adapter.py 60.8 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
# Copyright 2023-2024 SGLang Team
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
14
"""Conversion between OpenAI APIs and native SRT APIs"""
Liangsheng Yin's avatar
Liangsheng Yin committed
15

16
import asyncio
17
import json
18
import logging
19
import os
20
21
import time
import uuid
22
from http import HTTPStatus
23
from typing import Dict, List
24

25
from fastapi import HTTPException, Request, UploadFile
26
from fastapi.responses import ORJSONResponse, StreamingResponse
27
from pydantic import ValidationError
28

29
30
from sglang.lang.chat_template import get_chat_template_by_model_path

31
32
33
34
35
36
37
try:
    from outlines.fsm.json_schema import convert_json_schema_to_str
except ImportError:
    # Before outlines 0.0.47, convert_json_schema_to_str is under
    # outlines.integrations.utils
    from outlines.integrations.utils import convert_json_schema_to_str

38
39
40
41
42
43
44
from sglang.srt.conversation import (
    Conversation,
    SeparatorStyle,
    chat_template_exists,
    generate_chat_conv,
    register_conv_template,
)
YAMY's avatar
YAMY committed
45
from sglang.srt.function_call_parser import TOOLS_TAG_LIST, FunctionCallParser
Ying Sheng's avatar
Ying Sheng committed
46
from sglang.srt.managers.io_struct import EmbeddingReqInput, GenerateReqInput
Mingyi's avatar
Mingyi committed
47
from sglang.srt.openai_api.protocol import (
48
49
    BatchRequest,
    BatchResponse,
50
51
52
53
54
    ChatCompletionRequest,
    ChatCompletionResponse,
    ChatCompletionResponseChoice,
    ChatCompletionResponseStreamChoice,
    ChatCompletionStreamResponse,
55
    ChatCompletionTokenLogprob,
56
    ChatMessage,
57
    ChoiceLogprobs,
58
59
60
61
62
63
    CompletionRequest,
    CompletionResponse,
    CompletionResponseChoice,
    CompletionResponseStreamChoice,
    CompletionStreamResponse,
    DeltaMessage,
Ying Sheng's avatar
Ying Sheng committed
64
    EmbeddingObject,
65
66
    EmbeddingRequest,
    EmbeddingResponse,
67
    ErrorResponse,
68
    FileDeleteResponse,
69
70
    FileRequest,
    FileResponse,
Tanjiro's avatar
Tanjiro committed
71
    FunctionResponse,
72
    LogProbs,
Tanjiro's avatar
Tanjiro committed
73
    ToolCall,
74
    TopLogprob,
75
76
    UsageInfo,
)
77
from sglang.utils import get_exception_traceback
78

79
80
logger = logging.getLogger(__name__)

81
82
chat_template_name = None

Liangsheng Yin's avatar
Liangsheng Yin committed
83

84
85
86
87
88
89
90
91
92
93
class FileMetadata:
    def __init__(self, filename: str, purpose: str):
        self.filename = filename
        self.purpose = purpose


# In-memory storage for batch jobs and files
batch_storage: Dict[str, BatchResponse] = {}
file_id_request: Dict[str, FileMetadata] = {}
file_id_response: Dict[str, FileResponse] = {}
94
# map file id to file path in SGLang backend
95
96
97
98
99
100
file_id_storage: Dict[str, str] = {}

# backend storage directory
storage_dir = None


101
102
103
def create_error_response(
    message: str,
    err_type: str = "BadRequestError",
104
105
106
    status_code: HTTPStatus = HTTPStatus.BAD_REQUEST,
):
    error = ErrorResponse(message=message, type=err_type, code=status_code.value)
107
    return ORJSONResponse(content=error.model_dump(), status_code=error.code)
108
109
110
111
112


def create_streaming_error_response(
    message: str,
    err_type: str = "BadRequestError",
113
114
115
    status_code: HTTPStatus = HTTPStatus.BAD_REQUEST,
) -> str:
    error = ErrorResponse(message=message, type=err_type, code=status_code.value)
116
117
118
119
    json_str = json.dumps({"error": error.model_dump()})
    return json_str


120
def load_chat_template_for_openai_api(orchestrator, chat_template_arg, model_path):
121
122
    global chat_template_name

123
124
125
    logger.info(
        f"Use chat template for the OpenAI-compatible API server: {chat_template_arg}"
    )
126

127
128
129
130
131
132
    if not chat_template_exists(chat_template_arg):
        if not os.path.exists(chat_template_arg):
            raise RuntimeError(
                f"Chat template {chat_template_arg} is not a built-in template name "
                "or a valid chat template file path."
            )
133
134
135
        if chat_template_arg.endswith(".jinja"):
            with open(chat_template_arg, "r") as f:
                chat_template = "".join(f.readlines()).strip("\n")
136
            orchestrator.tokenizer.chat_template = chat_template.replace("\\n", "\n")
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
            chat_template_name = None
        else:
            assert chat_template_arg.endswith(
                ".json"
            ), "unrecognized format of chat template file"
            with open(chat_template_arg, "r") as filep:
                template = json.load(filep)
                try:
                    sep_style = SeparatorStyle[template["sep_style"]]
                except KeyError:
                    raise ValueError(
                        f"Unknown separator style: {template['sep_style']}"
                    ) from None
                register_conv_template(
                    Conversation(
                        name=template["name"],
                        system_template=template["system"] + "\n{system_message}",
                        system_message=template.get("system_message", ""),
                        roles=(template["user"], template["assistant"]),
                        sep_style=sep_style,
                        sep=template.get("sep", "\n"),
                        stop_str=template["stop_str"],
                    ),
                    override=True,
                )
            chat_template_name = template["name"]
163
164
165
    else:
        chat_template_name = chat_template_arg

166
167
168
169
170
171
172
173
174
175
176
177
    # check chat-template
    chat_template = get_chat_template_by_model_path(model_path)
    if chat_template is not None:
        official_chat_template = chat_template.name
        used_chat_template = chat_template_name
        if official_chat_template != used_chat_template:
            logger.warning(
                f"Using a chat_template: '{used_chat_template}', "
                f"which is different from official chat template: '{official_chat_template}', "
                f"This discrepancy may lead to performance degradation."
            )

178

179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
async def v1_files_create(file: UploadFile, purpose: str, file_storage_pth: str = None):
    try:
        global storage_dir
        if file_storage_pth:
            storage_dir = file_storage_pth
        # Read the file content
        file_content = await file.read()

        # Create an instance of RequestBody
        request_body = FileRequest(file=file_content, purpose=purpose)

        # Save the file to the sglang_oai_storage directory
        os.makedirs(storage_dir, exist_ok=True)
        file_id = f"backend_input_file-{uuid.uuid4()}"
        filename = f"{file_id}.jsonl"
        file_path = os.path.join(storage_dir, filename)

        with open(file_path, "wb") as f:
            f.write(request_body.file)

        # add info to global file map
        file_id_request[file_id] = FileMetadata(filename=file.filename, purpose=purpose)
        file_id_storage[file_id] = file_path

        # Return the response in the required format
        response = FileResponse(
            id=file_id,
            bytes=len(request_body.file),
            created_at=int(time.time()),
            filename=file.filename,
            purpose=request_body.purpose,
        )
        file_id_response[file_id] = response

        return response
    except ValidationError as e:
        return {"error": "Invalid input", "details": e.errors()}


