adapter.py 52.3 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
"""
Copyright 2023-2024 SGLang Team
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
"""

16
"""Conversion between OpenAI APIs and native SRT APIs"""
Liangsheng Yin's avatar
Liangsheng Yin committed
17

18
import asyncio
19
import json
20
import logging
21
import os
22
23
import time
import uuid
24
from http import HTTPStatus
25
from typing import Dict, List
26

27
from fastapi import HTTPException, Request, UploadFile
28
from fastapi.responses import ORJSONResponse, StreamingResponse
29
from pydantic import ValidationError
30

31
32
33
34
35
36
37
try:
    from outlines.fsm.json_schema import convert_json_schema_to_str
except ImportError:
    # Before outlines 0.0.47, convert_json_schema_to_str is under
    # outlines.integrations.utils
    from outlines.integrations.utils import convert_json_schema_to_str

38
39
40
41
42
43
44
from sglang.srt.conversation import (
    Conversation,
    SeparatorStyle,
    chat_template_exists,
    generate_chat_conv,
    register_conv_template,
)
Ying Sheng's avatar
Ying Sheng committed
45
from sglang.srt.managers.io_struct import EmbeddingReqInput, GenerateReqInput
Mingyi's avatar
Mingyi committed
46
from sglang.srt.openai_api.protocol import (
47
48
    BatchRequest,
    BatchResponse,
49
50
51
52
53
    ChatCompletionRequest,
    ChatCompletionResponse,
    ChatCompletionResponseChoice,
    ChatCompletionResponseStreamChoice,
    ChatCompletionStreamResponse,
54
    ChatCompletionTokenLogprob,
55
    ChatMessage,
56
    ChoiceLogprobs,
57
58
59
60
61
62
    CompletionRequest,
    CompletionResponse,
    CompletionResponseChoice,
    CompletionResponseStreamChoice,
    CompletionStreamResponse,
    DeltaMessage,
Ying Sheng's avatar
Ying Sheng committed
63
    EmbeddingObject,
64
65
    EmbeddingRequest,
    EmbeddingResponse,
66
    ErrorResponse,
67
    FileDeleteResponse,
68
69
    FileRequest,
    FileResponse,
70
    LogProbs,
71
    TopLogprob,
72
73
74
    UsageInfo,
)

75
76
logger = logging.getLogger(__name__)

77
78
chat_template_name = None

Liangsheng Yin's avatar
Liangsheng Yin committed
79

80
81
82
83
84
85
86
87
88
89
class FileMetadata:
    def __init__(self, filename: str, purpose: str):
        self.filename = filename
        self.purpose = purpose


# In-memory storage for batch jobs and files
batch_storage: Dict[str, BatchResponse] = {}
file_id_request: Dict[str, FileMetadata] = {}
file_id_response: Dict[str, FileResponse] = {}
90
# map file id to file path in SGLang backend
91
92
93
94
95
96
97
file_id_storage: Dict[str, str] = {}


# backend storage directory
storage_dir = None


98
99
100
def create_error_response(
    message: str,
    err_type: str = "BadRequestError",
101
102
103
    status_code: HTTPStatus = HTTPStatus.BAD_REQUEST,
):
    error = ErrorResponse(message=message, type=err_type, code=status_code.value)
104
    return ORJSONResponse(content=error.model_dump(), status_code=error.code)
105
106
107
108
109


def create_streaming_error_response(
    message: str,
    err_type: str = "BadRequestError",
110
111
112
    status_code: HTTPStatus = HTTPStatus.BAD_REQUEST,
) -> str:
    error = ErrorResponse(message=message, type=err_type, code=status_code.value)
113
114
115
116
    json_str = json.dumps({"error": error.model_dump()})
    return json_str


117
def load_chat_template_for_openai_api(tokenizer_manager, chat_template_arg):
118
119
    global chat_template_name

120
121
122
    logger.info(
        f"Use chat template for the OpenAI-compatible API server: {chat_template_arg}"
    )
123
124
125
126
127
128
    if not chat_template_exists(chat_template_arg):
        if not os.path.exists(chat_template_arg):
            raise RuntimeError(
                f"Chat template {chat_template_arg} is not a built-in template name "
                "or a valid chat template file path."
            )
129
130
131
132
133
        if chat_template_arg.endswith(".jinja"):
            with open(chat_template_arg, "r") as f:
                chat_template = "".join(f.readlines()).strip("\n")
            tokenizer_manager.tokenizer.chat_template = chat_template.replace(
                "\\n", "\n"
134
            )
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
            chat_template_name = None
        else:
            assert chat_template_arg.endswith(
                ".json"
            ), "unrecognized format of chat template file"
            with open(chat_template_arg, "r") as filep:
                template = json.load(filep)
                try:
                    sep_style = SeparatorStyle[template["sep_style"]]
                except KeyError:
                    raise ValueError(
                        f"Unknown separator style: {template['sep_style']}"
                    ) from None
                register_conv_template(
                    Conversation(
                        name=template["name"],
                        system_template=template["system"] + "\n{system_message}",
                        system_message=template.get("system_message", ""),
                        roles=(template["user"], template["assistant"]),
                        sep_style=sep_style,
                        sep=template.get("sep", "\n"),
                        stop_str=template["stop_str"],
                    ),
                    override=True,
                )
            chat_template_name = template["name"]
161
162
163
164
    else:
        chat_template_name = chat_template_arg


165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
async def v1_files_create(file: UploadFile, purpose: str, file_storage_pth: str = None):
    try:
        global storage_dir
        if file_storage_pth:
            storage_dir = file_storage_pth
        # Read the file content
        file_content = await file.read()

        # Create an instance of RequestBody
        request_body = FileRequest(file=file_content, purpose=purpose)

        # Save the file to the sglang_oai_storage directory
        os.makedirs(storage_dir, exist_ok=True)
        file_id = f"backend_input_file-{uuid.uuid4()}"
        filename = f"{file_id}.jsonl"
        file_path = os.path.join(storage_dir, filename)

        with open(file_path, "wb") as f:
            f.write(request_body.file)

        # add info to global file map
        file_id_request[file_id] = FileMetadata(filename=file.filename, purpose=purpose)
        file_id_storage[file_id] = file_path

        # Return the response in the required format
        response = FileResponse(
            id=file_id,
            bytes=len(request_body.file),
            created_at=int(time.time()),
            filename=file.filename,
            purpose=request_body.purpose,
        )
        file_id_response[file_id] = response

        return response
    except ValidationError as e:
        return {"error": "Invalid input", "details": e.errors()}


