graph = True
289

290
291
292
        # Choose grammar backend
        if self.grammar_backend is None:
            self.grammar_backend = "xgrammar"
293

294
295
296
297
298
299
300
        # Expert parallelism
        if self.enable_ep_moe:
            self.ep_size = self.tp_size
            logger.info(
                f"EP MoE is enabled. The expert parallel size is adjusted to be the same as the tensor parallel size[{self.tp_size}]."
            )

301
302
        self.enable_multimodal: Optional[bool] = self.enable_llama4_multimodal

303
        # Data parallelism attention
Ke Bao's avatar
Ke Bao committed
304
        if self.enable_dp_attention:
305
            self.schedule_conservativeness = self.schedule_conservativeness * 0.3
Lianmin Zheng's avatar
Lianmin Zheng committed
306
307
308
309
310
            assert (
                self.dp_size > 1
            ), "Please set a dp-size > 1. You can use 1 < dp-size <= tp-size "
            assert self.tp_size % self.dp_size == 0
            self.chunked_prefill_size = self.chunked_prefill_size // self.dp_size
311
            logger.warning(
312
                f"DP attention is enabled. The chunked prefill size is adjusted to {self.chunked_prefill_size} to avoid MoE kernel issues. "
313
            )
314
315
316
317

        self.enable_sp_layernorm = False
        # DeepEP MoE
        if self.enable_deepep_moe:
318
319
320
321
            if self.deepep_mode == "auto":
                assert (
                    not self.enable_dp_attention
                ), "DeepEP MoE `auto` mode is not supported with DP Attention."
322
323
324
325
326
327
328
            self.ep_size = self.tp_size
            self.enable_sp_layernorm = (
                self.dp_size < self.tp_size if self.enable_dp_attention else True
            )
            logger.info(
                f"DeepEP MoE is enabled. The expert parallel size is adjusted to be the same as the tensor parallel size[{self.tp_size}]."
            )
329

330
        # Speculative Decoding
331
332
333
334
        if self.speculative_algorithm == "NEXTN":
            # NEXTN shares the same implementation of EAGLE
            self.speculative_algorithm = "EAGLE"

James Liu's avatar
James Liu committed
335
336
337
338
        if (
            self.speculative_algorithm == "EAGLE"
            or self.speculative_algorithm == "EAGLE3"
        ):
339
            if self.max_running_requests is None:
340
                self.max_running_requests = 48
341
            self.disable_overlap_schedule = True
342
            logger.info(
343
                "Overlap scheduler is disabled because of using "
344
                "eagle speculative decoding."
345
            )
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362

            # Auto choose parameters
            if self.speculative_num_steps is None:
                assert (
                    self.speculative_eagle_topk is None
                    and self.speculative_num_draft_tokens is None
                )
                (
                    self.speculative_num_steps,
                    self.speculative_eagle_topk,
                    self.speculative_num_draft_tokens,
                ) = auto_choose_speculative_params(self)

            if self.page_size > 1 and self.speculative_eagle_topk > 1:
                self.speculative_eagle_topk = 1
                logger.info("speculative_eagle_topk is changed to 1 when page_size > 1")

363
            # The token generated from the verify step is counted.
364
            # If sepculative_num_steps >= speculative_num_draft_tokens, the additional tokens will definitely be discarded.
365
            # assert self.speculative_num_steps < self.speculative_num_draft_tokens
366

367
368
369
370
371
372
        # GGUF
        if (
            self.load_format == "auto" or self.load_format == "gguf"
        ) and check_gguf_file(self.model_path):
            self.quantization = self.load_format = "gguf"

373
374
375
        if is_remote_url(self.model_path):
            self.load_format = "remote"

376
377
378
379
        # AMD-specific Triton attention KV splits default number
        if is_hip():
            self.triton_attention_num_kv_splits = 16

Byron Hsu's avatar
Byron Hsu committed
380
381
382
383
384
385
386
387
388
389
390
391
        # PD disaggregation
        if self.disaggregation_mode == "prefill":
            self.disable_cuda_graph = True
            logger.warning("KV cache is forced as chunk cache for decode server")
            self.disable_overlap_schedule = True
            logger.warning("Overlap scheduler is disabled for prefill server")
        elif self.disaggregation_mode == "decode":
            self.disable_radix_cache = True
            logger.warning("Cuda graph is disabled for prefill server")
            self.disable_overlap_schedule = True
            logger.warning("Overlap scheduler is disabled for decode server")

392
393
394
        os.environ["SGLANG_ENABLE_TORCH_COMPILE"] = (
            "1" if self.enable_torch_compile else "0"
        )
395
396
397
398
        # Set env var before grammar backends init
        os.environ["SGLANG_DISABLE_OUTLINES_DISK_CACHE"] = (
            "1" if self.disable_outlines_disk_cache else "0"
        )
399