218
219
220
221
222
223
224
225
226
227
228
229
230
231
async def v1_delete_file(file_id: str):
    # Retrieve the file job from the in-memory storage
    file_response = file_id_response.get(file_id)
    if file_response is None:
        raise HTTPException(status_code=404, detail="File not found")
    file_path = file_id_storage.get(file_id)
    if file_path is None:
        raise HTTPException(status_code=404, detail="File not found")
    os.remove(file_path)
    del file_id_response[file_id]
    del file_id_storage[file_id]
    return FileDeleteResponse(id=file_id, deleted=True)


232
async def v1_batches(orchestrator, raw_request: Request):
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
    try:
        body = await raw_request.json()

        batch_request = BatchRequest(**body)

        batch_id = f"batch_{uuid.uuid4()}"

        # Create an instance of BatchResponse
        batch_response = BatchResponse(
            id=batch_id,
            endpoint=batch_request.endpoint,
            input_file_id=batch_request.input_file_id,
            completion_window=batch_request.completion_window,
            created_at=int(time.time()),
            metadata=batch_request.metadata,
        )

        batch_storage[batch_id] = batch_response

        # Start processing the batch asynchronously
253
        asyncio.create_task(process_batch(orchestrator, batch_id, batch_request))
254
255
256
257
258
259
260
261
262
263

        # Return the initial batch_response
        return batch_response

    except ValidationError as e:
        return {"error": "Invalid input", "details": e.errors()}
    except Exception as e:
        return {"error": str(e)}


264
async def process_batch(orchestrator, batch_id: str, batch_request: BatchRequest):
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
    try:
        # Update the batch status to "in_progress"
        batch_storage[batch_id].status = "in_progress"
        batch_storage[batch_id].in_progress_at = int(time.time())

        # Retrieve the input file content
        input_file_request = file_id_request.get(batch_request.input_file_id)
        if not input_file_request:
            raise ValueError("Input file not found")

        # Parse the JSONL file and process each request
        input_file_path = file_id_storage.get(batch_request.input_file_id)
        with open(input_file_path, "r", encoding="utf-8") as f:
            lines = f.readlines()

        total_requests = len(lines)
        completed_requests = 0
        failed_requests = 0

        all_ret = []
        end_point = batch_storage[batch_id].endpoint
        file_request_list = []
        all_requests = []
288
        request_ids = []
289
290
291
292
        for line in lines:
            request_data = json.loads(line)
            file_request_list.append(request_data)
            body = request_data["body"]
293
            request_ids.append(request_data["custom_id"])
294
295
296
297
298
299

            # Although streaming is supported for standalone completions, it is not supported in
            # batch mode (multiple completions in single request).
            if body.get("stream", False):
                raise ValueError("Streaming requests are not supported in batch mode")

300
301
302
303
            if end_point == "/v1/chat/completions":
                all_requests.append(ChatCompletionRequest(**body))
            elif end_point == "/v1/completions":
                all_requests.append(CompletionRequest(**body))
304

305
306
        if end_point == "/v1/chat/completions":
            adapted_request, request = v1_chat_generate_request(
307
                all_requests, orchestrator, request_ids=request_ids
308
309
            )
        elif end_point == "/v1/completions":
310
311
312
313
            adapted_request, request = v1_generate_request(
                all_requests, request_ids=request_ids
            )

314
        try:
315
            ret = await orchestrator.generate_request(adapted_request).__anext__()
316
317
318
            if not isinstance(ret, list):
                ret = [ret]
            if end_point == "/v1/chat/completions":
319
320
321
322
                responses = v1_chat_generate_response(
                    request,
                    ret,
                    to_file=True,
323
324
                    cache_report=orchestrator.server_args.enable_cache_report,
                    tool_call_parser=orchestrator.server_args.tool_call_parser,
325
                )
326
            else:
yichuan~'s avatar
yichuan~ committed
327
                responses = v1_generate_response(
328
                    request, ret, orchestrator, to_file=True
yichuan~'s avatar
yichuan~ committed
329
                )
330
331

        except Exception as e:
332
333
            logger.error(f"error: {get_exception_traceback()}")
            responses = []
334
335
336
337
338
339
340
341
342
343
            error_json = {
                "id": f"batch_req_{uuid.uuid4()}",
                "custom_id": request_data.get("custom_id"),
                "response": None,
                "error": {"message": str(e)},
            }
            all_ret.append(error_json)
            failed_requests += len(file_request_list)

        for idx, response in enumerate(responses):
344
            # the batch_req here can be changed to be named within a batch granularity
345
346
347
348
349
350
351
352
            response_json = {
                "id": f"batch_req_{uuid.uuid4()}",
                "custom_id": file_request_list[idx].get("custom_id"),
                "response": response,
                "error": None,
            }
            all_ret.append(response_json)
            completed_requests += 1
353

354
355
356
357
358
359
360
361
362
363
364
365
        # Write results to a new file
        output_file_id = f"backend_result_file-{uuid.uuid4()}"
        global storage_dir
        output_file_path = os.path.join(storage_dir, f"{output_file_id}.jsonl")
        with open(output_file_path, "w", encoding="utf-8") as f:
            for ret in all_ret:
                f.write(json.dumps(ret) + "\n")

        # Update batch response with output file information
        retrieve_batch = batch_storage[batch_id]
        retrieve_batch.output_file_id = output_file_id
        file_id_storage[output_file_id] = output_file_path
366
367
368
369
370
371
372
        file_id_response[output_file_id] = FileResponse(
            id=output_file_id,
            bytes=os.path.getsize(output_file_path),
            created_at=int(time.time()),
            filename=f"{output_file_id}.jsonl",
            purpose="batch_result",
        )
373
374
375
376
377
378
379
380
381
382
        # Update batch status to "completed"
        retrieve_batch.status = "completed"
        retrieve_batch.completed_at = int(time.time())
        retrieve_batch.request_counts = {
            "total": total_requests,
            "completed": completed_requests,
            "failed": failed_requests,
        }

    except Exception as e:
383
        logger.error(f"error: {e}")
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
        # Update batch status to "failed"
        retrieve_batch = batch_storage[batch_id]
        retrieve_batch.status = "failed"
        retrieve_batch.failed_at = int(time.time())
        retrieve_batch.errors = {"message": str(e)}


async def v1_retrieve_batch(batch_id: str):
    # Retrieve the batch job from the in-memory storage
    batch_response = batch_storage.get(batch_id)
    if batch_response is None:
        raise HTTPException(status_code=404, detail="Batch not found")

    return batch_response


400
async def v1_cancel_batch(orchestrator, batch_id: str):
401
402
403
404
405
406
407
408
409
410
    # Retrieve the batch job from the in-memory storage
    batch_response = batch_storage.get(batch_id)
    if batch_response is None:
        raise HTTPException(status_code=404, detail="Batch not found")

    # Only do cancal when status is "validating" or "in_progress"
    if batch_response.status in ["validating", "in_progress"]:
        # Start cancelling the batch asynchronously
        asyncio.create_task(
            cancel_batch(
411
                orchestrator=orchestrator,
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
                batch_id=batch_id,
                input_file_id=batch_response.input_file_id,
            )
        )