204
205
206
207
208
209
210
211
212
213
214
215
216
217
async def v1_delete_file(file_id: str):
    # Retrieve the file job from the in-memory storage
    file_response = file_id_response.get(file_id)
    if file_response is None:
        raise HTTPException(status_code=404, detail="File not found")
    file_path = file_id_storage.get(file_id)
    if file_path is None:
        raise HTTPException(status_code=404, detail="File not found")
    os.remove(file_path)
    del file_id_response[file_id]
    del file_id_storage[file_id]
    return FileDeleteResponse(id=file_id, deleted=True)


218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
async def v1_batches(tokenizer_manager, raw_request: Request):
    try:
        body = await raw_request.json()

        batch_request = BatchRequest(**body)

        batch_id = f"batch_{uuid.uuid4()}"

        # Create an instance of BatchResponse
        batch_response = BatchResponse(
            id=batch_id,
            endpoint=batch_request.endpoint,
            input_file_id=batch_request.input_file_id,
            completion_window=batch_request.completion_window,
            created_at=int(time.time()),
            metadata=batch_request.metadata,
        )

        batch_storage[batch_id] = batch_response

        # Start processing the batch asynchronously
        asyncio.create_task(process_batch(tokenizer_manager, batch_id, batch_request))

        # Return the initial batch_response
        return batch_response

    except ValidationError as e:
        return {"error": "Invalid input", "details": e.errors()}
    except Exception as e:
        return {"error": str(e)}


async def process_batch(tokenizer_manager, batch_id: str, batch_request: BatchRequest):
    try:
        # Update the batch status to "in_progress"
        batch_storage[batch_id].status = "in_progress"
        batch_storage[batch_id].in_progress_at = int(time.time())

        # Retrieve the input file content
        input_file_request = file_id_request.get(batch_request.input_file_id)
        if not input_file_request:
            raise ValueError("Input file not found")

        # Parse the JSONL file and process each request
        input_file_path = file_id_storage.get(batch_request.input_file_id)
        with open(input_file_path, "r", encoding="utf-8") as f:
            lines = f.readlines()

        total_requests = len(lines)
        completed_requests = 0
        failed_requests = 0

        all_ret = []
        end_point = batch_storage[batch_id].endpoint
        file_request_list = []
        all_requests = []
274
        request_ids = []
275
276
277
278
        for line in lines:
            request_data = json.loads(line)
            file_request_list.append(request_data)
            body = request_data["body"]
279
            request_ids.append(request_data["custom_id"])
280
281
282
283
284
285

            # Although streaming is supported for standalone completions, it is not supported in
            # batch mode (multiple completions in single request).
            if body.get("stream", False):
                raise ValueError("Streaming requests are not supported in batch mode")

286
287
288
289
            if end_point == "/v1/chat/completions":
                all_requests.append(ChatCompletionRequest(**body))
            elif end_point == "/v1/completions":
                all_requests.append(CompletionRequest(**body))
290

291
292
        if end_point == "/v1/chat/completions":
            adapted_request, request = v1_chat_generate_request(
293
                all_requests, tokenizer_manager, request_ids=request_ids
294
295
            )
        elif end_point == "/v1/completions":
296
297
298
299
            adapted_request, request = v1_generate_request(
                all_requests, request_ids=request_ids
            )

300
301
302
303
304
        try:
            ret = await tokenizer_manager.generate_request(adapted_request).__anext__()
            if not isinstance(ret, list):
                ret = [ret]
            if end_point == "/v1/chat/completions":
305
306
307
308
309
310
                responses = v1_chat_generate_response(
                    request,
                    ret,
                    to_file=True,
                    cache_report=tokenizer_manager.server_args.enable_cache_report,
                )
311
            else:
yichuan~'s avatar
yichuan~ committed
312
313
314
                responses = v1_generate_response(
                    request, ret, tokenizer_manager, to_file=True
                )
315
316
317
318
319
320
321
322
323
324
325
326

        except Exception as e:
            error_json = {
                "id": f"batch_req_{uuid.uuid4()}",
                "custom_id": request_data.get("custom_id"),
                "response": None,
                "error": {"message": str(e)},
            }
            all_ret.append(error_json)
            failed_requests += len(file_request_list)

        for idx, response in enumerate(responses):
327
            # the batch_req here can be changed to be named within a batch granularity
328
329
330
331
332
333
334
335
            response_json = {
                "id": f"batch_req_{uuid.uuid4()}",
                "custom_id": file_request_list[idx].get("custom_id"),
                "response": response,
                "error": None,
            }
            all_ret.append(response_json)
            completed_requests += 1
336

337
338
339
340
341
342
343
344
345
346
347
348
        # Write results to a new file
        output_file_id = f"backend_result_file-{uuid.uuid4()}"
        global storage_dir
        output_file_path = os.path.join(storage_dir, f"{output_file_id}.jsonl")
        with open(output_file_path, "w", encoding="utf-8") as f:
            for ret in all_ret:
                f.write(json.dumps(ret) + "\n")

        # Update batch response with output file information
        retrieve_batch = batch_storage[batch_id]
        retrieve_batch.output_file_id = output_file_id
        file_id_storage[output_file_id] = output_file_path
349
350
351
352
353
354
355
        file_id_response[output_file_id] = FileResponse(
            id=output_file_id,
            bytes=os.path.getsize(output_file_path),
            created_at=int(time.time()),
            filename=f"{output_file_id}.jsonl",
            purpose="batch_result",
        )
356
357
358
359
360
361
362
363
364
365
        # Update batch status to "completed"
        retrieve_batch.status = "completed"
        retrieve_batch.completed_at = int(time.time())
        retrieve_batch.request_counts = {
            "total": total_requests,
            "completed": completed_requests,
            "failed": failed_requests,
        }

    except Exception as e:
366
        logger.error("error in SGLang:", e)
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
        # Update batch status to "failed"
        retrieve_batch = batch_storage[batch_id]
        retrieve_batch.status = "failed"
        retrieve_batch.failed_at = int(time.time())
        retrieve_batch.errors = {"message": str(e)}


async def v1_retrieve_batch(batch_id: str):
    # Retrieve the batch job from the in-memory storage
    batch_response = batch_storage.get(batch_id)
    if batch_response is None:
        raise HTTPException(status_code=404, detail="Batch not found")

    return batch_response


383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
async def v1_cancel_batch(tokenizer_manager, batch_id: str):
    # Retrieve the batch job from the in-memory storage
    batch_response = batch_storage.get(batch_id)
    if batch_response is None:
        raise HTTPException(status_code=404, detail="Batch not found")