Lianmin Zheng's avatar
Lianmin Zheng committed
400
401
    @staticmethod
    def add_cli_args(parser: argparse.ArgumentParser):
402
        # Model and port args
Lianmin Zheng's avatar
Lianmin Zheng committed
403
404
405
406
407
408
409
410
411
412
413
414
        parser.add_argument(
            "--model-path",
            type=str,
            help="The path of the model weights. This can be a local folder or a Hugging Face repo ID.",
            required=True,
        )
        parser.add_argument(
            "--tokenizer-path",
            type=str,
            default=ServerArgs.tokenizer_path,
            help="The path of the tokenizer.",
        )
Yuanhan Zhang's avatar
Yuanhan Zhang committed
415
416
417
418
419
420
        parser.add_argument(
            "--host", type=str, default=ServerArgs.host, help="The host of the server."
        )
        parser.add_argument(
            "--port", type=int, default=ServerArgs.port, help="The port of the server."
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
421
422
423
424
425
426
427
428
429
        parser.add_argument(
            "--tokenizer-mode",
            type=str,
            default=ServerArgs.tokenizer_mode,
            choices=["auto", "slow"],
            help="Tokenizer mode. 'auto' will use the fast "
            "tokenizer if available, and 'slow' will "
            "always use the slow tokenizer.",
        )
430
431
432
433
434
        parser.add_argument(
            "--skip-tokenizer-init",
            action="store_true",
            help="If set, skip init tokenizer and pass input_ids in generate request",
        )
435
        parser.add_argument(
Lianmin Zheng's avatar
Lianmin Zheng committed
436
437
438
            "--load-format",
            type=str,
            default=ServerArgs.load_format,
439
440
441
442
443
444
            choices=[
                "auto",
                "pt",
                "safetensors",
                "npcache",
                "dummy",
445
                "sharded_state",
446
447
                "gguf",
                "bitsandbytes",
448
                "layered",
449
                "remote",
450
            ],
Lianmin Zheng's avatar
Lianmin Zheng committed
451
452
453
454
455
456
457
458
459
            help="The format of the model weights to load. "
            '"auto" will try to load the weights in the safetensors format '
            "and fall back to the pytorch bin format if safetensors format "
            "is not available. "
            '"pt" will load the weights in the pytorch bin format. '
            '"safetensors" will load the weights in the safetensors format. '
            '"npcache" will load the weights in pytorch format and store '
            "a numpy cache to speed up the loading. "
            '"dummy" will initialize the weights with random values, '
460
            "which is mainly for profiling."
461
462
            '"gguf" will load the weights in the gguf format. '
            '"bitsandbytes" will load the weights using bitsandbytes '
463
464
465
466
            "quantization."
            '"layered" loads weights layer by layer so that one can quantize a '
            "layer before loading another to make the peak memory envelope "
            "smaller.",
Lianmin Zheng's avatar
Lianmin Zheng committed
467
        )
468
469
470
471
472
        parser.add_argument(
            "--trust-remote-code",
            action="store_true",
            help="Whether or not to allow for custom models defined on the Hub in their own modeling files.",
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
473
        parser.add_argument(
Lianmin Zheng's avatar
Lianmin Zheng committed
474
            "--dtype",
Cody Yu's avatar
Cody Yu committed
475
            type=str,
Lianmin Zheng's avatar
Lianmin Zheng committed
476
            default=ServerArgs.dtype,
Ying Sheng's avatar
Ying Sheng committed
477
478
            choices=["auto", "half", "float16", "bfloat16", "float", "float32"],
            help="Data type for model weights and activations.\n\n"
Lianmin Zheng's avatar
Lianmin Zheng committed
479
            '* "auto" will use FP16 precision for FP32 and FP16 models, and '
Ying Sheng's avatar
Ying Sheng committed
480
            "BF16 precision for BF16 models.\n"
Lianmin Zheng's avatar
Lianmin Zheng committed
481
482
483
484
            '* "half" for FP16. Recommended for AWQ quantization.\n'
            '* "float16" is the same as "half".\n'
            '* "bfloat16" for a balance between precision and range.\n'
            '* "float" is shorthand for FP32 precision.\n'
Ying Sheng's avatar
Ying Sheng committed
485
486
            '* "float32" for FP32 precision.',
        )
487
488
489
490
        parser.add_argument(
            "--kv-cache-dtype",
            type=str,
            default=ServerArgs.kv_cache_dtype,
bjmsong's avatar
bjmsong committed
491
492
493
            choices=["auto", "fp8_e5m2", "fp8_e4m3"],
            help='Data type for kv cache storage. "auto" will use model data type. "fp8_e5m2" and "fp8_e4m3" is supported for CUDA 11.8+.',
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
494
495
496
497
        parser.add_argument(
            "--quantization",
            type=str,
            default=ServerArgs.quantization,
Ying Sheng's avatar
Ying Sheng committed
498
499
500
501
502
503
            choices=[
                "awq",
                "fp8",
                "gptq",
                "marlin",
                "gptq_marlin",
Ying Sheng's avatar
Ying Sheng committed
504
                "awq_marlin",
Ying Sheng's avatar
Ying Sheng committed
505
                "bitsandbytes",
506
                "gguf",
507
                "modelopt",
508
                "modelopt_fp4",
509
                "w8a8_int8",
HandH1998's avatar
HandH1998 committed
510
                "w8a8_fp8",
AniZpZ's avatar
AniZpZ committed
511
                "moe_wna16",
Ying Sheng's avatar
Ying Sheng committed
512
            ],
Lianmin Zheng's avatar
Lianmin Zheng committed
513
514
            help="The quantization method.",
        )
515
516
517
518
519
520
521
522
523
        parser.add_argument(
            "--quantization-param-path",
            type=nullable_str,
            default=None,
            help="Path to the JSON file containing the KV cache "
            "scaling factors. This should generally be supplied, when "
            "KV cache dtype is FP8. Otherwise, KV cache scaling factors "
            "default to 1.0, which may cause accuracy issues. ",
        )
524
525
526
527
528
529
530
531
532
        parser.add_argument(
            "--context-length",
            type=int,
            default=ServerArgs.context_length,
            help="The model's maximum context length. Defaults to None (will use the value from the model's config.json instead).",
        )
        parser.add_argument(
            "--device",
            type=str,
533
534
            default=ServerArgs.device,
            help="The device to use ('cuda', 'xpu', 'hpu', 'cpu'). Defaults to auto-detection if not specified.",
535
        )
536
537
538
539
540
541
        parser.add_argument(
            "--served-model-name",
            type=str,
            default=ServerArgs.served_model_name,
            help="Override the model name returned by the v1/models endpoint in OpenAI API server.",
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
542
543
544
545
546
547
        parser.add_argument(
            "--chat-template",
            type=str,
            default=ServerArgs.chat_template,
            help="The buliltin chat template name or the path of the chat template file. This is only used for OpenAI-compatible API server.",
        )
548
549
550
551
552
553
        parser.add_argument(
            "--completion-template",
            type=str,
            default=ServerArgs.completion_template,
            help="The buliltin completion template name or the path of the completion template file. This is only used for OpenAI-compatible API server. only for code completion currently.",
        )
554
555
556
557
558
        parser.add_argument(
            "--is-embedding",
            action="store_true",
            help="Whether to use a CausalLM as an embedding model.",
        )
559
560
561
562
563
564
565
566
        parser.add_argument(
            "--revision",
            type=str,
            default=None,
            help="The specific model version to use. It can be a branch "
            "name, a tag name, or a commit id. If unspecified, will use "
            "the default version.",
        )
567
        # Memory and scheduling
Lianmin Zheng's avatar
Lianmin Zheng committed
568
569
570
571
        parser.add_argument(
            "--mem-fraction-static",
            type=float,
            default=ServerArgs.mem_fraction_static,
572
            help="The fraction of the memory used for static allocation (model weights and KV cache memory pool). Use a smaller value if you see out-of-memory errors.",
Lianmin Zheng's avatar
Lianmin Zheng committed
573
        )
574
575
576
577
578
579
        parser.add_argument(
            "--max-running-requests",
            type=int,
            default=ServerArgs.max_running_requests,
            help="The maximum number of running requests.",
        )
580
581
582
583
        parser.add_argument(
            "--max-total-tokens",
            type=int,
            default=ServerArgs.max_total_tokens,
584
585
            help="The maximum number of tokens in the memory pool. If not specified, it will be automatically calculated based on the memory usage fraction. "
            "This option is typically used for development and debugging purposes.",
586
        )
587
588
589
590
        parser.add_argument(
            "--chunked-prefill-size",
            type=int,
            default=ServerArgs.chunked_prefill_size,
591
            help="The maximum number of tokens in a chunk for the chunked prefill. Setting this to -1 means disabling chunked prefill.",
592
593
594
595
596
597
598
        )
        parser.add_argument(
            "--max-prefill-tokens",
            type=int,
            default=ServerArgs.max_prefill_tokens,
            help="The maximum number of tokens in a prefill batch. The real bound will be the maximum of this value and the model's maximum context length.",
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
599
        parser.add_argument(
600
            "--schedule-policy",
Lianmin Zheng's avatar
Lianmin Zheng committed
601
            type=str,
602
            default=ServerArgs.schedule_policy,
Liangsheng Yin's avatar
Liangsheng Yin committed
603
            choices=["lpm", "random", "fcfs", "dfs-weight"],
604
            help="The scheduling policy of the requests.",
Lianmin Zheng's avatar
Lianmin Zheng committed
605
        )
606
607
608
609
        parser.add_argument(
            "--schedule-conservativeness",
            type=float,
            default=ServerArgs.schedule_conservativeness,
610
            help="How conservative the schedule policy is. A larger value means more conservative scheduling. Use a larger value if you see requests being retracted frequently.",
611
        )
612
613
614
615
        parser.add_argument(
            "--cpu-offload-gb",
            type=int,
            default=ServerArgs.cpu_offload_gb,
616
            help="How many GBs of RAM to reserve for CPU offloading.",
617
        )
618
619
620
621
622
623
        parser.add_argument(
            "--page-size",
            type=int,
            default=ServerArgs.page_size,
            help="The number of tokens in a page.",
        )
624

