"src/targets/gpu/vscode:/vscode.git/clone" did not exist on "c878fa25126a5a80045da601e6df77b4188a80e7"
adapter.py 70.2 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
# Copyright 2023-2024 SGLang Team
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
14
"""Conversion between OpenAI APIs and native SRT APIs"""
Liangsheng Yin's avatar
Liangsheng Yin committed
15

16
import asyncio
17
import json
18
import logging
19
import os
20
21
import time
import uuid
22
from http import HTTPStatus
Lianmin Zheng's avatar
Lianmin Zheng committed
23
from typing import Dict, List
24

25
from fastapi import HTTPException, Request, UploadFile
26
from fastapi.responses import ORJSONResponse, StreamingResponse
27
from pydantic import ValidationError
28

29
30
31
32
from sglang.srt.code_completion_parser import (
    generate_completion_prompt_from_request,
    is_completion_template_defined,
)
33
34
35
36
37
from sglang.srt.conversation import (
    Conversation,
    SeparatorStyle,
    chat_template_exists,
    generate_chat_conv,
38
    generate_embedding_convs,
39
40
    register_conv_template,
)
41
from sglang.srt.function_call_parser import FunctionCallParser
Ying Sheng's avatar
Ying Sheng committed
42
from sglang.srt.managers.io_struct import EmbeddingReqInput, GenerateReqInput
Mingyi's avatar
Mingyi committed
43
from sglang.srt.openai_api.protocol import (
44
45
    BatchRequest,
    BatchResponse,
46
47
48
49
50
    ChatCompletionRequest,
    ChatCompletionResponse,
    ChatCompletionResponseChoice,
    ChatCompletionResponseStreamChoice,
    ChatCompletionStreamResponse,
51
    ChatCompletionTokenLogprob,
52
    ChatMessage,
53
    ChoiceLogprobs,
54
55
56
57
58
59
    CompletionRequest,
    CompletionResponse,
    CompletionResponseChoice,
    CompletionResponseStreamChoice,
    CompletionStreamResponse,
    DeltaMessage,
Ying Sheng's avatar
Ying Sheng committed
60
    EmbeddingObject,
61
62
    EmbeddingRequest,
    EmbeddingResponse,
63
    ErrorResponse,
64
    FileDeleteResponse,
65
66
    FileRequest,
    FileResponse,
Tanjiro's avatar
Tanjiro committed
67
    FunctionResponse,
68
    LogProbs,
69
    MultimodalEmbeddingInput,
Tanjiro's avatar
Tanjiro committed
70
    ToolCall,
71
    TopLogprob,
72
73
    UsageInfo,
)
Xihuai Wang's avatar
Xihuai Wang committed
74
from sglang.srt.reasoning_parser import ReasoningParser
75
from sglang.utils import convert_json_schema_to_str, get_exception_traceback
76

77
78
logger = logging.getLogger(__name__)

79
80
chat_template_name = None

Liangsheng Yin's avatar
Liangsheng Yin committed
81

82
83
84
85
86
87
88
89
90
91
class FileMetadata:
    def __init__(self, filename: str, purpose: str):
        self.filename = filename
        self.purpose = purpose


# In-memory storage for batch jobs and files
batch_storage: Dict[str, BatchResponse] = {}
file_id_request: Dict[str, FileMetadata] = {}
file_id_response: Dict[str, FileResponse] = {}
92
# map file id to file path in SGLang backend
93
94
95
96
97
98
file_id_storage: Dict[str, str] = {}

# backend storage directory
storage_dir = None


99
100
101
def create_error_response(
    message: str,
    err_type: str = "BadRequestError",
102
103
104
    status_code: HTTPStatus = HTTPStatus.BAD_REQUEST,
):
    error = ErrorResponse(message=message, type=err_type, code=status_code.value)
105
    return ORJSONResponse(content=error.model_dump(), status_code=error.code)
106
107
108
109
110


def create_streaming_error_response(
    message: str,
    err_type: str = "BadRequestError",
111
112
113
    status_code: HTTPStatus = HTTPStatus.BAD_REQUEST,
) -> str:
    error = ErrorResponse(message=message, type=err_type, code=status_code.value)
114
115
116
117
    json_str = json.dumps({"error": error.model_dump()})
    return json_str


118
def load_chat_template_for_openai_api(tokenizer_manager, chat_template_arg, model_path):
119
120
    global chat_template_name

121
122
123
    logger.info(
        f"Use chat template for the OpenAI-compatible API server: {chat_template_arg}"
    )
124

125
126
127
128
129
130
    if not chat_template_exists(chat_template_arg):
        if not os.path.exists(chat_template_arg):
            raise RuntimeError(
                f"Chat template {chat_template_arg} is not a built-in template name "
                "or a valid chat template file path."
            )
131
132
133
        if chat_template_arg.endswith(".jinja"):
            with open(chat_template_arg, "r") as f:
                chat_template = "".join(f.readlines()).strip("\n")
134
135
136
            tokenizer_manager.tokenizer.chat_template = chat_template.replace(
                "\\n", "\n"
            )
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
            chat_template_name = None
        else:
            assert chat_template_arg.endswith(
                ".json"
            ), "unrecognized format of chat template file"
            with open(chat_template_arg, "r") as filep:
                template = json.load(filep)
                try:
                    sep_style = SeparatorStyle[template["sep_style"]]
                except KeyError:
                    raise ValueError(
                        f"Unknown separator style: {template['sep_style']}"
                    ) from None
                register_conv_template(
                    Conversation(
                        name=template["name"],
                        system_template=template["system"] + "\n{system_message}",
                        system_message=template.get("system_message", ""),
                        roles=(template["user"], template["assistant"]),
                        sep_style=sep_style,
                        sep=template.get("sep", "\n"),
                        stop_str=template["stop_str"],
                    ),
                    override=True,
                )
            chat_template_name = template["name"]
163
164
165
    else:
        chat_template_name = chat_template_arg

166
167
168
169
    # Check chat-template
    # TODO:
    # 1. Do not import any code from sglang.lang
    # 2. For VLM, when chat_template_arg is None, set it automatically by guessing from model_path.
170

171

172
173
174
async def v1_files_create(
    file: UploadFile, purpose: str, file_storage_path: str = None
):
175
176
    try:
        global storage_dir
177
178
        if file_storage_path:
            storage_dir = file_storage_path
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
        # Read the file content
        file_content = await file.read()

        # Create an instance of RequestBody
        request_body = FileRequest(file=file_content, purpose=purpose)

        # Save the file to the sglang_oai_storage directory
        os.makedirs(storage_dir, exist_ok=True)
        file_id = f"backend_input_file-{uuid.uuid4()}"
        filename = f"{file_id}.jsonl"
        file_path = os.path.join(storage_dir, filename)

        with open(file_path, "wb") as f:
            f.write(request_body.file)

        # add info to global file map
        file_id_request[file_id] = FileMetadata(filename=file.filename, purpose=purpose)
        file_id_storage[file_id] = file_path

        # Return the response in the required format
        response = FileResponse(
            id=file_id,
            bytes=len(request_body.file),
            created_at=int(time.time()),
            filename=file.filename,
            purpose=request_body.purpose,
        )
        file_id_response[file_id] = response

        return response
    except ValidationError as e:
        return {"error": "Invalid input", "details": e.errors()}


213
214
215
216
217
218
219
220
221
222
223
224
225
226
async def v1_delete_file(file_id: str):
    # Retrieve the file job from the in-memory storage
    file_response = file_id_response.get(file_id)
    if file_response is None:
        raise HTTPException(status_code=404, detail="File not found")
    file_path = file_id_storage.get(file_id)
    if file_path is None:
        raise HTTPException(status_code=404, detail="File not found")
    os.remove(file_path)
    del file_id_response[file_id]
    del file_id_storage[file_id]
    return FileDeleteResponse(id=file_id, deleted=True)


227
async def v1_batches(tokenizer_manager, raw_request: Request):
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
    try:
        body = await raw_request.json()

        batch_request = BatchRequest(**body)

        batch_id = f"batch_{uuid.uuid4()}"

        # Create an instance of BatchResponse
        batch_response = BatchResponse(
            id=batch_id,
            endpoint=batch_request.endpoint,
            input_file_id=batch_request.input_file_id,
            completion_window=batch_request.completion_window,
            created_at=int(time.time()),
            metadata=batch_request.metadata,
        )

        batch_storage[batch_id] = batch_response

        # Start processing the batch asynchronously
248
        asyncio.create_task(process_batch(tokenizer_manager, batch_id, batch_request))
249
250
251
252
253
254
255
256
257
258