        # Update batch status to "cancelling"
        batch_response.status = "cancelling"

        return batch_response
    else:
        raise HTTPException(
            status_code=500,
            detail=f"Current status is {batch_response.status}, no need to cancel",
        )


428
async def cancel_batch(orchestrator, batch_id: str, input_file_id: str):
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
    try:
        # Update the batch status to "cancelling"
        batch_storage[batch_id].status = "cancelling"

        # Retrieve the input file content
        input_file_request = file_id_request.get(input_file_id)
        if not input_file_request:
            raise ValueError("Input file not found")

        # Parse the JSONL file and process each request
        input_file_path = file_id_storage.get(input_file_id)
        with open(input_file_path, "r", encoding="utf-8") as f:
            lines = f.readlines()

        file_request_list = []
        request_ids = []
        for line in lines:
            request_data = json.loads(line)
            file_request_list.append(request_data)
            request_ids.append(request_data["custom_id"])

        # Cancel requests by request_ids
        for rid in request_ids:
452
            orchestrator.abort_request(rid=rid)
453
454
455
456
457
458
459
460
461
462
463
464
465

        retrieve_batch = batch_storage[batch_id]
        retrieve_batch.status = "cancelled"

    except Exception as e:
        logger.error("error in SGLang:", e)
        # Update batch status to "failed"
        retrieve_batch = batch_storage[batch_id]
        retrieve_batch.status = "failed"
        retrieve_batch.failed_at = int(time.time())
        retrieve_batch.errors = {"message": str(e)}


466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
async def v1_retrieve_file(file_id: str):
    # Retrieve the batch job from the in-memory storage
    file_response = file_id_response.get(file_id)
    if file_response is None:
        raise HTTPException(status_code=404, detail="File not found")
    return file_response


async def v1_retrieve_file_content(file_id: str):
    file_pth = file_id_storage.get(file_id)
    if not file_pth or not os.path.exists(file_pth):
        raise HTTPException(status_code=404, detail="File not found")

    def iter_file():
        with open(file_pth, mode="rb") as file_like:
            yield from file_like

    return StreamingResponse(iter_file(), media_type="application/octet-stream")


486
487
488
def v1_generate_request(
    all_requests: List[CompletionRequest], request_ids: List[str] = None
):
489
490
491
492
493
494
495
496
497
498
499
    if len(all_requests) > 1:
        first_prompt_type = type(all_requests[0].prompt)
        for request in all_requests:
            assert (
                type(request.prompt) is first_prompt_type
            ), "All prompts must be of the same type in file input settings"
            if request.n > 1:
                raise ValueError(
                    "Parallel sampling is not supported for completions from files"
                )

500
501
    prompts = []
    sampling_params_list = []
502
    return_logprobs = []
503
    logprob_start_lens = []
504
    top_logprobs_nums = []
505
    lora_paths = []
yichuan~'s avatar
yichuan~ committed
506

507
    for request in all_requests:
508
        # NOTE: with openai API, the prompt's logprobs are always not computed
509
        if request.echo and request.logprobs:
510
            logger.warning(
511
                "Echo is not compatible with logprobs. "
512
                "To compute logprobs of input prompt, please use the native /generate API."
513
514
515
            )

        prompts.append(request.prompt)
516
        lora_paths.append(request.lora_path)
517
518
519
520
        if request.echo and request.logprobs:
            current_logprob_start_len = 0
        else:
            current_logprob_start_len = -1
521
522
523
524
525
526
527
528
        sampling_params_list.append(
            {
                "temperature": request.temperature,
                "max_new_tokens": request.max_tokens,
                "min_new_tokens": request.min_tokens,
                "stop": request.stop,
                "stop_token_ids": request.stop_token_ids,
                "top_p": request.top_p,
529
530
                "top_k": request.top_k,
                "min_p": request.min_p,
531
532
533
534
535
                "presence_penalty": request.presence_penalty,
                "frequency_penalty": request.frequency_penalty,
                "repetition_penalty": request.repetition_penalty,
                "regex": request.regex,
                "json_schema": request.json_schema,
536
                "ebnf": request.ebnf,
537
538
                "n": request.n,
                "no_stop_trim": request.no_stop_trim,
539
540
                "ignore_eos": request.ignore_eos,
                "skip_special_tokens": request.skip_special_tokens,
541
542
            }
        )
543
        return_logprobs.append(request.logprobs is not None)
544
        logprob_start_lens.append(current_logprob_start_len)
545
546
547
        top_logprobs_nums.append(
            request.logprobs if request.logprobs is not None else 0
        )
548
549

    if len(all_requests) == 1:
550
551
552
553
        if isinstance(prompts[0], str) or isinstance(prompts[0][0], str):
            prompt_kwargs = {"text": prompts[0]}
        else:
            prompt_kwargs = {"input_ids": prompts[0]}
554
        sampling_params_list = sampling_params_list[0]
555
        return_logprobs = return_logprobs[0]
556
        logprob_start_lens = logprob_start_lens[0]
557
        top_logprobs_nums = top_logprobs_nums[0]
558
        lora_paths = lora_paths[0]
559
    else:
560
        if isinstance(prompts[0], str) or isinstance(prompts[0][0], str):
561
562
563
            prompt_kwargs = {"text": prompts}
        else:
            prompt_kwargs = {"input_ids": prompts}
yichuan~'s avatar
yichuan~ committed
564

565
    adapted_request = GenerateReqInput(
566
        **prompt_kwargs,
567
        sampling_params=sampling_params_list,
568
569
        return_logprob=return_logprobs,
        top_logprobs_num=top_logprobs_nums,
570
        logprob_start_len=logprob_start_lens,
571
        return_text_in_logprobs=True,
572
        stream=all_requests[0].stream,
573
        rid=request_ids,
574
        lora_path=lora_paths,
575
    )
yichuan~'s avatar
yichuan~ committed
576

577
    return adapted_request, all_requests if len(all_requests) > 1 else all_requests[0]
578
579


580
def v1_generate_response(request, ret, orchestrator, to_file=False):
581
582
583
    choices = []
    echo = False

yichuan~'s avatar
yichuan~ committed
584
    if (not isinstance(request, list)) and request.echo:
585
        # TODO: handle the case propmt is token ids
yichuan~'s avatar
yichuan~ committed
586
587
        if isinstance(request.prompt, list) and isinstance(request.prompt[0], str):
            # for the case of multiple str prompts
588
            prompts = request.prompt
yichuan~'s avatar
yichuan~ committed
589
590
591
        elif isinstance(request.prompt, list) and isinstance(request.prompt[0], list):
            # for the case of multiple token ids prompts
            prompts = [
592
                orchestrator.tokenizer.decode(prompt, skip_special_tokens=True)
yichuan~'s avatar
yichuan~ committed
593
594
595
596
597
                for prompt in request.prompt
            ]
        elif isinstance(request.prompt, list) and isinstance(request.prompt[0], int):
            # for the case of single token ids prompt
            prompts = [
598
                orchestrator.tokenizer.decode(request.prompt, skip_special_tokens=True)
yichuan~'s avatar
yichuan~ committed
599
            ]
600
        else:
yichuan~'s avatar
yichuan~ committed
601
            # for the case of single str prompt
602
603
604
605
606
            prompts = [request.prompt]
        echo = True