625
        # Other runtime options
Lianmin Zheng's avatar
Lianmin Zheng committed
626
        parser.add_argument(
627
            "--tensor-parallel-size",
Lianmin Zheng's avatar
Lianmin Zheng committed
628
            "--tp-size",
Lianmin Zheng's avatar
Lianmin Zheng committed
629
            type=int,
Lianmin Zheng's avatar
Lianmin Zheng committed
630
            default=ServerArgs.tp_size,
631
            help="The tensor parallelism size.",
632
        )
633
634
635
        parser.add_argument(
            "--stream-interval",
            type=int,
Lianmin Zheng's avatar
Lianmin Zheng committed
636
            default=ServerArgs.stream_interval,
637
            help="The interval (or buffer size) for streaming in terms of the token length. A smaller value makes streaming smoother, while a larger value makes the throughput higher",
638
        )
639
640
641
642
643
        parser.add_argument(
            "--stream-output",
            action="store_true",
            help="Whether to output as a sequence of disjoint segments.",
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
644
645
646
647
        parser.add_argument(
            "--random-seed",
            type=int,
            default=ServerArgs.random_seed,
648
            help="The random seed.",
Lianmin Zheng's avatar
Lianmin Zheng committed
649
        )
650
651
652
653
654
655
        parser.add_argument(
            "--constrained-json-whitespace-pattern",
            type=str,
            default=ServerArgs.constrained_json_whitespace_pattern,
            help=r"Regex pattern for syntactic whitespaces allowed in JSON constrained output. For example, to allow the model generate consecutive whitespaces, set the pattern to [\n\t ]*",
        )
656
657
658
659
660
661
        parser.add_argument(
            "--watchdog-timeout",
            type=float,
            default=ServerArgs.watchdog_timeout,
            help="Set watchdog timeout in seconds. If a forward batch takes longer than this, the server will crash to prevent hanging.",
        )
662
663
664
665
666
667
        parser.add_argument(
            "--dist-timeout",
            type=int,
            default=ServerArgs.dist_timeout,
            help="Set timeout for torch.distributed initialization.",
        )
668
669
670
671
        parser.add_argument(
            "--download-dir",
            type=str,
            default=ServerArgs.download_dir,
Lianmin Zheng's avatar
Lianmin Zheng committed
672
            help="Model download directory for huggingface.",
673
        )
674
675
676
677
678
679
        parser.add_argument(
            "--base-gpu-id",
            type=int,
            default=ServerArgs.base_gpu_id,
            help="The base GPU ID to start allocating GPUs from. Useful when running multiple instances on the same machine.",
        )
680
681
682
683
684
685
        parser.add_argument(
            "--gpu-id-step",
            type=int,
            default=ServerArgs.gpu_id_step,
            help="The delta between consecutive GPU IDs that are used. For example, setting it to 2 will use GPU 0,2,4,...",
        )
686
687