    # Only do cancal when status is "validating" or "in_progress"
    if batch_response.status in ["validating", "in_progress"]:
        # Start cancelling the batch asynchronously
        asyncio.create_task(
            cancel_batch(
                tokenizer_manager=tokenizer_manager,
                batch_id=batch_id,
                input_file_id=batch_response.input_file_id,
            )
        )

        # Update batch status to "cancelling"
        batch_response.status = "cancelling"

        return batch_response
    else:
        raise HTTPException(
            status_code=500,
            detail=f"Current status is {batch_response.status}, no need to cancel",
        )


async def cancel_batch(tokenizer_manager, batch_id: str, input_file_id: str):
    try:
        # Update the batch status to "cancelling"
        batch_storage[batch_id].status = "cancelling"

        # Retrieve the input file content
        input_file_request = file_id_request.get(input_file_id)
        if not input_file_request:
            raise ValueError("Input file not found")

        # Parse the JSONL file and process each request
        input_file_path = file_id_storage.get(input_file_id)
        with open(input_file_path, "r", encoding="utf-8") as f:
            lines = f.readlines()

        file_request_list = []
        request_ids = []
        for line in lines:
            request_data = json.loads(line)
            file_request_list.append(request_data)
            request_ids.append(request_data["custom_id"])

        # Cancel requests by request_ids
        for rid in request_ids:
            tokenizer_manager.abort_request(rid=rid)

        retrieve_batch = batch_storage[batch_id]
        retrieve_batch.status = "cancelled"

    except Exception as e:
        logger.error("error in SGLang:", e)
        # Update batch status to "failed"
        retrieve_batch = batch_storage[batch_id]
        retrieve_batch.status = "failed"
        retrieve_batch.failed_at = int(time.time())
        retrieve_batch.errors = {"message": str(e)}


449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
async def v1_retrieve_file(file_id: str):
    # Retrieve the batch job from the in-memory storage
    file_response = file_id_response.get(file_id)
    if file_response is None:
        raise HTTPException(status_code=404, detail="File not found")
    return file_response


async def v1_retrieve_file_content(file_id: str):
    file_pth = file_id_storage.get(file_id)
    if not file_pth or not os.path.exists(file_pth):
        raise HTTPException(status_code=404, detail="File not found")

    def iter_file():
        with open(file_pth, mode="rb") as file_like:
            yield from file_like

    return StreamingResponse(iter_file(), media_type="application/octet-stream")


469
470
471
def v1_generate_request(
    all_requests: List[CompletionRequest], request_ids: List[str] = None
):
472
473
    prompts = []
    sampling_params_list = []
474
    return_logprobs = []
475
    logprob_start_lens = []
476
    top_logprobs_nums = []
yichuan~'s avatar
yichuan~ committed
477

478
479
    # NOTE: with openai API, the prompt's logprobs are always not computed
    first_prompt_type = type(all_requests[0].prompt)
480
481
    for request in all_requests:
        assert (
482
            type(request.prompt) is first_prompt_type
483
        ), "All prompts must be of the same type in file input settings"
484
485
486
487
488
        if len(all_requests) > 1 and request.n > 1:
            raise ValueError(
                "Parallel sampling is not supported for completions from files"
            )
        if request.echo and request.logprobs:
489
            logger.warning(
490
491
492
493
494
495
                "Echo is not compatible with logprobs. "
                "To compute logprobs of input prompt, please use SGLang /request API."
            )

    for request in all_requests:
        prompts.append(request.prompt)
496
        return_logprobs.append(request.logprobs is not None and request.logprobs > 0)
497
        logprob_start_lens.append(-1)
498
499
500
        top_logprobs_nums.append(
            request.logprobs if request.logprobs is not None else 0
        )
501
        sampling_params = []
502
        if isinstance(request.no_stop_trim, list):
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
            num_reqs = len(request.prompt)
        else:
            num_reqs = 1
        for i in range(num_reqs):
            sampling_params.append(
                {
                    "temperature": request.temperature,
                    "max_new_tokens": request.max_tokens,
                    "min_new_tokens": request.min_tokens,
                    "stop": request.stop,
                    "stop_token_ids": request.stop_token_ids,
                    "top_p": request.top_p,
                    "presence_penalty": request.presence_penalty,
                    "frequency_penalty": request.frequency_penalty,
                    "repetition_penalty": request.repetition_penalty,
                    "regex": request.regex,
                    "json_schema": request.json_schema,
                    "n": request.n,
                    "ignore_eos": request.ignore_eos,
522
523
524
525
                    "no_stop_trim": (
                        request.no_stop_trim
                        if not isinstance(request.no_stop_trim, list)
                        else request.no_stop_trim[i]
526
527
528
529
530
531
532
                    ),
                }
            )
        if num_reqs == 1:
            sampling_params_list.append(sampling_params[0])
        else:
            sampling_params_list.append(sampling_params)
533
534
535
536

    if len(all_requests) == 1:
        prompt = prompts[0]
        sampling_params_list = sampling_params_list[0]
537
        logprob_start_lens = logprob_start_lens[0]
538
539
        return_logprobs = return_logprobs[0]
        top_logprobs_nums = top_logprobs_nums[0]
yichuan~'s avatar
yichuan~ committed
540
        if isinstance(prompt, str) or isinstance(prompt[0], str):
541
542
543
            prompt_kwargs = {"text": prompt}
        else:
            prompt_kwargs = {"input_ids": prompt}
544
    else:
545
        if isinstance(prompts[0], str):
546
547
548
            prompt_kwargs = {"text": prompts}
        else:
            prompt_kwargs = {"input_ids": prompts}
yichuan~'s avatar
yichuan~ committed
549

550
    adapted_request = GenerateReqInput(
551
        **prompt_kwargs,
552
        sampling_params=sampling_params_list,
553
554
        return_logprob=return_logprobs,
        top_logprobs_num=top_logprobs_nums,
555
        logprob_start_len=logprob_start_lens,
556
        return_text_in_logprobs=True,
557
        stream=all_requests[0].stream,
558
        rid=request_ids,
559
    )
yichuan~'s avatar
yichuan~ committed
560