    for idx, ret_item in enumerate(ret):
        text = ret_item["text"]
yichuan~'s avatar
yichuan~ committed
607
        if isinstance(request, list) and request[idx].echo:
608
609
            echo = True
            text = request[idx].prompt + text
610
        if echo and not isinstance(request, list):
yichuan~'s avatar
yichuan~ committed
611
612
            prompt_index = idx // request.n
            text = prompts[prompt_index] + text
613
614

        logprobs = False
615
        if isinstance(request, list) and request[idx].logprobs is not None:
616
            logprobs = True
617
        elif (not isinstance(request, list)) and request.logprobs is not None:
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
            logprobs = True
        if logprobs:
            if echo:
                input_token_logprobs = ret_item["meta_info"]["input_token_logprobs"]
                input_top_logprobs = ret_item["meta_info"]["input_top_logprobs"]
            else:
                input_token_logprobs = None
                input_top_logprobs = None

            logprobs = to_openai_style_logprobs(
                input_token_logprobs=input_token_logprobs,
                input_top_logprobs=input_top_logprobs,
                output_token_logprobs=ret_item["meta_info"]["output_token_logprobs"],
                output_top_logprobs=ret_item["meta_info"]["output_top_logprobs"],
            )
        else:
            logprobs = None

636
637
        finish_reason = ret_item["meta_info"]["finish_reason"]

638
        if to_file:
639
            # to make the choise data json serializable
640
641
642
643
            choice_data = {
                "index": 0,
                "text": text,
                "logprobs": logprobs,
644
645
646
647
648
                "finish_reason": (finish_reason["type"] if finish_reason else ""),
                "matched_stop": (
                    finish_reason["matched"]
                    if finish_reason and "matched" in finish_reason
                    else None
649
                ),
650
651
652
653
654
655
            }
        else:
            choice_data = CompletionResponseChoice(
                index=idx,
                text=text,
                logprobs=logprobs,
656
657
658
659
660
                finish_reason=(finish_reason["type"] if finish_reason else ""),
                matched_stop=(
                    finish_reason["matched"]
                    if finish_reason and "matched" in finish_reason
                    else None
661
                ),
662
663
664
665
666
667
668
669
670
671
672
            )

        choices.append(choice_data)

    if to_file:
        responses = []
        for i, choice in enumerate(choices):
            response = {
                "status_code": 200,
                "request_id": ret[i]["meta_info"]["id"],
                "body": {
673
                    # remain the same but if needed we can change that
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
                    "id": ret[i]["meta_info"]["id"],
                    "object": "text_completion",
                    "created": int(time.time()),
                    "model": request[i].model,
                    "choices": choice,
                    "usage": {
                        "prompt_tokens": ret[i]["meta_info"]["prompt_tokens"],
                        "completion_tokens": ret[i]["meta_info"]["completion_tokens"],
                        "total_tokens": ret[i]["meta_info"]["prompt_tokens"]
                        + ret[i]["meta_info"]["completion_tokens"],
                    },
                    "system_fingerprint": None,
                },
            }
            responses.append(response)
        return responses
    else:
691
692
693
        prompt_tokens = sum(
            ret[i]["meta_info"]["prompt_tokens"] for i in range(0, len(ret), request.n)
        )
694
695
696
697
698
699
        completion_tokens = sum(item["meta_info"]["completion_tokens"] for item in ret)
        response = CompletionResponse(
            id=ret[0]["meta_info"]["id"],
            model=request.model,
            choices=choices,
            usage=UsageInfo(
yichuan~'s avatar
yichuan~ committed
700
                prompt_tokens=prompt_tokens,
701
                completion_tokens=completion_tokens,
yichuan~'s avatar
yichuan~ committed
702
                total_tokens=prompt_tokens + completion_tokens,
703
704
705
706
707
            ),
        )
    return response


708
async def v1_completions(orchestrator, raw_request: Request):
709
710
711
    request_json = await raw_request.json()
    all_requests = [CompletionRequest(**request_json)]
    adapted_request, request = v1_generate_request(all_requests)
712
713
714
715

    if adapted_request.stream:

        async def generate_stream_resp():
716
717
718
719
            stream_buffers = {}
            n_prev_tokens = {}
            prompt_tokens = {}
            completion_tokens = {}
720
            try:
721
                async for content in orchestrator.generate_request(
722
723
                    adapted_request, raw_request
                ):
724
                    index = content.get("index", 0)
725
726
727
728

                    stream_buffer = stream_buffers.get(index, "")
                    n_prev_token = n_prev_tokens.get(index, 0)

729
                    text = content["text"]
730
731
                    prompt_tokens[index] = content["meta_info"]["prompt_tokens"]
                    completion_tokens[index] = content["meta_info"]["completion_tokens"]
732
733
734

                    if not stream_buffer:  # The first chunk
                        if request.echo:
yichuan~'s avatar
yichuan~ committed
735
736
737
                            if isinstance(request.prompt, str):
                                # for the case of single str prompts
                                prompts = request.prompt
738
739
740
741
742
743
                            elif isinstance(request.prompt, list):
                                if isinstance(request.prompt[0], str):
                                    # for the case of multiple str prompts
                                    prompts = request.prompt[index // request.n]
                                elif isinstance(request.prompt[0], int):
                                    # for the case of single token ids prompt
744
                                    prompts = orchestrator.tokenizer.decode(
745
746
747
748
749
750
                                        request.prompt, skip_special_tokens=True
                                    )
                                elif isinstance(request.prompt[0], list) and isinstance(
                                    request.prompt[0][0], int
                                ):
                                    # for the case of multiple token ids prompts
751
                                    prompts = orchestrator.tokenizer.decode(
752
753
754
                                        request.prompt[index // request.n],
                                        skip_special_tokens=True,
                                    )
yichuan~'s avatar
yichuan~ committed
755

756
                            # Prepend prompt in response text.
yichuan~'s avatar
yichuan~ committed
757
                            text = prompts + text
758

759
                    if request.logprobs is not None:
760
761
                        # The first chunk and echo is enabled.
                        if not stream_buffer and request.echo:
762
763
                            input_token_logprobs = content["meta_info"][
                                "input_token_logprobs"
764
                            ]
765
766
                            input_top_logprobs = content["meta_info"][
                                "input_top_logprobs"
767
768
                            ]
                        else:
769
770
                            input_token_logprobs = None
                            input_top_logprobs = None
771
772

                        logprobs = to_openai_style_logprobs(
773
774
775
776
                            input_token_logprobs=input_token_logprobs,
                            input_top_logprobs=input_top_logprobs,
                            output_token_logprobs=content["meta_info"][
                                "output_token_logprobs"
777
                            ][n_prev_token:],
778
779
                            output_top_logprobs=content["meta_info"][
                                "output_top_logprobs"
780
                            ][n_prev_token:],
781
                        )
782
                        n_prev_token = len(
783
                            content["meta_info"]["output_token_logprobs"]
784
                        )
785
                    else:
786
                        logprobs = None
787