        # Logging
Lianmin Zheng's avatar
Lianmin Zheng committed
688
689
690
691
        parser.add_argument(
            "--log-level",
            type=str,
            default=ServerArgs.log_level,
692
            help="The logging level of all loggers.",
Lianmin Zheng's avatar
Lianmin Zheng committed
693
        )
694
        parser.add_argument(
695
696
697
698
            "--log-level-http",
            type=str,
            default=ServerArgs.log_level_http,
            help="The logging level of HTTP server. If not set, reuse --log-level by default.",
699
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
700
        parser.add_argument(
701
            "--log-requests",
Lianmin Zheng's avatar
Lianmin Zheng committed
702
            action="store_true",
703
704
705
706
707
708
709
710
            help="Log metadata, inputs, outputs of all requests. The verbosity is decided by --log-requests-level",
        )
        parser.add_argument(
            "--log-requests-level",
            type=int,
            default=0,
            help="0: Log metadata. 1. Log metadata and partial input/output. 2. Log every input/output.",
            choices=[0, 1, 2],
Lianmin Zheng's avatar
Lianmin Zheng committed
711
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
712
713
714
        parser.add_argument(
            "--show-time-cost",
            action="store_true",
Ying Sheng's avatar
Ying Sheng committed
715
            help="Show time cost of custom marks.",
Lianmin Zheng's avatar
Lianmin Zheng committed
716
        )
717
718
719
720
721
        parser.add_argument(
            "--enable-metrics",
            action="store_true",
            help="Enable log prometheus metrics.",
        )
722
723
724
725
        parser.add_argument(
            "--decode-log-interval",
            type=int,
            default=ServerArgs.decode_log_interval,
726
            help="The log interval of decode batch.",
727
        )
728

729
        # API related
Liangsheng Yin's avatar
Liangsheng Yin committed
730
731
732
733
        parser.add_argument(
            "--api-key",
            type=str,
            default=ServerArgs.api_key,
734
            help="Set API key of the server. It is also used in the OpenAI API compatible server.",
Liangsheng Yin's avatar
Liangsheng Yin committed
735
        )
736
        parser.add_argument(
737
            "--file-storage-path",
738
            type=str,
739
            default=ServerArgs.file_storage_path,
740
741
            help="The path of the file storage in backend.",
        )
742
743
744
745
746
        parser.add_argument(
            "--enable-cache-report",
            action="store_true",
            help="Return number of cached tokens in usage.prompt_tokens_details for each openai request.",
        )
Xihuai Wang's avatar
Xihuai Wang committed
747
748
749
750
751
752
753
        parser.add_argument(
            "--reasoning-parser",
            type=str,
            choices=list(ReasoningParser.DetectorMap.keys()),
            default=ServerArgs.reasoning_parser,
            help=f"Specify the parser for reasoning models, supported parsers are: {list(ReasoningParser.DetectorMap.keys())}.",
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
754

755
756
        # Data parallelism
        parser.add_argument(
757
            "--data-parallel-size",
758
759
760
            "--dp-size",
            type=int,
            default=ServerArgs.dp_size,
761
            help="The data parallelism size.",
762
763
764
765
766
        )
        parser.add_argument(
            "--load-balance-method",
            type=str,
            default=ServerArgs.load_balance_method,
767
            help="The load balancing strategy for data parallelism.",
768
769
770
771
772
            choices=[
                "round_robin",
                "shortest_queue",
            ],
        )
773

xiaobochen's avatar
xiaobochen committed
774
775
776
777
778
779
780
781
        # Expert parallelism
        parser.add_argument(
            "--expert-parallel-size",
            "--ep-size",
            type=int,
            default=ServerArgs.ep_size,
            help="The expert parallelism size.",
        )
782

783
        # Multi-node distributed serving
784
        parser.add_argument(
785
786
            "--dist-init-addr",
            "--nccl-init-addr",  # For backward compatbility. This will be removed in the future.
787
            type=str,
788
            help="The host address for initializing distributed backend (e.g., `192.168.0.2:25000`).",
789
790
        )
        parser.add_argument(
Liangsheng Yin's avatar
Liangsheng Yin committed
791
            "--nnodes", type=int, default=ServerArgs.nnodes, help="The number of nodes."
792
        )
793
794
795
        parser.add_argument(
            "--node-rank", type=int, default=ServerArgs.node_rank, help="The node rank."
        )
796

Lianmin Zheng's avatar
Lianmin Zheng committed
797
798
799
800
801
802
803
804
        # Model override args
        parser.add_argument(
            "--json-model-override-args",
            type=str,
            help="A dictionary in JSON string format used to override default model configurations.",
            default=ServerArgs.json_model_override_args,
        )

805
806
807
808
809
810
811
        # LoRA
        parser.add_argument(
            "--lora-paths",
            type=str,
            nargs="*",
            default=None,
            action=LoRAPathAction,
812
            help="The list of LoRA adapters. You can provide a list of either path in str or renamed path in the format {name}={path}.",
813
814
815
816
817
        )
        parser.add_argument(
            "--max-loras-per-batch",
            type=int,
            default=8,
818
819
820
821
822
823
824
            help="Maximum number of adapters for a running batch, include base-only request.",
        )
        parser.add_argument(
            "--lora-backend",
            type=str,
            default="triton",
            help="Choose the kernel backend for multi-LoRA serving.",
825
826
827
        )