        # Return the initial batch_response
        return batch_response

    except ValidationError as e:
        return {"error": "Invalid input", "details": e.errors()}
    except Exception as e:
        return {"error": str(e)}


259
async def process_batch(tokenizer_manager, batch_id: str, batch_request: BatchRequest):
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
    try:
        # Update the batch status to "in_progress"
        batch_storage[batch_id].status = "in_progress"
        batch_storage[batch_id].in_progress_at = int(time.time())

        # Retrieve the input file content
        input_file_request = file_id_request.get(batch_request.input_file_id)
        if not input_file_request:
            raise ValueError("Input file not found")

        # Parse the JSONL file and process each request
        input_file_path = file_id_storage.get(batch_request.input_file_id)
        with open(input_file_path, "r", encoding="utf-8") as f:
            lines = f.readlines()

        total_requests = len(lines)
        completed_requests = 0
        failed_requests = 0

        all_ret = []
        end_point = batch_storage[batch_id].endpoint
        file_request_list = []
        all_requests = []
283
        request_ids = []
284
        for line_id, line in enumerate(lines):
285
286
287
            request_data = json.loads(line)
            file_request_list.append(request_data)
            body = request_data["body"]
288
            request_ids.append(f"{batch_id}-req_{line_id}")
289
290
291
292
293
294

            # Although streaming is supported for standalone completions, it is not supported in
            # batch mode (multiple completions in single request).
            if body.get("stream", False):
                raise ValueError("Streaming requests are not supported in batch mode")

295
296
297
298
            if end_point == "/v1/chat/completions":
                all_requests.append(ChatCompletionRequest(**body))
            elif end_point == "/v1/completions":
                all_requests.append(CompletionRequest(**body))
299

300
301
        if end_point == "/v1/chat/completions":
            adapted_request, request = v1_chat_generate_request(
302
                all_requests, tokenizer_manager, request_ids=request_ids
303
304
            )
        elif end_point == "/v1/completions":
305
306
307
308
            adapted_request, request = v1_generate_request(
                all_requests, request_ids=request_ids
            )

309
        try:
310
            created = int(time.time())
311
            ret = await tokenizer_manager.generate_request(adapted_request).__anext__()
312
313
314
            if not isinstance(ret, list):
                ret = [ret]
            if end_point == "/v1/chat/completions":
315
316
317
                responses = v1_chat_generate_response(
                    request,
                    ret,
318
                    created,
319
                    to_file=True,
320
321
                    cache_report=tokenizer_manager.server_args.enable_cache_report,
                    tool_call_parser=tokenizer_manager.server_args.tool_call_parser,
322
                )
323
            else:
yichuan~'s avatar
yichuan~ committed
324
                responses = v1_generate_response(
325
326
327
328
329
330
                    request,
                    ret,
                    tokenizer_manager,
                    created,
                    to_file=True,
                    cache_report=tokenizer_manager.server_args.enable_cache_report,
yichuan~'s avatar
yichuan~ committed
331
                )
332
333

        except Exception as e:
334
335
            logger.error(f"error: {get_exception_traceback()}")
            responses = []
336
337
338
339
340
341
342
343
344
345
            error_json = {
                "id": f"batch_req_{uuid.uuid4()}",
                "custom_id": request_data.get("custom_id"),
                "response": None,
                "error": {"message": str(e)},
            }
            all_ret.append(error_json)
            failed_requests += len(file_request_list)

        for idx, response in enumerate(responses):
346
            # the batch_req here can be changed to be named within a batch granularity
347
348
349
350
351
352
353
354
            response_json = {
                "id": f"batch_req_{uuid.uuid4()}",
                "custom_id": file_request_list[idx].get("custom_id"),
                "response": response,
                "error": None,
            }
            all_ret.append(response_json)
            completed_requests += 1
355

356
357
358
359
360
361
362
363
364
365
366
367
        # Write results to a new file
        output_file_id = f"backend_result_file-{uuid.uuid4()}"
        global storage_dir
        output_file_path = os.path.join(storage_dir, f"{output_file_id}.jsonl")
        with open(output_file_path, "w", encoding="utf-8") as f:
            for ret in all_ret:
                f.write(json.dumps(ret) + "\n")

        # Update batch response with output file information
        retrieve_batch = batch_storage[batch_id]
        retrieve_batch.output_file_id = output_file_id
        file_id_storage[output_file_id] = output_file_path
368
369
370
371
372
373
374
        file_id_response[output_file_id] = FileResponse(
            id=output_file_id,
            bytes=os.path.getsize(output_file_path),
            created_at=int(time.time()),
            filename=f"{output_file_id}.jsonl",
            purpose="batch_result",
        )
375
376
377
378
379
380
381
382
383
384
        # Update batch status to "completed"
        retrieve_batch.status = "completed"
        retrieve_batch.completed_at = int(time.time())
        retrieve_batch.request_counts = {
            "total": total_requests,
            "completed": completed_requests,
            "failed": failed_requests,
        }

    except Exception as e:
385
        logger.error(f"error: {e}")
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
        # Update batch status to "failed"
        retrieve_batch = batch_storage[batch_id]
        retrieve_batch.status = "failed"
        retrieve_batch.failed_at = int(time.time())
        retrieve_batch.errors = {"message": str(e)}


async def v1_retrieve_batch(batch_id: str):
    # Retrieve the batch job from the in-memory storage
    batch_response = batch_storage.get(batch_id)
    if batch_response is None:
        raise HTTPException(status_code=404, detail="Batch not found")

    return batch_response


402
async def v1_cancel_batch(tokenizer_manager, batch_id: str):
403
404
405
406
407
408
409
410
411
412
    # Retrieve the batch job from the in-memory storage
    batch_response = batch_storage.get(batch_id)
    if batch_response is None:
        raise HTTPException(status_code=404, detail="Batch not found")

    # Only do cancal when status is "validating" or "in_progress"
    if batch_response.status in ["validating", "in_progress"]:
        # Start cancelling the batch asynchronously
        asyncio.create_task(
            cancel_batch(
413
                tokenizer_manager=tokenizer_manager,
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
                batch_id=batch_id,
                input_file_id=batch_response.input_file_id,
            )
        )

        # Update batch status to "cancelling"
        batch_response.status = "cancelling"

        return batch_response
    else:
        raise HTTPException(
            status_code=500,
            detail=f"Current status is {batch_response.status}, no need to cancel",
        )


430
async def cancel_batch(tokenizer_manager, batch_id: str, input_file_id: str):
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
    try:
        # Update the batch status to "cancelling"
        batch_storage[batch_id].status = "cancelling"

        # Retrieve the input file content
        input_file_request = file_id_request.get(input_file_id)
        if not input_file_request:
            raise ValueError("Input file not found")

        # Parse the JSONL file and process each request
        input_file_path = file_id_storage.get(input_file_id)
        with open(input_file_path, "r", encoding="utf-8") as f:
            lines = f.readlines()

        # Cancel requests by request_ids
446
447
        for line_id in range(len(lines)):
            rid = f"{batch_id}-req_{line_id}"
448
            tokenizer_manager.abort_request(rid=rid)
449
450
451
452
453
454
455
456
457
458
459
460
461

        retrieve_batch = batch_storage[batch_id]
        retrieve_batch.status = "cancelled"

    except Exception as e:
        logger.error("error in SGLang:", e)
        # Update batch status to "failed"
        retrieve_batch = batch_storage[batch_id]
        retrieve_batch.status = "failed"
        retrieve_batch.failed_at = int(time.time())
        retrieve_batch.errors = {"message": str(e)}


462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
async def v1_retrieve_file(file_id: str):
    # Retrieve the batch job from the in-memory storage
    file_response = file_id_response.get(file_id)
    if file_response is None:
        raise HTTPException(status_code=404, detail="File not found")
    return file_response


async def v1_retrieve_file_content(file_id: str):
    file_pth = file_id_storage.get(file_id)
    if not file_pth or not os.path.exists(file_pth):
        raise HTTPException(status_code=404, detail="File not found")

    def iter_file():
        with open(file_pth, mode="rb") as file_like:
            yield from file_like

    return StreamingResponse(iter_file(), media_type="application/octet-stream")


482
483
484
def v1_generate_request(
    all_requests: List[CompletionRequest], request_ids: List[str] = None
):
485
486
487
488
489
490
491
492
493
494
495
    if len(all_requests) > 1:
        first_prompt_type = type(all_requests[0].prompt)
        for request in all_requests:
            assert (
                type(request.prompt) is first_prompt_type
            ), "All prompts must be of the same type in file input settings"
            if request.n > 1:
                raise ValueError(
                    "Parallel sampling is not supported for completions from files"
                )