788
                    delta = text[len(stream_buffer) :]
Liangsheng Yin's avatar
Liangsheng Yin committed
789
                    stream_buffer = stream_buffer + delta
790
                    finish_reason = content["meta_info"]["finish_reason"]
791
                    choice_data = CompletionResponseStreamChoice(
792
                        index=index,
793
794
                        text=delta,
                        logprobs=logprobs,
795
796
797
798
799
                        finish_reason=(finish_reason["type"] if finish_reason else ""),
                        matched_stop=(
                            finish_reason["matched"]
                            if finish_reason and "matched" in finish_reason
                            else None
800
                        ),
801
802
803
804
805
806
807
                    )
                    chunk = CompletionStreamResponse(
                        id=content["meta_info"]["id"],
                        object="text_completion",
                        choices=[choice_data],
                        model=request.model,
                    )
808
809
810
811

                    stream_buffers[index] = stream_buffer
                    n_prev_tokens[index] = n_prev_token

812
                    yield f"data: {chunk.model_dump_json()}\n\n"
813
                if request.stream_options and request.stream_options.include_usage:
814
815
816
817
818
819
820
821
                    total_prompt_tokens = sum(
                        tokens
                        for i, tokens in prompt_tokens.items()
                        if i % request.n == 0
                    )
                    total_completion_tokens = sum(
                        tokens for tokens in completion_tokens.values()
                    )
822
                    usage = UsageInfo(
823
824
825
                        prompt_tokens=total_prompt_tokens,
                        completion_tokens=total_completion_tokens,
                        total_tokens=total_prompt_tokens + total_completion_tokens,
826
827
828
829
830
831
832
833
834
835
836
837
                    )

                    final_usage_chunk = CompletionStreamResponse(
                        id=str(uuid.uuid4().hex),
                        choices=[],
                        model=request.model,
                        usage=usage,
                    )
                    final_usage_data = final_usage_chunk.model_dump_json(
                        exclude_unset=True, exclude_none=True
                    )
                    yield f"data: {final_usage_data}\n\n"
838
839
840
            except ValueError as e:
                error = create_streaming_error_response(str(e))
                yield f"data: {error}\n\n"
841
842
            yield "data: [DONE]\n\n"

843
844
845
        return StreamingResponse(
            generate_stream_resp(),
            media_type="text/event-stream",
846
            background=orchestrator.create_abort_task(adapted_request),
847
        )
848
849

    # Non-streaming response.
850
    try:
851
        ret = await orchestrator.generate_request(
852
853
            adapted_request, raw_request
        ).__anext__()
854
855
    except ValueError as e:
        return create_error_response(str(e))
856

857
858
859
    if not isinstance(ret, list):
        ret = [ret]

860
    response = v1_generate_response(request, ret, orchestrator)
861
    return response
862

863

864
def v1_chat_generate_request(
865
    all_requests: List[ChatCompletionRequest],
866
    orchestrator,
867
    request_ids: List[str] = None,
868
):
869
    input_ids = []
870
871
    sampling_params_list = []
    image_data_list = []
872
    return_logprobs = []
873
    logprob_start_lens = []
874
    top_logprobs_nums = []
875
    modalities_list = []
876
    lora_paths = []
877
878
879

    # NOTE: with openai API, the prompt's logprobs are always not computed

880
881
882
883
884
885
886
887
    for request in all_requests:
        # Prep the data needed for the underlying GenerateReqInput:
        #  - prompt: The full prompt string.
        #  - stop: Custom stop tokens.
        #  - image_data: None or a list of image strings (URLs or base64 strings).
        #    None skips any image processing in GenerateReqInput.
        if not isinstance(request.messages, str):
            # Apply chat template and its stop strings.
Tanjiro's avatar
Tanjiro committed
888
889
890
891
892
893
894
895
896
897
898
899
            tools = None
            if request.tools and request.tool_choice != "none":
                request.skip_special_tokens = False
                if not isinstance(request.tool_choice, str):
                    tools = [
                        item.function.model_dump()
                        for item in request.tools
                        if item.function.name == request.tool_choice.function.name
                    ]
                else:
                    tools = [item.function.model_dump() for item in request.tools]

900
            if chat_template_name is None:
901
902
903
904
905
906
907
908
909
910
911
912
913
                openai_compatible_messages = []
                for message in request.messages:
                    if isinstance(message.content, str):
                        openai_compatible_messages.append(
                            {"role": message.role, "content": message.content}
                        )
                    else:
                        content_list = message.dict()["content"]
                        for content in content_list:
                            if content["type"] == "text":
                                openai_compatible_messages.append(
                                    {"role": message.role, "content": content["text"]}
                                )
914
915
916
917
918
                if openai_compatible_messages[-1]["role"] == "assistant":
                    assistant_prefix = openai_compatible_messages[-1]["content"]
                    openai_compatible_messages = openai_compatible_messages[:-1]
                else:
                    assistant_prefix = None
YAMY's avatar
YAMY committed
919
920

                try:
921
                    prompt_ids = orchestrator.tokenizer.apply_chat_template(
YAMY's avatar
YAMY committed
922
923
924
925
926
927
928
929
930
931
                        openai_compatible_messages,
                        tokenize=True,
                        add_generation_prompt=True,
                        tools=tools,
                    )
                except:
                    #  This except branch will be triggered when the chosen model
                    #  has a different tools input format that is not compatiable
                    #  with openAI's apply_chat_template tool_call format, like Mistral.
                    tools = [t if "function" in t else {"function": t} for t in tools]
932
                    prompt_ids = orchestrator.tokenizer.apply_chat_template(
YAMY's avatar
YAMY committed
933
934
935
936
937
938
                        openai_compatible_messages,
                        tokenize=True,
                        add_generation_prompt=True,
                        tools=tools,
                    )

939
                if assistant_prefix:
940
941
                    encoded = orchestrator.tokenizer.encode(assistant_prefix)
                    if encoded and encoded[0] == orchestrator.tokenizer.bos_token_id:
942
943
                        encoded = encoded[1:]
                    prompt_ids += encoded
944
945
                stop = request.stop
                image_data = None
946
                modalities = []
947
            else:
948
949
950
                conv = generate_chat_conv(request, chat_template_name)
                prompt = conv.get_prompt()
                image_data = conv.image_data
951
                modalities = conv.modalities
952
953
954
955
956
957
                stop = conv.stop_str or []
                if request.stop:
                    if isinstance(request.stop, str):
                        stop.append(request.stop)
                    else:
                        stop.extend(request.stop)
958
                prompt_ids = orchestrator.tokenizer.encode(prompt)
959
        else:
960
            # Use the raw prompt and stop strings if the messages is already a string.
yichuan~'s avatar
yichuan~ committed
961
            prompt_ids = request.messages
962
963
            stop = request.stop
            image_data = None
964
            modalities = []
965
        input_ids.append(prompt_ids)
966
        return_logprobs.append(request.logprobs)
967
        logprob_start_lens.append(-1)
968
        top_logprobs_nums.append(request.top_logprobs or 0)
969
        lora_paths.append(request.lora_path)
970
971
972
973
974
975
976
977

        sampling_params = {
            "temperature": request.temperature,
            "max_new_tokens": request.max_tokens,
            "min_new_tokens": request.min_tokens,
            "stop": stop,
            "stop_token_ids": request.stop_token_ids,
            "top_p": request.top_p,
978
979
            "top_k": request.top_k,
            "min_p": request.min_p,
980
981
982
983
            "presence_penalty": request.presence_penalty,
            "frequency_penalty": request.frequency_penalty,
            "repetition_penalty": request.repetition_penalty,
            "regex": request.regex,
984
            "ebnf": request.ebnf,
985
            "n": request.n,
986
            "no_stop_trim": request.no_stop_trim,
987
            "ignore_eos": request.ignore_eos,
988
            "skip_special_tokens": request.skip_special_tokens,
989
990
991
992
993
994
995
        }
        if request.response_format and request.response_format.type == "json_schema":
            sampling_params["json_schema"] = convert_json_schema_to_str(
                request.response_format.json_schema.schema_
            )
        sampling_params_list.append(sampling_params)