        # Kernel backend
828
829
830
        parser.add_argument(
            "--attention-backend",
            type=str,
831
            choices=["flashinfer", "triton", "torch_native", "fa3", "flashmla"],
832
833
834
            default=ServerArgs.attention_backend,
            help="Choose the kernels for attention layers.",
        )
835
836
837
838
839
840
841
        parser.add_argument(
            "--sampling-backend",
            type=str,
            choices=["flashinfer", "pytorch"],
            default=ServerArgs.sampling_backend,
            help="Choose the kernels for sampling layers.",
        )
842
843
844
        parser.add_argument(
            "--grammar-backend",
            type=str,
845
            choices=["xgrammar", "outlines", "llguidance", "none"],
846
            default=ServerArgs.grammar_backend,
Lianmin Zheng's avatar
Lianmin Zheng committed
847
            help="Choose the backend for grammar-guided decoding.",
848
        )
849
850
        parser.add_argument(
            "--enable-flashinfer-mla",
851
852
            action=DeprecatedAction,
            help="--enable-flashinfer-mla is deprecated. Please use '--attention-backend flashinfer' instead.",
853
        )
lukec's avatar
lukec committed
854
855
        parser.add_argument(
            "--enable-flashmla",
856
857
            action=DeprecatedAction,
            help="--enable-flashmla is deprecated. Please use '--attention-backend flashmla' instead.",
lukec's avatar
lukec committed
858
        )
859
860
861
862
863
        parser.add_argument(
            "--flashinfer-mla-disable-ragged",
            action="store_true",
            help="Not using ragged prefill wrapper when running flashinfer mla",
        )
864

865
866
867
868
        # Speculative decoding
        parser.add_argument(
            "--speculative-algorithm",
            type=str,
James Liu's avatar
James Liu committed
869
            choices=["EAGLE", "EAGLE3", "NEXTN"],
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
            help="Speculative algorithm.",
        )
        parser.add_argument(
            "--speculative-draft-model-path",
            type=str,
            help="The path of the draft model weights. This can be a local folder or a Hugging Face repo ID.",
        )
        parser.add_argument(
            "--speculative-num-steps",
            type=int,
            help="The number of steps sampled from draft model in Speculative Decoding.",
            default=ServerArgs.speculative_num_steps,
        )
        parser.add_argument(
            "--speculative-eagle-topk",
            type=int,
886
            help="The number of tokens sampled from the draft model in eagle2 each step.",
887
888
            default=ServerArgs.speculative_eagle_topk,
        )
889
890
891
        parser.add_argument(
            "--speculative-num-draft-tokens",
            type=int,
892
            help="The number of tokens sampled from the draft model in Speculative Decoding.",
893
894
            default=ServerArgs.speculative_num_draft_tokens,
        )
895
896
897
898
899
900
901
902
903
904
905
906
        parser.add_argument(
            "--speculative-accept-threshold-single",
            type=float,
            help="Accept a draft token if its probability in the target model is greater than this threshold.",
            default=ServerArgs.speculative_accept_threshold_single,
        )
        parser.add_argument(
            "--speculative-accept-threshold-acc",
            type=float,
            help="The accept probability of a draft token is raised from its target probability p to min(1, p / threshold_acc).",
            default=ServerArgs.speculative_accept_threshold_acc,
        )
907
908
909
910
911
912
        parser.add_argument(
            "--speculative-token-map",
            type=str,
            help="The path of the draft model's small vocab table.",
            default=ServerArgs.speculative_token_map,
        )
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950

        # Double Sparsity
        parser.add_argument(
            "--enable-double-sparsity",
            action="store_true",
            help="Enable double sparsity attention",
        )
        parser.add_argument(
            "--ds-channel-config-path",
            type=str,
            default=ServerArgs.ds_channel_config_path,
            help="The path of the double sparsity channel config",
        )
        parser.add_argument(
            "--ds-heavy-channel-num",
            type=int,
            default=ServerArgs.ds_heavy_channel_num,
            help="The number of heavy channels in double sparsity attention",
        )
        parser.add_argument(
            "--ds-heavy-token-num",
            type=int,
            default=ServerArgs.ds_heavy_token_num,
            help="The number of heavy tokens in double sparsity attention",
        )
        parser.add_argument(
            "--ds-heavy-channel-type",
            type=str,
            default=ServerArgs.ds_heavy_channel_type,
            help="The type of heavy channels in double sparsity attention",
        )
        parser.add_argument(
            "--ds-sparse-decode-threshold",
            type=int,
            default=ServerArgs.ds_sparse_decode_threshold,
            help="The type of heavy channels in double sparsity attention",
        )