496
497
    prompts = []
    sampling_params_list = []
498
    return_logprobs = []
499
    logprob_start_lens = []
500
    top_logprobs_nums = []
501
    lora_paths = []
yichuan~'s avatar
yichuan~ committed
502

503
    for request in all_requests:
504
        # NOTE: with openai API, the prompt's logprobs are always not computed
505
        if request.echo and request.logprobs:
506
            logger.warning(
507
                "Echo is not compatible with logprobs. "
508
                "To compute logprobs of input prompt, please use the native /generate API."
509
510
            )

511
512
513
514
515
        prompt = request.prompt
        if is_completion_template_defined():
            prompt = generate_completion_prompt_from_request(request)
        prompts.append(prompt)

516
        lora_paths.append(request.lora_path)
517
518
519
520
        if request.echo and request.logprobs:
            current_logprob_start_len = 0
        else:
            current_logprob_start_len = -1
521
522
523
524
525
526
527
528
        sampling_params_list.append(
            {
                "temperature": request.temperature,
                "max_new_tokens": request.max_tokens,
                "min_new_tokens": request.min_tokens,
                "stop": request.stop,
                "stop_token_ids": request.stop_token_ids,
                "top_p": request.top_p,
529
530
                "top_k": request.top_k,
                "min_p": request.min_p,
531
532
533
534
535
                "presence_penalty": request.presence_penalty,
                "frequency_penalty": request.frequency_penalty,
                "repetition_penalty": request.repetition_penalty,
                "regex": request.regex,
                "json_schema": request.json_schema,
536
                "ebnf": request.ebnf,
537
538
                "n": request.n,
                "no_stop_trim": request.no_stop_trim,
539
540
                "ignore_eos": request.ignore_eos,
                "skip_special_tokens": request.skip_special_tokens,
541
542
            }
        )
543
        return_logprobs.append(request.logprobs is not None)
544
        logprob_start_lens.append(current_logprob_start_len)
545
546
547
        top_logprobs_nums.append(
            request.logprobs if request.logprobs is not None else 0
        )
548
549

    if len(all_requests) == 1:
550
551
552
553
        if isinstance(prompts[0], str) or isinstance(prompts[0][0], str):
            prompt_kwargs = {"text": prompts[0]}
        else:
            prompt_kwargs = {"input_ids": prompts[0]}
554
        sampling_params_list = sampling_params_list[0]
555
        return_logprobs = return_logprobs[0]
556
        logprob_start_lens = logprob_start_lens[0]
557
        top_logprobs_nums = top_logprobs_nums[0]
558
        lora_paths = lora_paths[0]
559
    else:
560
        if isinstance(prompts[0], str) or isinstance(prompts[0][0], str):
561
562
563
            prompt_kwargs = {"text": prompts}
        else:
            prompt_kwargs = {"input_ids": prompts}
yichuan~'s avatar
yichuan~ committed
564

565
    adapted_request = GenerateReqInput(
566
        **prompt_kwargs,
567
        sampling_params=sampling_params_list,
568
569
        return_logprob=return_logprobs,
        top_logprobs_num=top_logprobs_nums,
570
        logprob_start_len=logprob_start_lens,
571
        return_text_in_logprobs=True,
572
        stream=all_requests[0].stream,
573
        rid=request_ids,
574
        lora_path=lora_paths,
575
    )
yichuan~'s avatar
yichuan~ committed
576

577
    return adapted_request, all_requests if len(all_requests) > 1 else all_requests[0]
578
579


580
581
582
def v1_generate_response(
    request, ret, tokenizer_manager, created, to_file=False, cache_report=False
):
583
584
585
    choices = []
    echo = False

yichuan~'s avatar
yichuan~ committed
586
    if (not isinstance(request, list)) and request.echo:
587
        # TODO: handle the case propmt is token ids
yichuan~'s avatar
yichuan~ committed
588
589
        if isinstance(request.prompt, list) and isinstance(request.prompt[0], str):
            # for the case of multiple str prompts
590
            prompts = request.prompt
yichuan~'s avatar
yichuan~ committed
591
592
593
        elif isinstance(request.prompt, list) and isinstance(request.prompt[0], list):
            # for the case of multiple token ids prompts
            prompts = [
594
                tokenizer_manager.tokenizer.decode(prompt, skip_special_tokens=True)
yichuan~'s avatar
yichuan~ committed
595
596
597
598
599
                for prompt in request.prompt
            ]
        elif isinstance(request.prompt, list) and isinstance(request.prompt[0], int):
            # for the case of single token ids prompt
            prompts = [
600
601
602
                tokenizer_manager.tokenizer.decode(
                    request.prompt, skip_special_tokens=True
                )
yichuan~'s avatar
yichuan~ committed
603
            ]
604
        else:
yichuan~'s avatar
yichuan~ committed
605
            # for the case of single str prompt
606
607
608
609
610
            prompts = [request.prompt]
        echo = True

    for idx, ret_item in enumerate(ret):
        text = ret_item["text"]
yichuan~'s avatar
yichuan~ committed
611
        if isinstance(request, list) and request[idx].echo:
612
613
            echo = True
            text = request[idx].prompt + text
614
        if echo and not isinstance(request, list):
yichuan~'s avatar
yichuan~ committed
615
616
            prompt_index = idx // request.n
            text = prompts[prompt_index] + text
617
618

        logprobs = False
619
        if isinstance(request, list) and request[idx].logprobs is not None:
620
            logprobs = True
621
        elif (not isinstance(request, list)) and request.logprobs is not None:
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
            logprobs = True
        if logprobs:
            if echo:
                input_token_logprobs = ret_item["meta_info"]["input_token_logprobs"]
                input_top_logprobs = ret_item["meta_info"]["input_top_logprobs"]
            else:
                input_token_logprobs = None
                input_top_logprobs = None

            logprobs = to_openai_style_logprobs(
                input_token_logprobs=input_token_logprobs,
                input_top_logprobs=input_top_logprobs,
                output_token_logprobs=ret_item["meta_info"]["output_token_logprobs"],
                output_top_logprobs=ret_item["meta_info"]["output_top_logprobs"],
            )
        else:
            logprobs = None

640
641
        finish_reason = ret_item["meta_info"]["finish_reason"]

642
        if to_file:
643
            # to make the choise data json serializable
644
645
646
647
            choice_data = {
                "index": 0,
                "text": text,
                "logprobs": logprobs,
648
                "finish_reason": finish_reason["type"] if finish_reason else None,
649
650
651
652
                "matched_stop": (
                    finish_reason["matched"]
                    if finish_reason and "matched" in finish_reason
                    else None
653
                ),
654
655
656
657
658
659
            }
        else:
            choice_data = CompletionResponseChoice(
                index=idx,
                text=text,
                logprobs=logprobs,
660
                finish_reason=finish_reason["type"] if finish_reason else None,
661
662
663
664
                matched_stop=(
                    finish_reason["matched"]
                    if finish_reason and "matched" in finish_reason
                    else None
665
                ),
666
667
668
669
670
671
672
673
674
675
676
            )

        choices.append(choice_data)

    if to_file:
        responses = []
        for i, choice in enumerate(choices):
            response = {
                "status_code": 200,
                "request_id": ret[i]["meta_info"]["id"],
                "body": {
677
                    # remain the same but if needed we can change that
678
679
                    "id": ret[i]["meta_info"]["id"],
                    "object": "text_completion",
680
                    "created": created,
681
682
683
684
685
686
687
688
689
690
691
692
693
694
                    "model": request[i].model,
                    "choices": choice,
                    "usage": {
                        "prompt_tokens": ret[i]["meta_info"]["prompt_tokens"],
                        "completion_tokens": ret[i]["meta_info"]["completion_tokens"],
                        "total_tokens": ret[i]["meta_info"]["prompt_tokens"]
                        + ret[i]["meta_info"]["completion_tokens"],
                    },
                    "system_fingerprint": None,
                },
            }
            responses.append(response)
        return responses
    else:
695
696
697
        prompt_tokens = sum(
            ret[i]["meta_info"]["prompt_tokens"] for i in range(0, len(ret), request.n)
        )
698
        completion_tokens = sum(item["meta_info"]["completion_tokens"] for item in ret)
699
        cached_tokens = sum(item["meta_info"].get("cached_tokens", 0) for item in ret)
700
701
702
        response = CompletionResponse(
            id=ret[0]["meta_info"]["id"],
            model=request.model,
703
            created=created,
704
705
            choices=choices,
            usage=UsageInfo(
yichuan~'s avatar
yichuan~ committed
706
                prompt_tokens=prompt_tokens,
707
                completion_tokens=completion_tokens,
yichuan~'s avatar
yichuan~ committed
708
                total_tokens=prompt_tokens + completion_tokens,
709
710
711
                prompt_tokens_details=(
                    {"cached_tokens": cached_tokens} if cache_report else None
                ),
712
713
714
715
716
            ),
        )
    return response