996
        image_data_list.append(image_data)
997
        modalities_list.append(modalities)
998
    if len(all_requests) == 1:
999
1000
        if isinstance(input_ids[0], str):
            prompt_kwargs = {"text": input_ids[0]}
yichuan~'s avatar
yichuan~ committed
1001
        else:
1002
            prompt_kwargs = {"input_ids": input_ids[0]}
1003
        sampling_params_list = sampling_params_list[0]
1004
        image_data_list = image_data_list[0]
1005
        return_logprobs = return_logprobs[0]
1006
        logprob_start_lens = logprob_start_lens[0]
1007
        top_logprobs_nums = top_logprobs_nums[0]
1008
        modalities_list = modalities_list[0]
1009
        lora_paths = lora_paths[0]
yichuan~'s avatar
yichuan~ committed
1010
1011
1012
1013
1014
    else:
        if isinstance(input_ids[0], str):
            prompt_kwargs = {"text": input_ids}
        else:
            prompt_kwargs = {"input_ids": input_ids}
1015

1016
    adapted_request = GenerateReqInput(
yichuan~'s avatar
yichuan~ committed
1017
        **prompt_kwargs,
1018
        image_data=image_data_list,
1019
        sampling_params=sampling_params_list,
1020
        return_logprob=return_logprobs,
1021
        logprob_start_len=logprob_start_lens,
1022
1023
1024
        top_logprobs_num=top_logprobs_nums,
        stream=all_requests[0].stream,
        return_text_in_logprobs=True,
1025
        rid=request_ids,
1026
        modalities=modalities_list,
1027
        lora_path=lora_paths,
1028
    )
1029
1030

    return adapted_request, all_requests if len(all_requests) > 1 else all_requests[0]
1031

1032

YAMY's avatar
YAMY committed
1033
1034
1035
def v1_chat_generate_response(
    request, ret, to_file=False, cache_report=False, tool_call_parser=None
):
1036
1037
1038
    choices = []

    for idx, ret_item in enumerate(ret):
1039
        logprobs = False
yichuan~'s avatar
yichuan~ committed
1040
        if isinstance(request, list) and request[idx].logprobs:
1041
            logprobs = True
yichuan~'s avatar
yichuan~ committed
1042
        elif (not isinstance(request, list)) and request.logprobs:
1043
1044
1045
1046
1047
1048
1049
            logprobs = True
        if logprobs:
            logprobs = to_openai_style_logprobs(
                output_token_logprobs=ret_item["meta_info"]["output_token_logprobs"],
                output_top_logprobs=ret_item["meta_info"]["output_top_logprobs"],
            )
            token_logprobs = []
1050
1051
1052
            for token_idx, (token, logprob) in enumerate(
                zip(logprobs.tokens, logprobs.token_logprobs)
            ):
1053
1054
1055
                token_bytes = list(token.encode("utf-8"))
                top_logprobs = []
                if logprobs.top_logprobs:
1056
1057
1058
                    for top_token, top_logprob in logprobs.top_logprobs[
                        token_idx
                    ].items():
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
                        top_token_bytes = list(top_token.encode("utf-8"))
                        top_logprobs.append(
                            TopLogprob(
                                token=top_token,
                                bytes=top_token_bytes,
                                logprob=top_logprob,
                            )
                        )
                token_logprobs.append(
                    ChatCompletionTokenLogprob(
                        token=token,
                        bytes=token_bytes,
                        logprob=logprob,
                        top_logprobs=top_logprobs,
                    )
                )

            choice_logprobs = ChoiceLogprobs(content=token_logprobs)
        else:
            choice_logprobs = None
1079

1080
1081
        finish_reason = ret_item["meta_info"]["finish_reason"]

Tanjiro's avatar
Tanjiro committed
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
        tool_calls = None
        text = ret_item["text"]

        if isinstance(request, list):
            tool_choice = request[idx].tool_choice
            tools = request[idx].tools
        else:
            tool_choice = request.tool_choice
            tools = request.tools

        if tool_choice != "none" and any([i in text for i in TOOLS_TAG_LIST]):
            if finish_reason == "stop":
                finish_reason = "tool_calls"
            try:
YAMY's avatar
YAMY committed
1096
1097
                parser = FunctionCallParser(tools, tool_call_parser)
                full_normal_text, call_info_list = parser.parse_non_stream(text)
Tanjiro's avatar
Tanjiro committed
1098
1099
                tool_calls = [
                    ToolCall(
YAMY's avatar
YAMY committed
1100
                        id=str(call_info.tool_index),
Tanjiro's avatar
Tanjiro committed
1101
                        function=FunctionResponse(
YAMY's avatar
YAMY committed
1102
                            name=call_info.name, arguments=call_info.parameters
Tanjiro's avatar
Tanjiro committed
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
                        ),
                    )
                    for call_info in call_info_list
                ]
            except Exception as e:
                logger.error(f"Exception: {e}")
                return create_error_response(
                    HTTPStatus.BAD_REQUEST,
                    "Failed to parse fc related info to json format!",
                )

1114
        if to_file:
1115
            # to make the choice data json serializable
1116
1117
            choice_data = {
                "index": 0,
Tanjiro's avatar
Tanjiro committed
1118
1119
1120
1121
1122
                "message": {
                    "role": "assistant",
                    "content": ret_item["text"] if tool_calls is None else None,
                    "tool_calls": tool_calls,
                },
1123
                "logprobs": choice_logprobs,
1124
1125
1126
1127
1128
                "finish_reason": (finish_reason["type"] if finish_reason else ""),
                "matched_stop": (
                    finish_reason["matched"]
                    if finish_reason and "matched" in finish_reason
                    else None
1129
                ),
1130
            }
1131
        else:
1132
1133
            choice_data = ChatCompletionResponseChoice(
                index=idx,
Tanjiro's avatar
Tanjiro committed
1134
1135
1136
1137
1138
                message=ChatMessage(
                    role="assistant",
                    content=ret_item["text"] if tool_calls is None else None,
                    tool_calls=tool_calls,
                ),
1139
                logprobs=choice_logprobs,
1140
1141
1142
1143
1144
                finish_reason=(finish_reason["type"] if finish_reason else ""),
                matched_stop=(
                    finish_reason["matched"]
                    if finish_reason and "matched" in finish_reason
                    else None
1145
                ),
1146
1147
1148
            )

        choices.append(choice_data)
1149

1150
1151
1152
1153
1154
1155
1156
1157
    if to_file:
        responses = []