951
        # Optimization/debug options
Liangsheng Yin's avatar
Liangsheng Yin committed
952
        parser.add_argument(
Lianmin Zheng's avatar
Lianmin Zheng committed
953
            "--disable-radix-cache",
Liangsheng Yin's avatar
Liangsheng Yin committed
954
            action="store_true",
Ying Sheng's avatar
Ying Sheng committed
955
            help="Disable RadixAttention for prefix caching.",
Liangsheng Yin's avatar
Liangsheng Yin committed
956
        )
957
958
959
960
961
        parser.add_argument(
            "--disable-cuda-graph",
            action="store_true",
            help="Disable cuda graph.",
        )
962
        parser.add_argument(
963
964
965
966
            "--disable-cuda-graph-padding",
            action="store_true",
            help="Disable cuda graph when padding is needed. Still uses cuda graph when padding is not needed.",
        )
967
968
969
970
971
        parser.add_argument(
            "--enable-nccl-nvls",
            action="store_true",
            help="Enable NCCL NVLS for prefill heavy requests when available.",
        )
972
        parser.add_argument(
973
            "--disable-outlines-disk-cache",
974
            action="store_true",
975
            help="Disable disk cache of outlines to avoid possible crashes related to file system or high concurrency.",
976
        )
977
978
979
980
981
        parser.add_argument(
            "--disable-custom-all-reduce",
            action="store_true",
            help="Disable the custom all-reduce kernel and fall back to NCCL.",
        )
982
983
        parser.add_argument(
            "--enable-llama4-multimodal",
984
            default=ServerArgs.enable_llama4_multimodal,
985
986
987
            action="store_true",
            help="Enable the multimodal functionality for Llama-4.",
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
988
        parser.add_argument(
989
            "--disable-overlap-schedule",
Lianmin Zheng's avatar
Lianmin Zheng committed
990
            action="store_true",
991
            help="Disable the overlap scheduler, which overlaps the CPU scheduler with GPU model worker.",
Lianmin Zheng's avatar
Lianmin Zheng committed
992
        )
993
994
995
        parser.add_argument(
            "--enable-mixed-chunk",
            action="store_true",
996
            help="Enabling mixing prefill and decode in a batch when using chunked prefill.",
997
        )
Ke Bao's avatar
Ke Bao committed
998
999
1000
1001
1002
        parser.add_argument(
            "--enable-dp-attention",
            action="store_true",
            help="Enabling data parallelism for attention and tensor parallelism for FFN. The dp size should be equal to the tp size. Currently only DeepSeek-V2 is supported.",
        )
xiaobochen's avatar
xiaobochen committed
1003
1004
1005
1006
1007
        parser.add_argument(
            "--enable-ep-moe",
            action="store_true",
            help="Enabling expert parallelism for moe. The ep size is equal to the tp size.",
        )
1008
1009
1010
        parser.add_argument(
            "--enable-torch-compile",
            action="store_true",
1011
1012
            help="Optimize the model with torch.compile. Experimental feature.",
        )
1013
        parser.add_argument(
1014
            "--torch-compile-max-bs",
1015
            type=int,
1016
            default=ServerArgs.torch_compile_max_bs,
1017
1018
            help="Set the maximum batch size when using torch compile.",
        )
1019
        parser.add_argument(
1020
            "--cuda-graph-max-bs",
1021
            type=int,
1022
            default=ServerArgs.cuda_graph_max_bs,
1023
1024
            help="Set the maximum batch size for cuda graph.",
        )
1025
1026
1027
1028
1029
1030
        parser.add_argument(
            "--cuda-graph-bs",
            type=int,
            nargs="+",
            help="Set the list of batch sizes for cuda graph.",
        )
1031
1032
1033
1034
        parser.add_argument(
            "--torchao-config",
            type=str,
            default=ServerArgs.torchao_config,
1035
            help="Optimize the model with torchao. Experimental feature. Current choices are: int8dq, int8wo, int4wo-<group_size>, fp8wo, fp8dq-per_tensor, fp8dq-per_row",
1036
        )
1037
1038
1039
1040
1041
        parser.add_argument(
            "--enable-nan-detection",
            action="store_true",
            help="Enable the NaN detection for debugging purposes.",
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
1042
        parser.add_argument(
1043
            "--enable-p2p-check",
Lianmin Zheng's avatar
Lianmin Zheng committed
1044
            action="store_true",
1045
            help="Enable P2P check for GPU access, otherwise the p2p access is allowed by default.",
Lianmin Zheng's avatar
Lianmin Zheng committed
1046
        )
1047
        parser.add_argument(
1048
            "--triton-attention-reduce-in-fp32",
1049
            action="store_true",
1050
            help="Cast the intermidiate attention results to fp32 to avoid possible crashes related to fp16."
1051
            "This only affects Triton attention kernels.",
1052
        )
1053
1054
1055
1056
1057
1058
        parser.add_argument(
            "--triton-attention-num-kv-splits",
            type=int,
            default=ServerArgs.triton_attention_num_kv_splits,
            help="The number of KV splits in flash decoding Triton kernel. Larger value is better in longer context scenarios. The default value is 8.",
        )
1059
1060
1061
1062
1063
1064
1065
1066
        parser.add_argument(
            "--num-continuous-decode-steps",
            type=int,
            default=ServerArgs.num_continuous_decode_steps,
            help="Run multiple continuous decoding steps to reduce scheduling overhead. "
            "This can potentially increase throughput but may also increase time-to-first-token latency. "
            "The default value is 1, meaning only run one decoding step at a time.",
        )
1067
1068
1069
1070
1071
        parser.add_argument(
            "--delete-ckpt-after-loading",
            action="store_true",
            help="Delete the model checkpoint after loading the model.",
        )
1072
1073
1074
1075
1076
        parser.add_argument(
            "--enable-memory-saver",
            action="store_true",
            help="Allow saving memory using release_memory_occupation and resume_memory_occupation",
        )
1077
1078
1079
1080
1081
        parser.add_argument(
            "--allow-auto-truncate",
            action="store_true",
            help="Allow automatically truncating requests that exceed the maximum input length instead of returning an error.",
        )
1082
1083
1084
1085
1086
        parser.add_argument(
            "--enable-custom-logit-processor",
            action="store_true",
            help="Enable users to pass custom logit processors to the server (disabled by default for security)",
        )
YAMY's avatar
YAMY committed
1087
1088
1089
1090
1091
1092
1093
        parser.add_argument(
            "--tool-call-parser",
            type=str,
            choices=["qwen25", "mistral", "llama3"],
            default=ServerArgs.tool_call_parser,
            help="Specify the parser for handling tool-call interactions. Options include: 'qwen25', 'mistral', and 'llama3'.",
        )
1094
1095
1096
1097
1098
        parser.add_argument(
            "--enable-hierarchical-cache",
            action="store_true",
            help="Enable hierarchical cache",
        )
1099
1100
1101
1102
1103
1104
1105
        parser.add_argument(
            "--hicache-ratio",
            type=float,
            required=False,
            default=ServerArgs.hicache_ratio,
            help="The ratio of the size of host KV cache memory pool to the size of device pool.",
        )
1106
1107
1108
1109
1110
        parser.add_argument(
            "--enable-deepep-moe",
            action="store_true",
            help="Enabling DeepEP MoE implementation for EP MoE.",
        )
1111
1112
1113
1114
1115
1116
        parser.add_argument(
            "--moe-dense-tp-size",
            type=int,
            default=ServerArgs.moe_dense_tp_size,
            help="TP size for MoE dense MLP layers. This flag is useful when, with large TP size, there are errors caused by weights in MLP layers having dimension smaller than the min dimension GEMM supports.",
        )
1117
1118
1119
1120
        parser.add_argument(
            "--deepep-mode",
            type=str,
            choices=["normal", "low_latency", "auto"],
1121
            default="auto",
1122
1123
            help="Select the mode when enable DeepEP MoE, could be `normal`, `low_latency` or `auto`. Default is `auto`, which means `low_latency` for decode batch and `normal` for prefill batch.",
        )
1124