717
async def v1_completions(tokenizer_manager, raw_request: Request):
718
719
    request_json = await raw_request.json()
    all_requests = [CompletionRequest(**request_json)]
720
    created = int(time.time())
721
    adapted_request, request = v1_generate_request(all_requests)
722
723
724
725

    if adapted_request.stream:

        async def generate_stream_resp():
726
727
728
729
            stream_buffers = {}
            n_prev_tokens = {}
            prompt_tokens = {}
            completion_tokens = {}
730
731
            cached_tokens = {}

732
            try:
733
                async for content in tokenizer_manager.generate_request(
734
735
                    adapted_request, raw_request
                ):
736
                    index = content.get("index", 0)
737
738
739
740

                    stream_buffer = stream_buffers.get(index, "")
                    n_prev_token = n_prev_tokens.get(index, 0)

741
                    text = content["text"]
742
743
                    prompt_tokens[index] = content["meta_info"]["prompt_tokens"]
                    completion_tokens[index] = content["meta_info"]["completion_tokens"]
744
                    cached_tokens[index] = content["meta_info"].get("cached_tokens", 0)
745
746
747

                    if not stream_buffer:  # The first chunk
                        if request.echo:
yichuan~'s avatar
yichuan~ committed
748
749
750
                            if isinstance(request.prompt, str):
                                # for the case of single str prompts
                                prompts = request.prompt
751
752
753
754
755
756
                            elif isinstance(request.prompt, list):
                                if isinstance(request.prompt[0], str):
                                    # for the case of multiple str prompts
                                    prompts = request.prompt[index // request.n]
                                elif isinstance(request.prompt[0], int):
                                    # for the case of single token ids prompt
757
                                    prompts = tokenizer_manager.tokenizer.decode(
758
759
760
761
762
763
                                        request.prompt, skip_special_tokens=True
                                    )
                                elif isinstance(request.prompt[0], list) and isinstance(
                                    request.prompt[0][0], int
                                ):
                                    # for the case of multiple token ids prompts
764
                                    prompts = tokenizer_manager.tokenizer.decode(
765
766
767
                                        request.prompt[index // request.n],
                                        skip_special_tokens=True,
                                    )
yichuan~'s avatar
yichuan~ committed
768

769
                            # Prepend prompt in response text.
yichuan~'s avatar
yichuan~ committed
770
                            text = prompts + text
771

772
                    if request.logprobs is not None:
773
774
                        # The first chunk and echo is enabled.
                        if not stream_buffer and request.echo:
775
776
                            input_token_logprobs = content["meta_info"][
                                "input_token_logprobs"
777
                            ]
778
779
                            input_top_logprobs = content["meta_info"][
                                "input_top_logprobs"
780
781
                            ]
                        else:
782
783
                            input_token_logprobs = None
                            input_top_logprobs = None
784
785

                        logprobs = to_openai_style_logprobs(
786
787
788
789
                            input_token_logprobs=input_token_logprobs,
                            input_top_logprobs=input_top_logprobs,
                            output_token_logprobs=content["meta_info"][
                                "output_token_logprobs"
790
                            ][n_prev_token:],
791
792
                            output_top_logprobs=content["meta_info"][
                                "output_top_logprobs"
793
                            ][n_prev_token:],
794
                        )
795
                        n_prev_token = len(
796
                            content["meta_info"]["output_token_logprobs"]
797
                        )
798
                    else:
799
                        logprobs = None
800

801
                    delta = text[len(stream_buffer) :]
Liangsheng Yin's avatar
Liangsheng Yin committed
802
                    stream_buffer = stream_buffer + delta
803
                    finish_reason = content["meta_info"]["finish_reason"]
804
                    choice_data = CompletionResponseStreamChoice(
805
                        index=index,
806
807
                        text=delta,
                        logprobs=logprobs,
808
                        finish_reason=finish_reason["type"] if finish_reason else None,
809
810
811
812
                        matched_stop=(
                            finish_reason["matched"]
                            if finish_reason and "matched" in finish_reason
                            else None
813
                        ),
814
815
816
                    )
                    chunk = CompletionStreamResponse(
                        id=content["meta_info"]["id"],
817
                        created=created,
818
819
820
821
                        object="text_completion",
                        choices=[choice_data],
                        model=request.model,
                    )
822
823
824
825

                    stream_buffers[index] = stream_buffer
                    n_prev_tokens[index] = n_prev_token

826
                    yield f"data: {chunk.model_dump_json()}\n\n"
827
                if request.stream_options and request.stream_options.include_usage:
828
829
830
831
832
833
834
835
                    total_prompt_tokens = sum(
                        tokens
                        for i, tokens in prompt_tokens.items()
                        if i % request.n == 0
                    )
                    total_completion_tokens = sum(
                        tokens for tokens in completion_tokens.values()
                    )
836
837
838
839
840
841
842
843
                    cache_report = tokenizer_manager.server_args.enable_cache_report
                    if cache_report:
                        cached_tokens_sum = sum(
                            tokens for tokens in cached_tokens.values()
                        )
                        prompt_tokens_details = {"cached_tokens": cached_tokens_sum}
                    else:
                        prompt_tokens_details = None
844
                    usage = UsageInfo(
845
846
847
                        prompt_tokens=total_prompt_tokens,
                        completion_tokens=total_completion_tokens,
                        total_tokens=total_prompt_tokens + total_completion_tokens,
848
                        prompt_tokens_details=prompt_tokens_details,
849
850
851
                    )

                    final_usage_chunk = CompletionStreamResponse(
852
                        id=content["meta_info"]["id"],
853
                        created=created,
854
855
856
857
858
                        choices=[],
                        model=request.model,
                        usage=usage,
                    )
                    final_usage_data = final_usage_chunk.model_dump_json(
859
                        exclude_none=True
860
861
                    )
                    yield f"data: {final_usage_data}\n\n"
862
863
864
            except ValueError as e:
                error = create_streaming_error_response(str(e))
                yield f"data: {error}\n\n"
865
866
            yield "data: [DONE]\n\n"

867
868
869
        return StreamingResponse(
            generate_stream_resp(),
            media_type="text/event-stream",
870
            background=tokenizer_manager.create_abort_task(adapted_request),
871
        )
872
873

    # Non-streaming response.
874
    try:
875
        ret = await tokenizer_manager.generate_request(
876
877
            adapted_request, raw_request
        ).__anext__()
878
879
    except ValueError as e:
        return create_error_response(str(e))
880

881
882
883
    if not isinstance(ret, list):
        ret = [ret]

884
885
886
887
888
889
890
    response = v1_generate_response(
        request,
        ret,
        tokenizer_manager,
        created,
        cache_report=tokenizer_manager.server_args.enable_cache_report,
    )
891
    return response
892

893

894
def v1_chat_generate_request(
895
    all_requests: List[ChatCompletionRequest],
896
    tokenizer_manager,
897
    request_ids: List[str] = None,
898
):
899
    input_ids = []
Mick's avatar
Mick committed
900
    prompts = []
901
902
    sampling_params_list = []
    image_data_list = []
Mick's avatar
Mick committed
903
    audio_data_list = []
904
    return_logprobs = []
905
    logprob_start_lens = []
906
    top_logprobs_nums = []
907
    modalities_list = []
908
    lora_paths = []
909
910
911

    # NOTE: with openai API, the prompt's logprobs are always not computed

912
913
914
915
916
    for request in all_requests:
        # Prep the data needed for the underlying GenerateReqInput:
        #  - prompt: The full prompt string.
        #  - stop: Custom stop tokens.
        #  - image_data: None or a list of image strings (URLs or base64 strings).
Mick's avatar
Mick committed
917
        #  - audio_data: None or a list of audio strings (URLs).
918
        #    None skips any image processing in GenerateReqInput.
919
        strict_tag = None
Mick's avatar
Mick committed
920
        prompt = ""
921
922
        if not isinstance(request.messages, str):
            # Apply chat template and its stop strings.
Tanjiro's avatar
Tanjiro committed
923
924
925
926
927
928
929
930
931
932
933
934
            tools = None
            if request.tools and request.tool_choice != "none":
                request.skip_special_tokens = False
                if not isinstance(request.tool_choice, str):
                    tools = [
                        item.function.model_dump()
                        for item in request.tools
                        if item.function.name == request.tool_choice.function.name
                    ]
                else:
                    tools = [item.function.model_dump() for item in request.tools]

935
936
937
938
                tool_call_parser = tokenizer_manager.server_args.tool_call_parser
                parser = FunctionCallParser(request.tools, tool_call_parser)
                strict_tag = parser.get_structure_tag()