        for i, choice in enumerate(choices):
            response = {
                "status_code": 200,
                "request_id": ret[i]["meta_info"]["id"],
                "body": {
1158
                    # remain the same but if needed we can change that
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
                    "id": ret[i]["meta_info"]["id"],
                    "object": "chat.completion",
                    "created": int(time.time()),
                    "model": request[i].model,
                    "choices": choice,
                    "usage": {
                        "prompt_tokens": ret[i]["meta_info"]["prompt_tokens"],
                        "completion_tokens": ret[i]["meta_info"]["completion_tokens"],
                        "total_tokens": ret[i]["meta_info"]["prompt_tokens"]
                        + ret[i]["meta_info"]["completion_tokens"],
                    },
                    "system_fingerprint": None,
                },
            }
            responses.append(response)
        return responses
1175
    else:
1176
1177
1178
1179
        prompt_tokens = sum(
            ret[i]["meta_info"]["prompt_tokens"] for i in range(0, len(ret), request.n)
        )
        completion_tokens = sum(item["meta_info"]["completion_tokens"] for item in ret)
1180
        cached_tokens = sum(item["meta_info"].get("cached_tokens", 0) for item in ret)
1181
1182
1183
1184
1185
        response = ChatCompletionResponse(
            id=ret[0]["meta_info"]["id"],
            model=request.model,
            choices=choices,
            usage=UsageInfo(
1186
1187
1188
                prompt_tokens=prompt_tokens,
                completion_tokens=completion_tokens,
                total_tokens=prompt_tokens + completion_tokens,
1189
1190
1191
                prompt_tokens_details=(
                    {"cached_tokens": cached_tokens} if cache_report else None
                ),
1192
1193
1194
            ),
        )
        return response
1195

1196

1197
async def v1_chat_completions(orchestrator, raw_request: Request):
1198
1199
    request_json = await raw_request.json()
    all_requests = [ChatCompletionRequest(**request_json)]
1200
    adapted_request, request = v1_chat_generate_request(all_requests, orchestrator)
1201
1202

    if adapted_request.stream:
YAMY's avatar
YAMY committed
1203
        parser_dict = {}
1204
1205

        async def generate_stream_resp():
1206
1207
1208
1209
1210
            is_firsts = {}
            stream_buffers = {}
            n_prev_tokens = {}
            prompt_tokens = {}
            completion_tokens = {}
1211
            try:
1212
                async for content in orchestrator.generate_request(
1213
1214
                    adapted_request, raw_request
                ):
1215
                    index = content.get("index", 0)
YAMY's avatar
YAMY committed
1216
                    text = content["text"]
1217
1218
1219
1220
1221
1222
1223

                    is_first = is_firsts.get(index, True)
                    stream_buffer = stream_buffers.get(index, "")
                    n_prev_token = n_prev_tokens.get(index, 0)

                    prompt_tokens[index] = content["meta_info"]["prompt_tokens"]
                    completion_tokens[index] = content["meta_info"]["completion_tokens"]
yichuan~'s avatar
yichuan~ committed
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
                    if request.logprobs:
                        logprobs = to_openai_style_logprobs(
                            output_token_logprobs=content["meta_info"][
                                "output_token_logprobs"
                            ][n_prev_token:],
                            output_top_logprobs=content["meta_info"][
                                "output_top_logprobs"
                            ][n_prev_token:],
                        )

                        n_prev_token = len(
                            content["meta_info"]["output_token_logprobs"]
                        )
                        token_logprobs = []
                        for token, logprob in zip(
                            logprobs.tokens, logprobs.token_logprobs
                        ):
                            token_bytes = list(token.encode("utf-8"))
                            top_logprobs = []
                            if logprobs.top_logprobs:
                                for top_token, top_logprob in logprobs.top_logprobs[
                                    0
                                ].items():
                                    top_token_bytes = list(top_token.encode("utf-8"))
                                    top_logprobs.append(
                                        TopLogprob(
                                            token=top_token,
                                            bytes=top_token_bytes,
                                            logprob=top_logprob,
                                        )
                                    )
                            token_logprobs.append(
                                ChatCompletionTokenLogprob(
                                    token=token,
                                    bytes=token_bytes,
                                    logprob=logprob,
                                    top_logprobs=top_logprobs,
                                )
                            )

                        choice_logprobs = ChoiceLogprobs(content=token_logprobs)

                    else:
                        choice_logprobs = None

1269
1270
                    finish_reason = content["meta_info"]["finish_reason"]

1271
1272
1273
1274
                    if is_first:
                        # First chunk with role
                        is_first = False
                        choice_data = ChatCompletionResponseStreamChoice(
1275
                            index=index,
1276
                            delta=DeltaMessage(role="assistant", content=""),
1277
                            finish_reason=(
1278
1279
1280
1281
1282
1283
                                finish_reason["type"] if finish_reason else ""
                            ),
                            matched_stop=(
                                finish_reason["matched"]
                                if finish_reason and "matched" in finish_reason
                                else None
1284
                            ),
yichuan~'s avatar
yichuan~ committed
1285
                            logprobs=choice_logprobs,
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
                        )
                        chunk = ChatCompletionStreamResponse(
                            id=content["meta_info"]["id"],
                            choices=[choice_data],
                            model=request.model,
                        )
                        yield f"data: {chunk.model_dump_json()}\n\n"

                    text = content["text"]
                    delta = text[len(stream_buffer) :]
YAMY's avatar
YAMY committed
1296
                    new_stream_buffer = stream_buffer + delta
1297

YAMY's avatar
YAMY committed
1298
1299
1300
1301
                    if request.tool_choice != "none" and request.tools:
                        if index not in parser_dict:
                            parser_dict[index] = FunctionCallParser(
                                tools=request.tools,
1302
                                tool_call_parser=orchestrator.server_args.tool_call_parser,
YAMY's avatar
YAMY committed
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
                            )
                        parser = parser_dict[index]

                        # parse_increment => returns (normal_text, calls)
                        normal_text, calls = parser.parse_stream_chunk(delta)

                        # 1) if there's normal_text, output it as normal content
                        if normal_text:
                            choice_data = ChatCompletionResponseStreamChoice(
                                index=index,
                                delta=DeltaMessage(content=normal_text),
                                finish_reason=(
                                    finish_reason["type"] if finish_reason else ""
                                ),
                            )
                            chunk = ChatCompletionStreamResponse(
                                id=content["meta_info"]["id"],
                                choices=[choice_data],
                                model=request.model,
                            )
                            yield f"data: {chunk.model_dump_json()}\n\n"

                        # 2) if we found calls, we output them as separate chunk(s)
                        for call_item in calls:
                            # transform call_item -> FunctionResponse + ToolCall

                            if (
                                content["meta_info"]["finish_reason"]
                                and content["meta_info"]["finish_reason"]["type"]
                                == "stop"
                            ):
                                latest_delta_len = 0
                                if isinstance(call_item.parameters, str):
                                    latest_delta_len = len(call_item.parameters)

                                expected_call = json.dumps(
                                    parser.multi_format_parser.detectors[0]
                                    .prev_tool_call_arr[index]
                                    .get("arguments", {}),
                                    ensure_ascii=False,
                                )
                                actual_call = parser.multi_format_parser.detectors[
                                    0
                                ].streamed_args_for_tool[index]
                                if latest_delta_len > 0:
                                    actual_call = actual_call[:-latest_delta_len]
                                remaining_call = expected_call.replace(
                                    actual_call, "", 1
                                )
                                call_item.parameters = remaining_call