1125
1126
1127
        parser.add_argument(
            "--n-share-experts-fusion",
            type=int,
1128
            default=0,
1129
1130
            help="The number of shared_experts need to be replicated to fuse with normal experts in deepseek v3/r1, "
            "set it to tp_size can get best optimized performace.",
1131
        )
1132
1133
1134
1135
1136
        parser.add_argument(
            "--disable-chunked-prefix-cache",
            action="store_true",
            help="Disable chunked prefix cache feature for deepseek, which should save overhead for short sequences.",
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
1137
1138
1139
1140
1141
        parser.add_argument(
            "--disable-fast-image-processor",
            action="store_true",
            help="Adopt base image processor instead of fast image processor.",
        )
1142

1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
        # Server warmups
        parser.add_argument(
            "--warmups",
            type=str,
            required=False,
            help="Specify custom warmup functions (csv) to run before server starts eg. --warmups=warmup_name1,warmup_name2 "
            "will run the functions `warmup_name1` and `warmup_name2` specified in warmup.py before the server starts listening for requests",
        )

        # Debug tensor dumps
        parser.add_argument(
            "--debug-tensor-dump-output-folder",
            type=str,
            default=ServerArgs.debug_tensor_dump_output_folder,
            help="The output folder for dumping tensors.",
        )
        parser.add_argument(
            "--debug-tensor-dump-input-file",
            type=str,
            default=ServerArgs.debug_tensor_dump_input_file,
            help="The input filename for dumping tensors",
        )
        parser.add_argument(
            "--debug-tensor-dump-inject",
            type=str,
            default=ServerArgs.debug_tensor_dump_inject,
            help="Inject the outputs from jax as the input of every layer.",
        )

Byron Hsu's avatar
Byron Hsu committed
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
        # Disaggregation
        parser.add_argument(
            "--disaggregation-mode",
            type=str,
            default="null",
            choices=["null", "prefill", "decode"],
            help='Only used for PD disaggregation. "prefill" for prefill-only server, and "decode" for decode-only server. If not specified, it is not PD disaggregated',
        )
        parser.add_argument(
            "--disaggregation-bootstrap-port",
            type=int,
            default=ServerArgs.disaggregation_bootstrap_port,
            help="Bootstrap server port on the prefill server. Default is 8998.",
        )
1186
1187
1188
1189
1190
1191
        parser.add_argument(
            "--disaggregation-transfer-backend",
            type=str,
            default=ServerArgs.disaggregation_transfer_backend,
            help="The backend for disaggregation transfer. Default is mooncake.",
        )
1192
1193
1194
1195
1196
1197
        parser.add_argument(
            "--disaggregation-ib-device",
            type=str,
            default=ServerArgs.disaggregation_ib_device,
            help="The ib device for disaggregation transfer. Default is None, it will be detected automatically if using the mooncake backend.",
        )
Byron Hsu's avatar
Byron Hsu committed
1198

Lianmin Zheng's avatar
Lianmin Zheng committed
1199
1200
    @classmethod
    def from_cli_args(cls, args: argparse.Namespace):
1201
1202
        args.tp_size = args.tensor_parallel_size
        args.dp_size = args.data_parallel_size
xiaobochen's avatar
xiaobochen committed
1203
        args.ep_size = args.expert_parallel_size
Lianmin Zheng's avatar
Lianmin Zheng committed
1204
1205
1206
1207
        attrs = [attr.name for attr in dataclasses.fields(cls)]
        return cls(**{attr: getattr(args, attr) for attr in attrs})

    def url(self):
1208
        if is_valid_ipv6_address(self.host):
1209
1210
1211
            return f"http://[{self.host}]:{self.port}"
        else:
            return f"http://{self.host}:{self.port}"
Lianmin Zheng's avatar
Lianmin Zheng committed
1212

1213
1214
1215
1216
1217
    def check_server_args(self):
        assert (
            self.tp_size % self.nnodes == 0
        ), "tp_size must be divisible by number of nodes"
        assert not (
1218
1219
            self.dp_size > 1 and self.nnodes != 1 and not self.enable_dp_attention
        ), "multi-node data parallel is not supported unless dp attention!"
1220
1221
1222
1223
1224
1225
        assert (
            self.max_loras_per_batch > 0
            # FIXME
            and (self.lora_paths is None or self.disable_cuda_graph)
            and (self.lora_paths is None or self.disable_radix_cache)
        ), "compatibility of lora and cuda graph and radix attention is in progress"
1226
        assert self.base_gpu_id >= 0, "base_gpu_id must be non-negative"
1227
        assert self.gpu_id_step >= 1, "gpu_id_step must be positive"
1228

1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
        if isinstance(self.lora_paths, list):
            lora_paths = self.lora_paths
            self.lora_paths = {}
            for lora_path in lora_paths:
                if "=" in lora_path:
                    name, path = lora_path.split("=", 1)
                    self.lora_paths[name] = path
                else:
                    self.lora_paths[lora_path] = lora_path

Lianmin Zheng's avatar
Lianmin Zheng committed
1239

Lianmin Zheng's avatar
Lianmin Zheng committed
1240
def prepare_server_args(argv: List[str]) -> ServerArgs:
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
    """
    Prepare the server arguments from the command line arguments.