939
            if chat_template_name is None:
940
941
942
943
944
945
946
947
948
949
950
951
952
                openai_compatible_messages = []
                for message in request.messages:
                    if isinstance(message.content, str):
                        openai_compatible_messages.append(
                            {"role": message.role, "content": message.content}
                        )
                    else:
                        content_list = message.dict()["content"]
                        for content in content_list:
                            if content["type"] == "text":
                                openai_compatible_messages.append(
                                    {"role": message.role, "content": content["text"]}
                                )
953
954
955
956
957
                if openai_compatible_messages[-1]["role"] == "assistant":
                    assistant_prefix = openai_compatible_messages[-1]["content"]
                    openai_compatible_messages = openai_compatible_messages[:-1]
                else:
                    assistant_prefix = None
YAMY's avatar
YAMY committed
958
959

                try:
960
                    prompt_ids = tokenizer_manager.tokenizer.apply_chat_template(
YAMY's avatar
YAMY committed
961
962
963
964
965
966
967
                        openai_compatible_messages,
                        tokenize=True,
                        add_generation_prompt=True,
                        tools=tools,
                    )
                except:
                    #  This except branch will be triggered when the chosen model
Mick's avatar
Mick committed
968
                    #  has a different tools input format that is not compatible
YAMY's avatar
YAMY committed
969
970
                    #  with openAI's apply_chat_template tool_call format, like Mistral.
                    tools = [t if "function" in t else {"function": t} for t in tools]
971
                    prompt_ids = tokenizer_manager.tokenizer.apply_chat_template(
YAMY's avatar
YAMY committed
972
973
974
975
976
977
                        openai_compatible_messages,
                        tokenize=True,
                        add_generation_prompt=True,
                        tools=tools,
                    )

978
                if assistant_prefix:
979
980
981
982
983
                    encoded = tokenizer_manager.tokenizer.encode(assistant_prefix)
                    if (
                        encoded
                        and encoded[0] == tokenizer_manager.tokenizer.bos_token_id
                    ):
984
985
                        encoded = encoded[1:]
                    prompt_ids += encoded
986
987
                stop = request.stop
                image_data = None
Mick's avatar
Mick committed
988
                audio_data = None
989
                modalities = []
990
            else:
991
992
993
                conv = generate_chat_conv(request, chat_template_name)
                prompt = conv.get_prompt()
                image_data = conv.image_data
Mick's avatar
Mick committed
994
                audio_data = conv.audio_data
995
                modalities = conv.modalities
996
997
998
999
1000
1001
                stop = conv.stop_str or []
                if request.stop:
                    if isinstance(request.stop, str):
                        stop.append(request.stop)
                    else:
                        stop.extend(request.stop)
1002
                prompt_ids = tokenizer_manager.tokenizer.encode(prompt)
1003
        else:
1004
            # Use the raw prompt and stop strings if the messages is already a string.
yichuan~'s avatar
yichuan~ committed
1005
            prompt_ids = request.messages
1006
1007
            stop = request.stop
            image_data = None
Mick's avatar
Mick committed
1008
            audio_data = None
1009
            modalities = []
Mick's avatar
Mick committed
1010
            prompt = request.messages
1011
        input_ids.append(prompt_ids)
1012
        return_logprobs.append(request.logprobs)
1013
        logprob_start_lens.append(-1)
1014
        top_logprobs_nums.append(request.top_logprobs or 0)
1015
        lora_paths.append(request.lora_path)
Mick's avatar
Mick committed
1016
        prompts.append(prompt)
1017
1018
1019
1020
1021
1022
1023
1024

        sampling_params = {
            "temperature": request.temperature,
            "max_new_tokens": request.max_tokens,
            "min_new_tokens": request.min_tokens,
            "stop": stop,
            "stop_token_ids": request.stop_token_ids,
            "top_p": request.top_p,
1025
1026
            "top_k": request.top_k,
            "min_p": request.min_p,
1027
1028
1029
1030
            "presence_penalty": request.presence_penalty,
            "frequency_penalty": request.frequency_penalty,
            "repetition_penalty": request.repetition_penalty,
            "regex": request.regex,
1031
            "ebnf": request.ebnf,
1032
            "n": request.n,
1033
            "no_stop_trim": request.no_stop_trim,
1034
            "ignore_eos": request.ignore_eos,
1035
            "skip_special_tokens": request.skip_special_tokens,
1036
        }
1037

1038
1039
1040
1041
        if request.response_format and request.response_format.type == "json_schema":
            sampling_params["json_schema"] = convert_json_schema_to_str(
                request.response_format.json_schema.schema_
            )
1042
1043
1044
1045
1046
1047
        elif (
            request.response_format and request.response_format.type == "structural_tag"
        ):
            sampling_params["structural_tag"] = convert_json_schema_to_str(
                request.response_format.model_dump(by_alias=True)
            )
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063

        if strict_tag is not None:
            if (
                sampling_params.get("regex")
                or sampling_params.get("ebnf")
                or sampling_params.get("structural_tag")
                or sampling_params.get("json_schema")
            ):
                logger.warning(
                    "Constrained decoding is not compatible with tool calls."
                )
            else:
                sampling_params["structural_tag"] = convert_json_schema_to_str(
                    strict_tag.model_dump(by_alias=True)
                )

1064
1065
        sampling_params_list.append(sampling_params)

1066
        image_data_list.append(image_data)
Mick's avatar
Mick committed
1067
        audio_data_list.append(audio_data)
1068
        modalities_list.append(modalities)
1069
    if len(all_requests) == 1:
Mick's avatar
Mick committed
1070
1071
1072
        if tokenizer_manager.model_config.is_multimodal:
            # processor will need text input
            prompt_kwargs = {"text": prompts[0]}
yichuan~'s avatar
yichuan~ committed
1073
        else:
Mick's avatar
Mick committed
1074
1075
1076
1077
            if isinstance(input_ids[0], str):
                prompt_kwargs = {"text": input_ids[0]}
            else:
                prompt_kwargs = {"input_ids": input_ids[0]}
1078
        sampling_params_list = sampling_params_list[0]
1079
        image_data_list = image_data_list[0]
Mick's avatar
Mick committed
1080
        audio_data_list = audio_data_list[0]
1081
        return_logprobs = return_logprobs[0]
1082
        logprob_start_lens = logprob_start_lens[0]
1083
        top_logprobs_nums = top_logprobs_nums[0]
1084
        modalities_list = modalities_list[0]
1085
        lora_paths = lora_paths[0]
yichuan~'s avatar
yichuan~ committed
1086
    else:
Mick's avatar
Mick committed
1087
1088
1089
        if tokenizer_manager.model_config.is_multimodal:
            # processor will need text input
            prompt_kwargs = {"text": prompts}
yichuan~'s avatar
yichuan~ committed
1090
        else:
Mick's avatar
Mick committed
1091
1092
1093
1094
            if isinstance(input_ids[0], str):
                prompt_kwargs = {"text": input_ids}
            else:
                prompt_kwargs = {"input_ids": input_ids}
1095

1096
    adapted_request = GenerateReqInput(
yichuan~'s avatar
yichuan~ committed
1097
        **prompt_kwargs,
1098
        image_data=image_data_list,
Mick's avatar
Mick committed
1099
        audio_data=audio_data_list,
1100
        sampling_params=sampling_params_list,
1101
        return_logprob=return_logprobs,
1102
        logprob_start_len=logprob_start_lens,
1103
1104
1105
        top_logprobs_num=top_logprobs_nums,
        stream=all_requests[0].stream,
        return_text_in_logprobs=True,
1106
        rid=request_ids,
1107
        modalities=modalities_list,
1108
        lora_path=lora_paths,
1109
    )
1110
1111

    return adapted_request, all_requests if len(all_requests) > 1 else all_requests[0]
1112