561
562
563
564
565
    if len(all_requests) == 1:
        return adapted_request, all_requests[0]
    return adapted_request, all_requests


yichuan~'s avatar
yichuan~ committed
566
def v1_generate_response(request, ret, tokenizer_manager, to_file=False):
567
568
569
    choices = []
    echo = False

yichuan~'s avatar
yichuan~ committed
570
    if (not isinstance(request, list)) and request.echo:
571
        # TODO: handle the case propmt is token ids
yichuan~'s avatar
yichuan~ committed
572
573
        if isinstance(request.prompt, list) and isinstance(request.prompt[0], str):
            # for the case of multiple str prompts
574
            prompts = request.prompt
yichuan~'s avatar
yichuan~ committed
575
576
577
578
579
580
581
582
583
584
585
586
587
        elif isinstance(request.prompt, list) and isinstance(request.prompt[0], list):
            # for the case of multiple token ids prompts
            prompts = [
                tokenizer_manager.tokenizer.decode(prompt, skip_special_tokens=True)
                for prompt in request.prompt
            ]
        elif isinstance(request.prompt, list) and isinstance(request.prompt[0], int):
            # for the case of single token ids prompt
            prompts = [
                tokenizer_manager.tokenizer.decode(
                    request.prompt, skip_special_tokens=True
                )
            ]
588
        else:
yichuan~'s avatar
yichuan~ committed
589
            # for the case of single str prompt
590
591
592
593
594
            prompts = [request.prompt]
        echo = True

    for idx, ret_item in enumerate(ret):
        text = ret_item["text"]
yichuan~'s avatar
yichuan~ committed
595
        if isinstance(request, list) and request[idx].echo:
596
597
            echo = True
            text = request[idx].prompt + text
yichuan~'s avatar
yichuan~ committed
598
599
600
        if (not isinstance(request, list)) and echo:
            prompt_index = idx // request.n
            text = prompts[prompt_index] + text
601
602

        logprobs = False
yichuan~'s avatar
yichuan~ committed
603
        if isinstance(request, list) and request[idx].logprobs:
604
            logprobs = True
yichuan~'s avatar
yichuan~ committed
605
        elif (not isinstance(request, list)) and request.logprobs:
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
            logprobs = True
        if logprobs:
            if echo:
                input_token_logprobs = ret_item["meta_info"]["input_token_logprobs"]
                input_top_logprobs = ret_item["meta_info"]["input_top_logprobs"]
            else:
                input_token_logprobs = None
                input_top_logprobs = None

            logprobs = to_openai_style_logprobs(
                input_token_logprobs=input_token_logprobs,
                input_top_logprobs=input_top_logprobs,
                output_token_logprobs=ret_item["meta_info"]["output_token_logprobs"],
                output_top_logprobs=ret_item["meta_info"]["output_top_logprobs"],
            )
        else:
            logprobs = None

624
625
        finish_reason = ret_item["meta_info"]["finish_reason"]

626
        if to_file:
627
            # to make the choise data json serializable
628
629
630
631
            choice_data = {
                "index": 0,
                "text": text,
                "logprobs": logprobs,
632
633
634
635
636
                "finish_reason": (finish_reason["type"] if finish_reason else ""),
                "matched_stop": (
                    finish_reason["matched"]
                    if finish_reason and "matched" in finish_reason
                    else None
637
                ),
638
639
640
641
642
643
            }
        else:
            choice_data = CompletionResponseChoice(
                index=idx,
                text=text,
                logprobs=logprobs,
644
645
646
647
648
                finish_reason=(finish_reason["type"] if finish_reason else ""),
                matched_stop=(
                    finish_reason["matched"]
                    if finish_reason and "matched" in finish_reason
                    else None
649
                ),
650
651
652
653
654
655
656
657
658
659
660
            )

        choices.append(choice_data)

    if to_file:
        responses = []
        for i, choice in enumerate(choices):
            response = {
                "status_code": 200,
                "request_id": ret[i]["meta_info"]["id"],
                "body": {
661
                    # remain the same but if needed we can change that
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
                    "id": ret[i]["meta_info"]["id"],
                    "object": "text_completion",
                    "created": int(time.time()),
                    "model": request[i].model,
                    "choices": choice,
                    "usage": {
                        "prompt_tokens": ret[i]["meta_info"]["prompt_tokens"],
                        "completion_tokens": ret[i]["meta_info"]["completion_tokens"],
                        "total_tokens": ret[i]["meta_info"]["prompt_tokens"]
                        + ret[i]["meta_info"]["completion_tokens"],
                    },
                    "system_fingerprint": None,
                },
            }
            responses.append(response)
        return responses
    else:
679
680
681
        prompt_tokens = sum(
            ret[i]["meta_info"]["prompt_tokens"] for i in range(0, len(ret), request.n)
        )
682
683
684
685
686
687
        completion_tokens = sum(item["meta_info"]["completion_tokens"] for item in ret)
        response = CompletionResponse(
            id=ret[0]["meta_info"]["id"],
            model=request.model,
            choices=choices,
            usage=UsageInfo(
yichuan~'s avatar
yichuan~ committed
688
                prompt_tokens=prompt_tokens,
689
                completion_tokens=completion_tokens,
yichuan~'s avatar
yichuan~ committed
690
                total_tokens=prompt_tokens + completion_tokens,
691
692
693
694
695
696
697
698
699
            ),
        )
    return response


async def v1_completions(tokenizer_manager, raw_request: Request):
    request_json = await raw_request.json()
    all_requests = [CompletionRequest(**request_json)]
    adapted_request, request = v1_generate_request(all_requests)
700
701
702
703

    if adapted_request.stream:

        async def generate_stream_resp():
704
705
706
707
            stream_buffers = {}
            n_prev_tokens = {}
            prompt_tokens = {}
            completion_tokens = {}
708
709
            try:
                async for content in tokenizer_manager.generate_request(
710
711
                    adapted_request, raw_request
                ):
712
713
714
715
716
                    index = content["index"]

                    stream_buffer = stream_buffers.get(index, "")
                    n_prev_token = n_prev_tokens.get(index, 0)