    Args:
        args: The command line arguments. Typically, it should be `sys.argv[1:]`
            to ensure compatibility with `parse_args` when no arguments are passed.

    Returns:
        The server arguments.
    """
    parser = argparse.ArgumentParser()
    ServerArgs.add_cli_args(parser)
Lianmin Zheng's avatar
Lianmin Zheng committed
1253
    raw_args = parser.parse_args(argv)
1254
1255
1256
1257
    server_args = ServerArgs.from_cli_args(raw_args)
    return server_args


1258
1259
1260
ZMQ_TCP_PORT_DELTA = 233


Lianmin Zheng's avatar
Lianmin Zheng committed
1261
1262
@dataclasses.dataclass
class PortArgs:
1263
1264
1265
1266
1267
1268
    # The ipc filename for tokenizer to receive inputs from detokenizer (zmq)
    tokenizer_ipc_name: str
    # The ipc filename for scheduler (rank 0) to receive inputs from tokenizer (zmq)
    scheduler_input_ipc_name: str
    # The ipc filename for detokenizer to receive inputs from scheduler (zmq)
    detokenizer_ipc_name: str
1269

1270
1271
    # The port for nccl initialization (torch.dist)
    nccl_port: int
1272

1273
1274
1275
    # The ipc filename for rpc call between Engine and Scheduler
    rpc_ipc_name: str

1276
    @staticmethod
1277
    def init_new(server_args, dp_rank: Optional[int] = None) -> "PortArgs":
1278
        port = server_args.port + random.randint(100, 1000)
1279
1280
1281
        while True:
            if is_port_available(port):
                break
TianYu GUO's avatar
TianYu GUO committed
1282
1283
1284
1285
            if port < 60000:
                port += 42
            else:
                port -= 43
1286

1287
1288
1289
1290
1291
1292
1293
        if not server_args.enable_dp_attention:
            # Normal case, use IPC within a single node
            return PortArgs(
                tokenizer_ipc_name=f"ipc://{tempfile.NamedTemporaryFile(delete=False).name}",
                scheduler_input_ipc_name=f"ipc://{tempfile.NamedTemporaryFile(delete=False).name}",
                detokenizer_ipc_name=f"ipc://{tempfile.NamedTemporaryFile(delete=False).name}",
                nccl_port=port,
1294
                rpc_ipc_name=f"ipc://{tempfile.NamedTemporaryFile(delete=False).name}",
1295
1296
1297
1298
1299
            )
        else:
            # DP attention. Use TCP + port to handle both single-node and multi-node.
            if server_args.nnodes == 1 and server_args.dist_init_addr is None:
                dist_init_addr = ("127.0.0.1", server_args.port + ZMQ_TCP_PORT_DELTA)
Vincent's avatar
Vincent committed
1300
1301
1302
            elif server_args.dist_init_addr.startswith("["):  # ipv6 address
                port_num, host = configure_ipv6(server_args.dist_init_addr)
                dist_init_addr = (host, str(port_num))
1303
1304
            else:
                dist_init_addr = server_args.dist_init_addr.split(":")
Vincent's avatar
Vincent committed
1305

1306
1307
1308
1309
1310
1311
1312
1313
            assert (
                len(dist_init_addr) == 2
            ), "please provide --dist-init-addr as host:port of head node"

            dist_init_host, dist_init_port = dist_init_addr
            port_base = int(dist_init_port) + 1
            if dp_rank is None:
                scheduler_input_port = (
1314
                    port_base + 3
1315
                )  # TokenizerManager to DataParallelController
1316
            else:
1317
                scheduler_input_port = port_base + 3 + 1 + dp_rank
1318
1319
1320
1321
1322
1323

            return PortArgs(
                tokenizer_ipc_name=f"tcp://{dist_init_host}:{port_base}",
                scheduler_input_ipc_name=f"tcp://{dist_init_host}:{scheduler_input_port}",
                detokenizer_ipc_name=f"tcp://{dist_init_host}:{port_base + 1}",
                nccl_port=port,
1324
                rpc_ipc_name=f"tcp://{dist_init_host}:{port_base + 2}",
1325
            )
1326

1327
1328
1329
1330
1331
1332
1333
1334
1335
1336

class LoRAPathAction(argparse.Action):
    def __call__(self, parser, namespace, values, option_string=None):
        setattr(namespace, self.dest, {})
        for lora_path in values:
            if "=" in lora_path:
                name, path = lora_path.split("=", 1)
                getattr(namespace, self.dest)[name] = path
            else:
                getattr(namespace, self.dest)[lora_path] = lora_path
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346


class DeprecatedAction(argparse.Action):
    def __init__(self, option_strings, dest, nargs=0, **kwargs):
        super(DeprecatedAction, self).__init__(
            option_strings, dest, nargs=nargs, **kwargs
        )

    def __call__(self, parser, namespace, values, option_string=None):
        raise ValueError(self.help)
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376


def auto_choose_speculative_params(self: ServerArgs):
    """
    Automatically choose the parameters for speculative decoding.

    You can tune them on your own models and prompts with scripts/playground/bench_speculative.py
    """
    if self.decrypted_config_file:
        config_path = self.decrypted_config_file
    else:
        config_path = os.path.join(self.model_path, "config.json")
    if not os.path.exists(config_path):
        raise ValueError(f"{config_path} is not found.")

    config = json.load(open(config_path))

    arch = config.get("architectures", ["Unknown"])[0]

    if arch in ["LlamaForCausalLM"]:
        # The default value for llama
        return (5, 4, 8)
    elif arch in ["DeepseekV3ForCausalLM", "DeepseekV2ForCausalLM"]:
        # The default value for deepseek
        return (5, 4, 8)
    elif arch in ["Grok1ForCausalLM", "Grok1VForCausalLM"]:
        return (5, 4, 8)
    else:
        # The default value for all other models
        return (5, 4, 8)