1113

YAMY's avatar
YAMY committed
1114
def v1_chat_generate_response(
Xihuai Wang's avatar
Xihuai Wang committed
1115
1116
    request,
    ret,
1117
    created,
Xihuai Wang's avatar
Xihuai Wang committed
1118
1119
1120
1121
    to_file=False,
    cache_report=False,
    tool_call_parser=None,
    reasoning_parser=None,
YAMY's avatar
YAMY committed
1122
):
1123
1124
1125
    choices = []

    for idx, ret_item in enumerate(ret):
1126
        logprobs = False
yichuan~'s avatar
yichuan~ committed
1127
        if isinstance(request, list) and request[idx].logprobs:
1128
            logprobs = True
yichuan~'s avatar
yichuan~ committed
1129
        elif (not isinstance(request, list)) and request.logprobs:
1130
1131
1132
1133
            logprobs = True
        if logprobs:
            logprobs = to_openai_style_logprobs(
                output_token_logprobs=ret_item["meta_info"]["output_token_logprobs"],
1134
1135
1136
                output_top_logprobs=ret_item["meta_info"].get(
                    "output_top_logprobs", None
                ),
1137
1138
            )
            token_logprobs = []
1139
1140
1141
            for token_idx, (token, logprob) in enumerate(
                zip(logprobs.tokens, logprobs.token_logprobs)
            ):
1142
1143
1144
                token_bytes = list(token.encode("utf-8"))
                top_logprobs = []
                if logprobs.top_logprobs:
1145
1146
1147
                    for top_token, top_logprob in logprobs.top_logprobs[
                        token_idx
                    ].items():
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
                        top_token_bytes = list(top_token.encode("utf-8"))
                        top_logprobs.append(
                            TopLogprob(
                                token=top_token,
                                bytes=top_token_bytes,
                                logprob=top_logprob,
                            )
                        )
                token_logprobs.append(
                    ChatCompletionTokenLogprob(
                        token=token,
                        bytes=token_bytes,
                        logprob=logprob,
                        top_logprobs=top_logprobs,
                    )
                )

            choice_logprobs = ChoiceLogprobs(content=token_logprobs)
        else:
            choice_logprobs = None
1168

1169
1170
        finish_reason = ret_item["meta_info"]["finish_reason"]

Tanjiro's avatar
Tanjiro committed
1171
1172
1173
1174
1175
1176
        tool_calls = None
        text = ret_item["text"]

        if isinstance(request, list):
            tool_choice = request[idx].tool_choice
            tools = request[idx].tools
Xihuai Wang's avatar
Xihuai Wang committed
1177
            separate_reasoning = request[idx].separate_reasoning
Tanjiro's avatar
Tanjiro committed
1178
1179
1180
        else:
            tool_choice = request.tool_choice
            tools = request.tools
Xihuai Wang's avatar
Xihuai Wang committed
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
            separate_reasoning = request.separate_reasoning

        if reasoning_parser and separate_reasoning:
            try:
                parser = ReasoningParser(
                    model_type=reasoning_parser, stream_reasoning=False
                )
                reasoning_text, text = parser.parse_non_stream(text)
            except Exception as e:
                logger.error(f"Exception: {e}")
                return create_error_response(
                    HTTPStatus.BAD_REQUEST,
                    "Failed to parse reasoning related info to json format!",
                )
        else:
            reasoning_text = None
Tanjiro's avatar
Tanjiro committed
1197

1198
1199
1200
1201
1202
1203
1204
        if tool_choice != "none" and tools:
            parser = FunctionCallParser(tools, tool_call_parser)
            if parser.has_tool_call(text):
                if finish_reason["type"] == "stop":
                    finish_reason["type"] = "tool_calls"
                    finish_reason["matched"] = None
                try:
1205
                    text, call_info_list = parser.parse_non_stream(text)
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
                    tool_calls = [
                        ToolCall(
                            id=str(call_info.tool_index),
                            function=FunctionResponse(
                                name=call_info.name, arguments=call_info.parameters
                            ),
                        )
                        for call_info in call_info_list
                    ]
                except Exception as e:
                    logger.error(f"Exception: {e}")
                    return create_error_response(
                        HTTPStatus.BAD_REQUEST,
                        "Failed to parse fc related info to json format!",
Tanjiro's avatar
Tanjiro committed
1220
1221
                    )

1222
        if to_file:
1223
            # to make the choice data json serializable
1224
1225
            choice_data = {
                "index": 0,
Tanjiro's avatar
Tanjiro committed
1226
1227
                "message": {
                    "role": "assistant",
1228
                    "content": text if text else None,
Tanjiro's avatar
Tanjiro committed
1229
                    "tool_calls": tool_calls,
1230
                    "reasoning_content": reasoning_text if reasoning_text else None,
Tanjiro's avatar
Tanjiro committed
1231
                },
1232
                "logprobs": choice_logprobs.model_dump() if choice_logprobs else None,
1233
                "finish_reason": finish_reason["type"] if finish_reason else None,
1234
1235
1236
1237
                "matched_stop": (
                    finish_reason["matched"]
                    if finish_reason and "matched" in finish_reason
                    else None
1238
                ),
1239
            }
1240
        else:
1241
1242
            choice_data = ChatCompletionResponseChoice(
                index=idx,
Tanjiro's avatar
Tanjiro committed
1243
1244
                message=ChatMessage(
                    role="assistant",
1245
                    content=text if text else None,
Tanjiro's avatar
Tanjiro committed
1246
                    tool_calls=tool_calls,
1247
                    reasoning_content=reasoning_text if reasoning_text else None,
Tanjiro's avatar
Tanjiro committed
1248
                ),
1249
                logprobs=choice_logprobs,
1250
                finish_reason=finish_reason["type"] if finish_reason else None,
1251
1252
1253
1254
                matched_stop=(
                    finish_reason["matched"]
                    if finish_reason and "matched" in finish_reason
                    else None
1255
                ),
1256
1257
1258
            )

        choices.append(choice_data)
1259

1260
1261
1262
1263
1264
1265
1266
1267
    if to_file:
        responses = []

        for i, choice in enumerate(choices):
            response = {
                "status_code": 200,
                "request_id": ret[i]["meta_info"]["id"],
                "body": {
1268
                    # remain the same but if needed we can change that
1269
1270
                    "id": ret[i]["meta_info"]["id"],
                    "object": "chat.completion",
1271
                    "created": created,
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
                    "model": request[i].model,
                    "choices": choice,
                    "usage": {
                        "prompt_tokens": ret[i]["meta_info"]["prompt_tokens"],
                        "completion_tokens": ret[i]["meta_info"]["completion_tokens"],
                        "total_tokens": ret[i]["meta_info"]["prompt_tokens"]
                        + ret[i]["meta_info"]["completion_tokens"],
                    },
                    "system_fingerprint": None,
                },
            }
            responses.append(response)
        return responses
1285
    else:
1286
1287
1288
1289
        prompt_tokens = sum(
            ret[i]["meta_info"]["prompt_tokens"] for i in range(0, len(ret), request.n)
        )
        completion_tokens = sum(item["meta_info"]["completion_tokens"] for item in ret)
1290
        cached_tokens = sum(item["meta_info"].get("cached_tokens", 0) for item in ret)
1291
1292
        response = ChatCompletionResponse(
            id=ret[0]["meta_info"]["id"],
1293
            created=created,
1294
1295
1296
            model=request.model,
            choices=choices,
            usage=UsageInfo(
1297
1298
1299
                prompt_tokens=prompt_tokens,
                completion_tokens=completion_tokens,
                total_tokens=prompt_tokens + completion_tokens,
1300
1301
1302
                prompt_tokens_details=(
                    {"cached_tokens": cached_tokens} if cache_report else None
                ),
1303
1304
1305
            ),
        )
        return response
1306

1307

1308
1309
1310
async def v1_chat_completions(
    tokenizer_manager, raw_request: Request, cache_report=False
):
1311
1312
    request_json = await raw_request.json()
    all_requests = [ChatCompletionRequest(**request_json)]
1313
    created = int(time.time())
1314
    adapted_request, request = v1_chat_generate_request(all_requests, tokenizer_manager)
1315
1316

    if adapted_request.stream:
YAMY's avatar
YAMY committed
1317
        parser_dict = {}
Xihuai Wang's avatar
Xihuai Wang committed
1318
        reasoning_parser_dict = {}
1319
1320

        async def generate_stream_resp():
1321
1322
1323
1324
1325
            is_firsts = {}
            stream_buffers = {}
            n_prev_tokens = {}
            prompt_tokens = {}
            completion_tokens = {}
1326
            cached_tokens = {}
1327
            try:
1328
                async for content in tokenizer_manager.generate_request(
1329
1330
                    adapted_request, raw_request
                ):
1331
                    index = content.get("index", 0)
YAMY's avatar
YAMY committed
1332
                    text = content["text"]
1333
1334
1335
1336
1337
1338
1339

                    is_first = is_firsts.get(index, True)
                    stream_buffer = stream_buffers.get(index, "")
                    n_prev_token = n_prev_tokens.get(index, 0)

                    prompt_tokens[index] = content["meta_info"]["prompt_tokens"]
                    completion_tokens[index] = content["meta_info"]["completion_tokens"]
1340
                    cached_tokens[index] = content["meta_info"].get("cached_tokens", 0)
yichuan~'s avatar
yichuan~ committed
1341
1342
1343
1344
1345
                    if request.logprobs:
                        logprobs = to_openai_style_logprobs(
                            output_token_logprobs=content["meta_info"][
                                "output_token_logprobs"
                            ][n_prev_token:],
1346
1347
1348
                            output_top_logprobs=content["meta_info"].get(
                                "output_top_logprobs", []
                            )[n_prev_token:],
yichuan~'s avatar
yichuan~ committed
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
                        )