717
                    text = content["text"]
718
719
                    prompt_tokens[index] = content["meta_info"]["prompt_tokens"]
                    completion_tokens[index] = content["meta_info"]["completion_tokens"]
720
721
722

                    if not stream_buffer:  # The first chunk
                        if request.echo:
yichuan~'s avatar
yichuan~ committed
723
724
725
                            if isinstance(request.prompt, str):
                                # for the case of single str prompts
                                prompts = request.prompt
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
                            elif isinstance(request.prompt, list):
                                if isinstance(request.prompt[0], str):
                                    # for the case of multiple str prompts
                                    prompts = request.prompt[index // request.n]
                                elif isinstance(request.prompt[0], int):
                                    # for the case of single token ids prompt
                                    prompts = tokenizer_manager.tokenizer.decode(
                                        request.prompt, skip_special_tokens=True
                                    )
                                elif isinstance(request.prompt[0], list) and isinstance(
                                    request.prompt[0][0], int
                                ):
                                    # for the case of multiple token ids prompts
                                    prompts = tokenizer_manager.tokenizer.decode(
                                        request.prompt[index // request.n],
                                        skip_special_tokens=True,
                                    )
yichuan~'s avatar
yichuan~ committed
743

744
                            # Prepend prompt in response text.
yichuan~'s avatar
yichuan~ committed
745
                            text = prompts + text
746
747
748
749

                    if request.logprobs:
                        # The first chunk and echo is enabled.
                        if not stream_buffer and request.echo:
750
751
                            input_token_logprobs = content["meta_info"][
                                "input_token_logprobs"
752
                            ]
753
754
                            input_top_logprobs = content["meta_info"][
                                "input_top_logprobs"
755
756
                            ]
                        else:
757
758
                            input_token_logprobs = None
                            input_top_logprobs = None
759
760

                        logprobs = to_openai_style_logprobs(
761
762
763
764
                            input_token_logprobs=input_token_logprobs,
                            input_top_logprobs=input_top_logprobs,
                            output_token_logprobs=content["meta_info"][
                                "output_token_logprobs"
765
                            ][n_prev_token:],
766
767
                            output_top_logprobs=content["meta_info"][
                                "output_top_logprobs"
768
                            ][n_prev_token:],
769
                        )
770
                        n_prev_token = len(
771
                            content["meta_info"]["output_token_logprobs"]
772
                        )
773
                    else:
774
                        logprobs = None
775

776
                    delta = text[len(stream_buffer) :]
Liangsheng Yin's avatar
Liangsheng Yin committed
777
                    stream_buffer = stream_buffer + delta
778
                    finish_reason = content["meta_info"]["finish_reason"]
779
                    choice_data = CompletionResponseStreamChoice(
780
                        index=index,
781
782
                        text=delta,
                        logprobs=logprobs,
783
784
785
786
787
                        finish_reason=(finish_reason["type"] if finish_reason else ""),
                        matched_stop=(
                            finish_reason["matched"]
                            if finish_reason and "matched" in finish_reason
                            else None
788
                        ),
789
790
791
792
793
794
795
                    )
                    chunk = CompletionStreamResponse(
                        id=content["meta_info"]["id"],
                        object="text_completion",
                        choices=[choice_data],
                        model=request.model,
                    )
796
797
798
799

                    stream_buffers[index] = stream_buffer
                    n_prev_tokens[index] = n_prev_token

800
                    yield f"data: {chunk.model_dump_json()}\n\n"
801
                if request.stream_options and request.stream_options.include_usage:
802
803
804
805
806
807
808
809
                    total_prompt_tokens = sum(
                        tokens
                        for i, tokens in prompt_tokens.items()
                        if i % request.n == 0
                    )
                    total_completion_tokens = sum(
                        tokens for tokens in completion_tokens.values()
                    )
810
                    usage = UsageInfo(
811
812
813
                        prompt_tokens=total_prompt_tokens,
                        completion_tokens=total_completion_tokens,
                        total_tokens=total_prompt_tokens + total_completion_tokens,
814
815
816
817
818
819
820
821
822
823
824
825
                    )

                    final_usage_chunk = CompletionStreamResponse(
                        id=str(uuid.uuid4().hex),
                        choices=[],
                        model=request.model,
                        usage=usage,
                    )
                    final_usage_data = final_usage_chunk.model_dump_json(
                        exclude_unset=True, exclude_none=True
                    )
                    yield f"data: {final_usage_data}\n\n"
826
827
828
            except ValueError as e:
                error = create_streaming_error_response(str(e))
                yield f"data: {error}\n\n"
829
830
            yield "data: [DONE]\n\n"

831
832
833
834
835
        return StreamingResponse(
            generate_stream_resp(),
            media_type="text/event-stream",
            background=tokenizer_manager.create_abort_task(adapted_request),
        )
836
837

    # Non-streaming response.
838
839
    try:
        ret = await tokenizer_manager.generate_request(
840
841
            adapted_request, raw_request
        ).__anext__()
842
843
    except ValueError as e:
        return create_error_response(str(e))
844

845
846
847
    if not isinstance(ret, list):
        ret = [ret]

yichuan~'s avatar
yichuan~ committed
848
    response = v1_generate_response(request, ret, tokenizer_manager)
849
    return response
850

851

852
def v1_chat_generate_request(
853
854
855
    all_requests: List[ChatCompletionRequest],
    tokenizer_manager,
    request_ids: List[str] = None,
856
):
857
    input_ids = []
858
859
    sampling_params_list = []
    image_data_list = []
860
    return_logprobs = []
861
    logprob_start_lens = []
862
    top_logprobs_nums = []
863
    modalities_list = []
864
865
866