                        n_prev_token = len(
                            content["meta_info"]["output_token_logprobs"]
                        )
                        token_logprobs = []
                        for token, logprob in zip(
                            logprobs.tokens, logprobs.token_logprobs
                        ):
                            token_bytes = list(token.encode("utf-8"))
                            top_logprobs = []
                            if logprobs.top_logprobs:
                                for top_token, top_logprob in logprobs.top_logprobs[
                                    0
                                ].items():
                                    top_token_bytes = list(top_token.encode("utf-8"))
                                    top_logprobs.append(
                                        TopLogprob(
                                            token=top_token,
                                            bytes=top_token_bytes,
                                            logprob=top_logprob,
                                        )
                                    )
                            token_logprobs.append(
                                ChatCompletionTokenLogprob(
                                    token=token,
                                    bytes=token_bytes,
                                    logprob=logprob,
                                    top_logprobs=top_logprobs,
                                )
                            )

                        choice_logprobs = ChoiceLogprobs(content=token_logprobs)

                    else:
                        choice_logprobs = None

1386
                    finish_reason = content["meta_info"]["finish_reason"]
Xihuai Wang's avatar
Xihuai Wang committed
1387
1388
1389
                    finish_reason_type = (
                        finish_reason["type"] if finish_reason else None
                    )
1390

1391
1392
1393
                    if is_first:
                        # First chunk with role
                        is_first = False
1394
                        delta = DeltaMessage(role="assistant")
1395
                        choice_data = ChatCompletionResponseStreamChoice(
1396
                            index=index,
Xihuai Wang's avatar
Xihuai Wang committed
1397
                            delta=delta,
1398
                            finish_reason=finish_reason_type,
1399
1400
1401
1402
                            matched_stop=(
                                finish_reason["matched"]
                                if finish_reason and "matched" in finish_reason
                                else None
1403
                            ),
yichuan~'s avatar
yichuan~ committed
1404
                            logprobs=choice_logprobs,
1405
1406
1407
                        )
                        chunk = ChatCompletionStreamResponse(
                            id=content["meta_info"]["id"],
1408
                            created=created,
1409
1410
1411
1412
1413
1414
1415
                            choices=[choice_data],
                            model=request.model,
                        )
                        yield f"data: {chunk.model_dump_json()}\n\n"

                    text = content["text"]
                    delta = text[len(stream_buffer) :]
YAMY's avatar
YAMY committed
1416
                    new_stream_buffer = stream_buffer + delta
1417

Xihuai Wang's avatar
Xihuai Wang committed
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
                    if (
                        tokenizer_manager.server_args.reasoning_parser
                        and request.separate_reasoning
                    ):
                        if index not in reasoning_parser_dict:
                            reasoning_parser_dict[index] = ReasoningParser(
                                tokenizer_manager.server_args.reasoning_parser,
                                request.stream_reasoning,
                            )
                        reasoning_parser = reasoning_parser_dict[index]
                        reasoning_text, delta = reasoning_parser.parse_stream_chunk(
                            delta
                        )
                        if reasoning_text:
                            choice_data = ChatCompletionResponseStreamChoice(
                                index=index,
1434
1435
1436
1437
1438
                                delta=DeltaMessage(
                                    reasoning_content=(
                                        reasoning_text if reasoning_text else None
                                    )
                                ),
1439
                                finish_reason=finish_reason_type,
Xihuai Wang's avatar
Xihuai Wang committed
1440
1441
1442
                            )
                            chunk = ChatCompletionStreamResponse(
                                id=content["meta_info"]["id"],
1443
                                created=created,
Xihuai Wang's avatar
Xihuai Wang committed
1444
1445
1446
1447
1448
1449
1450
1451
1452
                                choices=[choice_data],
                                model=request.model,
                            )
                            yield f"data: {chunk.model_dump_json()}\n\n"
                        if (delta and len(delta) == 0) or not delta:
                            stream_buffers[index] = new_stream_buffer
                            is_firsts[index] = is_first
                            continue

YAMY's avatar
YAMY committed
1453
1454
1455
1456
                    if request.tool_choice != "none" and request.tools:
                        if index not in parser_dict:
                            parser_dict[index] = FunctionCallParser(
                                tools=request.tools,
1457
                                tool_call_parser=tokenizer_manager.server_args.tool_call_parser,
YAMY's avatar
YAMY committed
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
                            )
                        parser = parser_dict[index]

                        # parse_increment => returns (normal_text, calls)
                        normal_text, calls = parser.parse_stream_chunk(delta)

                        # 1) if there's normal_text, output it as normal content
                        if normal_text:
                            choice_data = ChatCompletionResponseStreamChoice(
                                index=index,
1468
1469
1470
                                delta=DeltaMessage(
                                    content=normal_text if normal_text else None
                                ),
1471
                                finish_reason=finish_reason_type,
YAMY's avatar
YAMY committed
1472
1473
1474
                            )
                            chunk = ChatCompletionStreamResponse(
                                id=content["meta_info"]["id"],
1475
                                created=created,
YAMY's avatar
YAMY committed
1476
1477
1478
1479
1480
1481
1482
1483
1484
                                choices=[choice_data],
                                model=request.model,
                            )
                            yield f"data: {chunk.model_dump_json()}\n\n"

                        # 2) if we found calls, we output them as separate chunk(s)
                        for call_item in calls:
                            # transform call_item -> FunctionResponse + ToolCall

1485
                            if finish_reason_type == "stop":
YAMY's avatar
YAMY committed
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
                                latest_delta_len = 0
                                if isinstance(call_item.parameters, str):
                                    latest_delta_len = len(call_item.parameters)

                                expected_call = json.dumps(
                                    parser.multi_format_parser.detectors[0]
                                    .prev_tool_call_arr[index]
                                    .get("arguments", {}),
                                    ensure_ascii=False,
                                )
                                actual_call = parser.multi_format_parser.detectors[
                                    0
                                ].streamed_args_for_tool[index]
                                if latest_delta_len > 0:
                                    actual_call = actual_call[:-latest_delta_len]
                                remaining_call = expected_call.replace(
                                    actual_call, "", 1
                                )
                                call_item.parameters = remaining_call

1506
1507
                                finish_reason_type = "tool_calls"

YAMY's avatar
YAMY committed
1508
1509
1510
1511
1512
1513
1514
1515
1516
                            tool_call = ToolCall(
                                id=str(call_item.tool_index),
                                function=FunctionResponse(
                                    name=call_item.name,
                                    arguments=call_item.parameters,
                                ),
                            )
                            choice_data = ChatCompletionResponseStreamChoice(
                                index=index,
1517
1518
1519
1520
1521
1522
1523
                                delta=DeltaMessage(tool_calls=[tool_call]),
                                finish_reason=(
                                    None
                                    if request.stream_options
                                    and request.stream_options.include_usage
                                    else finish_reason_type
                                ),  # additional chunk will be return
YAMY's avatar
YAMY committed
1524
1525
1526
                            )
                            chunk = ChatCompletionStreamResponse(
                                id=content["meta_info"]["id"],
1527
                                created=created,
YAMY's avatar
YAMY committed
1528
1529
1530
1531
                                choices=[choice_data],
                                model=request.model,
                            )
                            yield f"data: {chunk.model_dump_json()}\n\n"
1532

YAMY's avatar
YAMY committed
1533
1534
1535
1536
1537
                        stream_buffers[index] = new_stream_buffer
                        is_firsts[index] = is_first

                    else:
                        # No tool calls => just treat this as normal text
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
                        if delta or not (
                            request.stream_options
                            and request.stream_options.include_usage
                        ):
                            choice_data = ChatCompletionResponseStreamChoice(
                                index=index,
                                delta=DeltaMessage(content=delta if delta else None),
                                finish_reason=(
                                    None
                                    if request.stream_options
                                    and request.stream_options.include_usage
                                    else finish_reason_type
                                ),
                                matched_stop=(
                                    finish_reason["matched"]
                                    if finish_reason and "matched" in finish_reason
                                    else None
                                ),
                                logprobs=choice_logprobs,
                            )
                            chunk = ChatCompletionStreamResponse(
                                id=content["meta_info"]["id"],
                                created=created,
                                choices=[choice_data],
                                model=request.model,
                            )
                            yield f"data: {chunk.model_dump_json()}\n\n"
                            stream_buffers[index] = new_stream_buffer
                            is_firsts[index] = is_first
                if finish_reason_type == "stop" and request.tool_choice != "none":
                    parser = FunctionCallParser(
                        tools=request.tools,
                        tool_call_parser=tokenizer_manager.server_args.tool_call_parser,
                    )
                    if parser.has_tool_call(new_stream_buffer):
                        # if the stream ends with empty string after tool calls
                        finish_reason_type = "tool_calls"