    # NOTE: with openai API, the prompt's logprobs are always not computed

867
868
869
870
871
872
873
874
875
    for request in all_requests:
        # Prep the data needed for the underlying GenerateReqInput:
        #  - prompt: The full prompt string.
        #  - stop: Custom stop tokens.
        #  - image_data: None or a list of image strings (URLs or base64 strings).
        #    None skips any image processing in GenerateReqInput.
        if not isinstance(request.messages, str):
            # Apply chat template and its stop strings.
            if chat_template_name is None:
876
877
878
879
880
881
882
883
884
885
886
887
888
                openai_compatible_messages = []
                for message in request.messages:
                    if isinstance(message.content, str):
                        openai_compatible_messages.append(
                            {"role": message.role, "content": message.content}
                        )
                    else:
                        content_list = message.dict()["content"]
                        for content in content_list:
                            if content["type"] == "text":
                                openai_compatible_messages.append(
                                    {"role": message.role, "content": content["text"]}
                                )
889
890
891
892
893
                if openai_compatible_messages[-1]["role"] == "assistant":
                    assistant_prefix = openai_compatible_messages[-1]["content"]
                    openai_compatible_messages = openai_compatible_messages[:-1]
                else:
                    assistant_prefix = None
894
                prompt_ids = tokenizer_manager.tokenizer.apply_chat_template(
895
896
897
                    openai_compatible_messages,
                    tokenize=True,
                    add_generation_prompt=True,
898
                )
899
900
                if assistant_prefix:
                    prompt_ids += tokenizer_manager.tokenizer.encode(assistant_prefix)
901
902
                stop = request.stop
                image_data = None
903
                modalities = []
904
            else:
905
906
907
                conv = generate_chat_conv(request, chat_template_name)
                prompt = conv.get_prompt()
                image_data = conv.image_data
908
                modalities = conv.modalities
909
910
911
912
913
914
                stop = conv.stop_str or []
                if request.stop:
                    if isinstance(request.stop, str):
                        stop.append(request.stop)
                    else:
                        stop.extend(request.stop)
915
                prompt_ids = tokenizer_manager.tokenizer.encode(prompt)
916
        else:
917
            # Use the raw prompt and stop strings if the messages is already a string.
yichuan~'s avatar
yichuan~ committed
918
            prompt_ids = request.messages
919
920
            stop = request.stop
            image_data = None
921
            modalities = []
922
        input_ids.append(prompt_ids)
923
        return_logprobs.append(request.logprobs)
924
        logprob_start_lens.append(-1)
925
        top_logprobs_nums.append(request.top_logprobs or 0)
926
927
928
929
930
931
932
933
934
935
936
937
938

        sampling_params = {
            "temperature": request.temperature,
            "max_new_tokens": request.max_tokens,
            "min_new_tokens": request.min_tokens,
            "stop": stop,
            "stop_token_ids": request.stop_token_ids,
            "top_p": request.top_p,
            "presence_penalty": request.presence_penalty,
            "frequency_penalty": request.frequency_penalty,
            "repetition_penalty": request.repetition_penalty,
            "regex": request.regex,
            "n": request.n,
939
            "ignore_eos": request.ignore_eos,
940
941
942
943
944
945
946
        }
        if request.response_format and request.response_format.type == "json_schema":
            sampling_params["json_schema"] = convert_json_schema_to_str(
                request.response_format.json_schema.schema_
            )
        sampling_params_list.append(sampling_params)

947
        image_data_list.append(image_data)
948
        modalities_list.extend(modalities)
949
    if len(all_requests) == 1:
950
        input_ids = input_ids[0]
yichuan~'s avatar
yichuan~ committed
951
952
953
954
        if isinstance(input_ids, str):
            prompt_kwargs = {"text": input_ids}
        else:
            prompt_kwargs = {"input_ids": input_ids}
955
        sampling_params_list = sampling_params_list[0]
956
        image_data_list = image_data_list[0]
957
        return_logprobs = return_logprobs[0]
958
        logprob_start_lens = logprob_start_lens[0]
959
        top_logprobs_nums = top_logprobs_nums[0]
960
        modalities_list = modalities_list[:1]
yichuan~'s avatar
yichuan~ committed
961
962
963
964
965
    else:
        if isinstance(input_ids[0], str):
            prompt_kwargs = {"text": input_ids}
        else:
            prompt_kwargs = {"input_ids": input_ids}
966

967
    adapted_request = GenerateReqInput(
yichuan~'s avatar
yichuan~ committed
968
        **prompt_kwargs,
969
        image_data=image_data_list,
970
        sampling_params=sampling_params_list,
971
        return_logprob=return_logprobs,
972
        logprob_start_len=logprob_start_lens,
973
974
975
        top_logprobs_num=top_logprobs_nums,
        stream=all_requests[0].stream,
        return_text_in_logprobs=True,
976
        rid=request_ids,
977
        modalities=modalities_list,
978
    )
979
980
981
    if len(all_requests) == 1:
        return adapted_request, all_requests[0]
    return adapted_request, all_requests
982

983

984
def v1_chat_generate_response(request, ret, to_file=False, cache_report=False):
985
986
987
    choices = []

    for idx, ret_item in enumerate(ret):
988
        logprobs = False
yichuan~'s avatar
yichuan~ committed
989
        if isinstance(request, list) and request[idx].logprobs:
990
            logprobs = True
yichuan~'s avatar
yichuan~ committed
991
        elif (not isinstance(request, list)) and request.logprobs:
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
            logprobs = True
        if logprobs:
            logprobs = to_openai_style_logprobs(
                output_token_logprobs=ret_item["meta_info"]["output_token_logprobs"],
                output_top_logprobs=ret_item["meta_info"]["output_top_logprobs"],
            )
            token_logprobs = []
            for token, logprob in zip(logprobs.tokens, logprobs.token_logprobs):
                token_bytes = list(token.encode("utf-8"))
                top_logprobs = []
                if logprobs.top_logprobs:
                    for top_token, top_logprob in logprobs.top_logprobs[0].items():
                        top_token_bytes = list(top_token.encode("utf-8"))
                        top_logprobs.append(
                            TopLogprob(
                                token=top_token,
                                bytes=top_token_bytes,
                                logprob=top_logprob,
                            )
                        )
                token_logprobs.append(
                    ChatCompletionTokenLogprob(
                        token=token,
                        bytes=token_bytes,
                        logprob=logprob,
                        top_logprobs=top_logprobs,
                    )
                )

            choice_logprobs = ChoiceLogprobs(content=token_logprobs)
        else:
            choice_logprobs = None
1024

1025
1026
        finish_reason = ret_item["meta_info"]["finish_reason"]