1576
                if request.stream_options and request.stream_options.include_usage:
1577
1578
1579
1580
1581
1582
1583
1584
                    total_prompt_tokens = sum(
                        tokens
                        for i, tokens in prompt_tokens.items()
                        if i % request.n == 0
                    )
                    total_completion_tokens = sum(
                        tokens for tokens in completion_tokens.values()
                    )
1585
1586
1587
1588
1589
1590
1591
1592
                    cache_report = tokenizer_manager.server_args.enable_cache_report
                    if cache_report:
                        cached_tokens_sum = sum(
                            tokens for tokens in cached_tokens.values()
                        )
                        prompt_tokens_details = {"cached_tokens": cached_tokens_sum}
                    else:
                        prompt_tokens_details = None
1593
                    usage = UsageInfo(
1594
1595
1596
                        prompt_tokens=total_prompt_tokens,
                        completion_tokens=total_completion_tokens,
                        total_tokens=total_prompt_tokens + total_completion_tokens,
1597
                        prompt_tokens_details=prompt_tokens_details,
1598
1599
                    )

1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
                else:
                    usage = None
                final_usage_chunk = ChatCompletionStreamResponse(
                    id=content["meta_info"]["id"],
                    created=created,
                    choices=[
                        ChatCompletionResponseStreamChoice(
                            index=index,
                            delta=DeltaMessage(),
                            finish_reason=finish_reason_type,
                        )
                    ],
                    model=request.model,
                    usage=usage,
                )
                yield f"data: {final_usage_chunk.model_dump_json()}\n\n"
1616
1617
1618
            except ValueError as e:
                error = create_streaming_error_response(str(e))
                yield f"data: {error}\n\n"
1619
1620
            yield "data: [DONE]\n\n"

1621
1622
1623
        return StreamingResponse(
            generate_stream_resp(),
            media_type="text/event-stream",
1624
            background=tokenizer_manager.create_abort_task(adapted_request),
1625
        )
1626
1627

    # Non-streaming response.
1628
    try:
1629
        ret = await tokenizer_manager.generate_request(
1630
1631
            adapted_request, raw_request
        ).__anext__()
1632
1633
    except ValueError as e:
        return create_error_response(str(e))
1634
1635
1636
    if not isinstance(ret, list):
        ret = [ret]

1637
    response = v1_chat_generate_response(
YAMY's avatar
YAMY committed
1638
1639
        request,
        ret,
1640
        created,
1641
1642
        cache_report=tokenizer_manager.server_args.enable_cache_report,
        tool_call_parser=tokenizer_manager.server_args.tool_call_parser,
Xihuai Wang's avatar
Xihuai Wang committed
1643
        reasoning_parser=tokenizer_manager.server_args.reasoning_parser,
1644
    )
1645

1646
1647
1648
    return response


1649
def v1_embedding_request(all_requests, tokenizer_manager):
1650
1651
    prompts = []
    sampling_params_list = []
Ying Sheng's avatar
Ying Sheng committed
1652
    first_prompt_type = type(all_requests[0].input)
1653
1654

    for request in all_requests:
Ying Sheng's avatar
Ying Sheng committed
1655
        prompt = request.input
1656
        assert (
1657
            type(prompt) is first_prompt_type
1658
1659
1660
1661
1662
1663
1664
        ), "All prompts must be of the same type in file input settings"
        prompts.append(prompt)

    if len(all_requests) == 1:
        prompt = prompts[0]
        if isinstance(prompt, str) or isinstance(prompt[0], str):
            prompt_kwargs = {"text": prompt}
1665
1666
1667
1668
1669
1670
        elif isinstance(prompt, list) and isinstance(
            prompt[0], MultimodalEmbeddingInput
        ):
            texts = []
            images = []
            for item in prompt:
uylnap's avatar
uylnap committed
1671
1672
                # TODO simply use padding for text, we should use a better way to handle this
                texts.append(item.text if item.text is not None else "padding")
1673
1674
                images.append(item.image if item.image is not None else None)
            generate_prompts = []
uylnap's avatar
uylnap committed
1675
1676
1677
1678
1679
1680
            if chat_template_name is not None:
                convs = generate_embedding_convs(texts, images, chat_template_name)
                for conv in convs:
                    generate_prompts.append(conv.get_prompt())
            else:
                generate_prompts = texts
1681
1682
1683
1684
            if len(generate_prompts) == 1:
                prompt_kwargs = {"text": generate_prompts[0], "image_data": images[0]}
            else:
                prompt_kwargs = {"text": generate_prompts, "image_data": images}
1685
1686
1687
        else:
            prompt_kwargs = {"input_ids": prompt}
    else:
Baoyuan Qi's avatar
Baoyuan Qi committed
1688
        if isinstance(prompts[0], str) or isinstance(prompts[0][0], str):
1689
            prompt_kwargs = {"text": prompts}
1690
1691
1692
1693
1694
1695
1696
        elif isinstance(prompts[0], list) and isinstance(
            prompts[0][0], MultimodalEmbeddingInput
        ):
            # TODO: multiple requests
            raise NotImplementedError(
                "Multiple requests with multimodal inputs are not supported yet"
            )
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
        else:
            prompt_kwargs = {"input_ids": prompts}

    adapted_request = EmbeddingReqInput(
        **prompt_kwargs,
    )

    if len(all_requests) == 1:
        return adapted_request, all_requests[0]
    return adapted_request, all_requests


Ying Sheng's avatar
Ying Sheng committed
1709
1710
1711
def v1_embedding_response(ret, model_path, to_file=False):
    embedding_objects = []
    prompt_tokens = 0
1712
    for idx, ret_item in enumerate(ret):
Ying Sheng's avatar
Ying Sheng committed
1713
1714
1715
        embedding_objects.append(
            EmbeddingObject(
                embedding=ret[idx]["embedding"],
1716
1717
1718
                index=idx,
            )
        )
Ying Sheng's avatar
Ying Sheng committed
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
        prompt_tokens += ret[idx]["meta_info"]["prompt_tokens"]

    return EmbeddingResponse(
        data=embedding_objects,
        model=model_path,
        usage=UsageInfo(
            prompt_tokens=prompt_tokens,
            total_tokens=prompt_tokens,
        ),
    )
1729
1730


1731
async def v1_embeddings(tokenizer_manager, raw_request: Request):
1732
1733
    request_json = await raw_request.json()
    all_requests = [EmbeddingRequest(**request_json)]
1734
    adapted_request, request = v1_embedding_request(all_requests, tokenizer_manager)
1735
1736

    try:
1737
        ret = await tokenizer_manager.generate_request(
1738
1739
1740
1741
1742
1743
1744
1745
            adapted_request, raw_request
        ).__anext__()
    except ValueError as e:
        return create_error_response(str(e))

    if not isinstance(ret, list):
        ret = [ret]

1746
    response = v1_embedding_response(ret, tokenizer_manager.model_path)
1747
1748
1749
1750

    return response


1751
def to_openai_style_logprobs(
1752
1753
1754
1755
    input_token_logprobs=None,
    output_token_logprobs=None,
    input_top_logprobs=None,
    output_top_logprobs=None,
1756
1757
1758
1759
1760
1761
1762
1763
):
    ret_logprobs = LogProbs()

    def append_token_logprobs(token_logprobs):
        for logprob, _, token_text in token_logprobs:
            ret_logprobs.tokens.append(token_text)
            ret_logprobs.token_logprobs.append(logprob)

1764
            # Not supported yet
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
            ret_logprobs.text_offset.append(-1)

    def append_top_logprobs(top_logprobs):
        for tokens in top_logprobs:
            if tokens is not None:
                ret_logprobs.top_logprobs.append(
                    {token[2]: token[0] for token in tokens}
                )
            else:
                ret_logprobs.top_logprobs.append(None)

1776
1777
1778
1779
1780
1781
1782
1783
    if input_token_logprobs is not None:
        append_token_logprobs(input_token_logprobs)
    if output_token_logprobs is not None:
        append_token_logprobs(output_token_logprobs)
    if input_top_logprobs is not None:
        append_top_logprobs(input_top_logprobs)
    if output_top_logprobs is not None:
        append_top_logprobs(output_top_logprobs)
1784

Liangsheng Yin's avatar
Liangsheng Yin committed
1785
    return ret_logprobs