1027
        if to_file:
1028
            # to make the choice data json serializable
1029
1030
1031
            choice_data = {
                "index": 0,
                "message": {"role": "assistant", "content": ret_item["text"]},
1032
                "logprobs": choice_logprobs,
1033
1034
1035
1036
1037
                "finish_reason": (finish_reason["type"] if finish_reason else ""),
                "matched_stop": (
                    finish_reason["matched"]
                    if finish_reason and "matched" in finish_reason
                    else None
1038
                ),
1039
            }
1040
        else:
1041
1042
1043
            choice_data = ChatCompletionResponseChoice(
                index=idx,
                message=ChatMessage(role="assistant", content=ret_item["text"]),
1044
                logprobs=choice_logprobs,
1045
1046
1047
1048
1049
                finish_reason=(finish_reason["type"] if finish_reason else ""),
                matched_stop=(
                    finish_reason["matched"]
                    if finish_reason and "matched" in finish_reason
                    else None
1050
                ),
1051
1052
1053
            )

        choices.append(choice_data)
1054

1055
1056
1057
1058
1059
1060
1061
1062
    if to_file:
        responses = []

        for i, choice in enumerate(choices):
            response = {
                "status_code": 200,
                "request_id": ret[i]["meta_info"]["id"],
                "body": {
1063
                    # remain the same but if needed we can change that
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
                    "id": ret[i]["meta_info"]["id"],
                    "object": "chat.completion",
                    "created": int(time.time()),
                    "model": request[i].model,
                    "choices": choice,
                    "usage": {
                        "prompt_tokens": ret[i]["meta_info"]["prompt_tokens"],
                        "completion_tokens": ret[i]["meta_info"]["completion_tokens"],
                        "total_tokens": ret[i]["meta_info"]["prompt_tokens"]
                        + ret[i]["meta_info"]["completion_tokens"],
                    },
                    "system_fingerprint": None,
                },
            }
            responses.append(response)
        return responses
1080
    else:
1081
1082
1083
1084
        prompt_tokens = sum(
            ret[i]["meta_info"]["prompt_tokens"] for i in range(0, len(ret), request.n)
        )
        completion_tokens = sum(item["meta_info"]["completion_tokens"] for item in ret)
1085
        cached_tokens = sum(item["meta_info"].get("cached_tokens", 0) for item in ret)
1086
1087
1088
1089
1090
        response = ChatCompletionResponse(
            id=ret[0]["meta_info"]["id"],
            model=request.model,
            choices=choices,
            usage=UsageInfo(
1091
1092
1093
                prompt_tokens=prompt_tokens,
                completion_tokens=completion_tokens,
                total_tokens=prompt_tokens + completion_tokens,
1094
1095
1096
                prompt_tokens_details=(
                    {"cached_tokens": cached_tokens} if cache_report else None
                ),
1097
1098
1099
            ),
        )
        return response
1100

1101
1102
1103
1104
1105

async def v1_chat_completions(tokenizer_manager, raw_request: Request):
    request_json = await raw_request.json()
    all_requests = [ChatCompletionRequest(**request_json)]
    adapted_request, request = v1_chat_generate_request(all_requests, tokenizer_manager)
1106
1107
1108
1109

    if adapted_request.stream:

        async def generate_stream_resp():
1110
1111
1112
1113
1114
            is_firsts = {}
            stream_buffers = {}
            n_prev_tokens = {}
            prompt_tokens = {}
            completion_tokens = {}
1115
            try:
1116
1117
1118
                async for content in tokenizer_manager.generate_request(
                    adapted_request, raw_request
                ):
1119
1120
1121
1122
1123
1124
1125
1126
                    index = content["index"]

                    is_first = is_firsts.get(index, True)
                    stream_buffer = stream_buffers.get(index, "")
                    n_prev_token = n_prev_tokens.get(index, 0)

                    prompt_tokens[index] = content["meta_info"]["prompt_tokens"]
                    completion_tokens[index] = content["meta_info"]["completion_tokens"]
yichuan~'s avatar
yichuan~ committed
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
                    if request.logprobs:
                        logprobs = to_openai_style_logprobs(
                            output_token_logprobs=content["meta_info"][
                                "output_token_logprobs"
                            ][n_prev_token:],
                            output_top_logprobs=content["meta_info"][
                                "output_top_logprobs"
                            ][n_prev_token:],
                        )

                        n_prev_token = len(
                            content["meta_info"]["output_token_logprobs"]
                        )
                        token_logprobs = []
                        for token, logprob in zip(
                            logprobs.tokens, logprobs.token_logprobs
                        ):
                            token_bytes = list(token.encode("utf-8"))
                            top_logprobs = []
                            if logprobs.top_logprobs:
                                for top_token, top_logprob in logprobs.top_logprobs[
                                    0
                                ].items():
                                    top_token_bytes = list(top_token.encode("utf-8"))
                                    top_logprobs.append(
                                        TopLogprob(
                                            token=top_token,
                                            bytes=top_token_bytes,
                                            logprob=top_logprob,
                                        )
                                    )
                            token_logprobs.append(
                                ChatCompletionTokenLogprob(
                                    token=token,
                                    bytes=token_bytes,
                                    logprob=logprob,
                                    top_logprobs=top_logprobs,
                                )
                            )

                        choice_logprobs = ChoiceLogprobs(content=token_logprobs)

                    else:
                        choice_logprobs = None

1172
1173
                    finish_reason = content["meta_info"]["finish_reason"]

1174
1175
1176
1177
                    if is_first:
                        # First chunk with role
                        is_first = False
                        choice_data = ChatCompletionResponseStreamChoice(
1178
                            index=index,
1179
                            delta=DeltaMessage(role="assistant"),
1180
                            finish_reason=(
1181
1182
1183
1184
1185
1186
                                finish_reason["type"] if finish_reason else ""
                            ),
                            matched_stop=(
                                finish_reason["matched"]
                                if finish_reason and "matched" in finish_reason
                                else None
1187
                            ),
yichuan~'s avatar
yichuan~ committed
1188
                            logprobs=choice_logprobs,
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
                        )
                        chunk = ChatCompletionStreamResponse(
                            id=content["meta_info"]["id"],
                            choices=[choice_data],
                            model=request.model,
                        )
                        yield f"data: {chunk.model_dump_json()}\n\n"

                    text = content["text"]
                    delta = text[len(stream_buffer) :]
Liangsheng Yin's avatar
Liangsheng Yin committed
1199
                    stream_buffer = stream_buffer + delta
1200
                    choice_data = ChatCompletionResponseStreamChoice(
1201
                        index=index,
1202
                        delta=DeltaMessage(content=delta),
1203
1204
1205
1206
1207
                        finish_reason=(finish_reason["type"] if finish_reason else ""),
                        matched_stop=(
                            finish_reason["matched"]
                            if finish_reason and "matched" in finish_reason
                            else None
1208
                        ),
yichuan~'s avatar
yichuan~ committed
1209
                        logprobs=choice_logprobs,
1210
1211
1212
1213
1214
1215
                    )
                    chunk = ChatCompletionStreamResponse(
                        id=content["meta_info"]["id"],
                        choices=[choice_data],
                        model=request.model,
                    )
1216
1217
1218
1219
1220

                    is_firsts[index] = is_first
                    stream_buffers[index] = stream_buffer
                    n_prev_tokens[index] = n_prev_token

1221
                    yield f"data: {chunk.model_dump_json()}\n\n"
1222
                if request.stream_options and request.stream_options.include_usage:
1223
1224
1225
1226
1227
1228
1229
1230
                    total_prompt_tokens = sum(
                        tokens
                        for i, tokens in prompt_tokens.items()
                        if i % request.n == 0
                    )
                    total_completion_tokens = sum(
                        tokens for tokens in completion_tokens.values()
                    )
1231
                    usage = UsageInfo(
1232
1233
1234
                        prompt_tokens=total_prompt_tokens,
                        completion_tokens=total_completion_tokens,
                        total_tokens=total_prompt_tokens + total_completion_tokens,
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
                    )

                    final_usage_chunk = ChatCompletionStreamResponse(
                        id=str(uuid.uuid4().hex),
                        choices=[],
                        model=request.model,
                        usage=usage,
                    )
                    final_usage_data = final_usage_chunk.model_dump_json(
                        exclude_unset=True, exclude_none=True
                    )
                    yield f"data: {final_usage_data}\n\n"
1247
1248
1249
            except ValueError as e:
                error = create_streaming_error_response(str(e))
                yield f"data: {error}\n\n"
1250
1251
            yield "data: [DONE]\n\n"

1252
1253
1254
1255
1256
        return StreamingResponse(
            generate_stream_resp(),
            media_type="text/event-stream",
            background=tokenizer_manager.create_abort_task(adapted_request),
        )
1257
1258

    # Non-streaming response.
1259
1260
    try:
        ret = await tokenizer_manager.generate_request(
1261
1262
            adapted_request, raw_request
        ).__anext__()
1263
1264
    except ValueError as e:
        return create_error_response(str(e))
1265
1266
1267
    if not isinstance(ret, list):
        ret = [ret]

1268
1269
1270
    response = v1_chat_generate_response(
        request, ret, cache_report=tokenizer_manager.server_args.enable_cache_report
    )
1271

1272
1273
1274
    return response


1275
1276
1277
def v1_embedding_request(all_requests, tokenizer_manager):
    prompts = []
    sampling_params_list = []
Ying Sheng's avatar
Ying Sheng committed
1278
    first_prompt_type = type(all_requests[0].input)
1279
1280

    for request in all_requests:
Ying Sheng's avatar
Ying Sheng committed
1281
        prompt = request.input
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
        assert (
            type(prompt) == first_prompt_type
        ), "All prompts must be of the same type in file input settings"
        prompts.append(prompt)

    if len(all_requests) == 1:
        prompt = prompts[0]
        if isinstance(prompt, str) or isinstance(prompt[0], str):
            prompt_kwargs = {"text": prompt}
        else:
            prompt_kwargs = {"input_ids": prompt}
    else:
        if isinstance(prompts[0], str) or isinstance(propmt[0][0], str):
            prompt_kwargs = {"text": prompts}
        else:
            prompt_kwargs = {"input_ids": prompts}

    adapted_request = EmbeddingReqInput(
        **prompt_kwargs,
    )

    if len(all_requests) == 1:
        return adapted_request, all_requests[0]
    return adapted_request, all_requests


Ying Sheng's avatar
Ying Sheng committed
1308
1309
1310
def v1_embedding_response(ret, model_path, to_file=False):
    embedding_objects = []
    prompt_tokens = 0
1311
    for idx, ret_item in enumerate(ret):
Ying Sheng's avatar
Ying Sheng committed
1312
1313
1314
        embedding_objects.append(
            EmbeddingObject(
                embedding=ret[idx]["embedding"],
1315
1316
1317
                index=idx,
            )
        )
Ying Sheng's avatar
Ying Sheng committed
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
        prompt_tokens += ret[idx]["meta_info"]["prompt_tokens"]

    return EmbeddingResponse(
        data=embedding_objects,
        model=model_path,
        usage=UsageInfo(
            prompt_tokens=prompt_tokens,
            total_tokens=prompt_tokens,
        ),
    )
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344


async def v1_embeddings(tokenizer_manager, raw_request: Request):
    request_json = await raw_request.json()
    all_requests = [EmbeddingRequest(**request_json)]
    adapted_request, request = v1_embedding_request(all_requests, tokenizer_manager)

    try:
        ret = await tokenizer_manager.generate_request(
            adapted_request, raw_request
        ).__anext__()
    except ValueError as e:
        return create_error_response(str(e))

    if not isinstance(ret, list):
        ret = [ret]

Ying Sheng's avatar
Ying Sheng committed
1345
    response = v1_embedding_response(ret, tokenizer_manager.model_path)
1346
1347
1348
1349

    return response


1350
def to_openai_style_logprobs(
1351
1352
1353
1354
    input_token_logprobs=None,
    output_token_logprobs=None,
    input_top_logprobs=None,
    output_top_logprobs=None,
1355
1356
1357
1358
1359
1360
1361
1362
):
    ret_logprobs = LogProbs()

    def append_token_logprobs(token_logprobs):
        for logprob, _, token_text in token_logprobs:
            ret_logprobs.tokens.append(token_text)
            ret_logprobs.token_logprobs.append(logprob)

1363
            # Not supported yet
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
            ret_logprobs.text_offset.append(-1)

    def append_top_logprobs(top_logprobs):
        for tokens in top_logprobs:
            if tokens is not None:
                ret_logprobs.top_logprobs.append(
                    {token[2]: token[0] for token in tokens}
                )
            else:
                ret_logprobs.top_logprobs.append(None)

1375
1376
1377
1378
1379
1380
1381
1382
    if input_token_logprobs is not None:
        append_token_logprobs(input_token_logprobs)
    if output_token_logprobs is not None:
        append_token_logprobs(output_token_logprobs)
    if input_top_logprobs is not None:
        append_top_logprobs(input_top_logprobs)
    if output_top_logprobs is not None:
        append_top_logprobs(output_top_logprobs)
1383

Liangsheng Yin's avatar
Liangsheng Yin committed
1384
    return ret_logprobs