                            tool_call = ToolCall(
                                id=str(call_item.tool_index),
                                function=FunctionResponse(
                                    name=call_item.name,
                                    arguments=call_item.parameters,
                                ),
                            )
                            choice_data = ChatCompletionResponseStreamChoice(
                                index=index,
                                delta=DeltaMessage(
                                    role="assistant", tool_calls=[tool_call]
                                ),
                                finish_reason="tool_call",
                            )
                            chunk = ChatCompletionStreamResponse(
                                id=content["meta_info"]["id"],
                                choices=[choice_data],
                                model=request.model,
                            )
                            yield f"data: {chunk.model_dump_json()}\n\n"
1374

YAMY's avatar
YAMY committed
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
                        stream_buffers[index] = new_stream_buffer
                        is_firsts[index] = is_first

                    else:
                        # No tool calls => just treat this as normal text
                        choice_data = ChatCompletionResponseStreamChoice(
                            index=index,
                            delta=DeltaMessage(content=delta),
                            finish_reason=(
                                finish_reason["type"] if finish_reason else ""
                            ),
                            matched_stop=(
                                finish_reason["matched"]
                                if finish_reason and "matched" in finish_reason
                                else None
                            ),
                            logprobs=choice_logprobs,
                        )
                        chunk = ChatCompletionStreamResponse(
                            id=content["meta_info"]["id"],
                            choices=[choice_data],
                            model=request.model,
                        )
                        yield f"data: {chunk.model_dump_json()}\n\n"
                        stream_buffers[index] = new_stream_buffer
                        is_firsts[index] = is_first
1401
                if request.stream_options and request.stream_options.include_usage:
1402
1403
1404
1405
1406
1407
1408
1409
                    total_prompt_tokens = sum(
                        tokens
                        for i, tokens in prompt_tokens.items()
                        if i % request.n == 0
                    )
                    total_completion_tokens = sum(
                        tokens for tokens in completion_tokens.values()
                    )
1410
                    usage = UsageInfo(
1411
1412
1413
                        prompt_tokens=total_prompt_tokens,
                        completion_tokens=total_completion_tokens,
                        total_tokens=total_prompt_tokens + total_completion_tokens,
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
                    )

                    final_usage_chunk = ChatCompletionStreamResponse(
                        id=str(uuid.uuid4().hex),
                        choices=[],
                        model=request.model,
                        usage=usage,
                    )
                    final_usage_data = final_usage_chunk.model_dump_json(
                        exclude_unset=True, exclude_none=True
                    )
                    yield f"data: {final_usage_data}\n\n"
1426
1427
1428
            except ValueError as e:
                error = create_streaming_error_response(str(e))
                yield f"data: {error}\n\n"
1429
1430
            yield "data: [DONE]\n\n"

1431
1432
1433
        return StreamingResponse(
            generate_stream_resp(),
            media_type="text/event-stream",
1434
            background=orchestrator.create_abort_task(adapted_request),
1435
        )
1436
1437

    # Non-streaming response.
1438
    try:
1439
        ret = await orchestrator.generate_request(
1440
1441
            adapted_request, raw_request
        ).__anext__()
1442
1443
    except ValueError as e:
        return create_error_response(str(e))
1444
1445
1446
    if not isinstance(ret, list):
        ret = [ret]

1447
    response = v1_chat_generate_response(
YAMY's avatar
YAMY committed
1448
1449
        request,
        ret,
1450
1451
        cache_report=orchestrator.server_args.enable_cache_report,
        tool_call_parser=orchestrator.server_args.tool_call_parser,
1452
    )
1453

1454
1455
1456
    return response


1457
def v1_embedding_request(all_requests, orchestrator):
1458
1459
    prompts = []
    sampling_params_list = []
Ying Sheng's avatar
Ying Sheng committed
1460
    first_prompt_type = type(all_requests[0].input)
1461
1462

    for request in all_requests:
Ying Sheng's avatar
Ying Sheng committed
1463
        prompt = request.input
1464
        assert (
1465
            type(prompt) is first_prompt_type
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
        ), "All prompts must be of the same type in file input settings"
        prompts.append(prompt)

    if len(all_requests) == 1:
        prompt = prompts[0]
        if isinstance(prompt, str) or isinstance(prompt[0], str):
            prompt_kwargs = {"text": prompt}
        else:
            prompt_kwargs = {"input_ids": prompt}
    else:
Baoyuan Qi's avatar
Baoyuan Qi committed
1476
        if isinstance(prompts[0], str) or isinstance(prompts[0][0], str):
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
            prompt_kwargs = {"text": prompts}
        else:
            prompt_kwargs = {"input_ids": prompts}

    adapted_request = EmbeddingReqInput(
        **prompt_kwargs,
    )

    if len(all_requests) == 1:
        return adapted_request, all_requests[0]
    return adapted_request, all_requests


Ying Sheng's avatar
Ying Sheng committed
1490
1491
1492
def v1_embedding_response(ret, model_path, to_file=False):
    embedding_objects = []
    prompt_tokens = 0
1493
    for idx, ret_item in enumerate(ret):
Ying Sheng's avatar
Ying Sheng committed
1494
1495
1496
        embedding_objects.append(
            EmbeddingObject(
                embedding=ret[idx]["embedding"],
1497
1498
1499
                index=idx,
            )
        )
Ying Sheng's avatar
Ying Sheng committed
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
        prompt_tokens += ret[idx]["meta_info"]["prompt_tokens"]

    return EmbeddingResponse(
        data=embedding_objects,
        model=model_path,
        usage=UsageInfo(
            prompt_tokens=prompt_tokens,
            total_tokens=prompt_tokens,
        ),
    )
1510
1511


1512
async def v1_embeddings(orchestrator, raw_request: Request):
1513
1514
    request_json = await raw_request.json()
    all_requests = [EmbeddingRequest(**request_json)]
1515
    adapted_request, request = v1_embedding_request(all_requests, orchestrator)
1516
1517

    try:
1518
        ret = await orchestrator.generate_request(
1519
1520
1521
1522
1523
1524
1525
1526
            adapted_request, raw_request
        ).__anext__()
    except ValueError as e:
        return create_error_response(str(e))

    if not isinstance(ret, list):
        ret = [ret]

1527
    response = v1_embedding_response(ret, orchestrator.model_path)
1528
1529
1530
1531

    return response


1532
def to_openai_style_logprobs(
1533
1534
1535
1536
    input_token_logprobs=None,
    output_token_logprobs=None,
    input_top_logprobs=None,
    output_top_logprobs=None,
1537
1538
1539
1540
1541
1542
1543
1544
):
    ret_logprobs = LogProbs()

    def append_token_logprobs(token_logprobs):
        for logprob, _, token_text in token_logprobs:
            ret_logprobs.tokens.append(token_text)
            ret_logprobs.token_logprobs.append(logprob)

1545
            # Not supported yet
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
            ret_logprobs.text_offset.append(-1)

    def append_top_logprobs(top_logprobs):
        for tokens in top_logprobs:
            if tokens is not None:
                ret_logprobs.top_logprobs.append(
                    {token[2]: token[0] for token in tokens}
                )
            else:
                ret_logprobs.top_logprobs.append(None)

1557
1558
1559
1560
1561
1562
1563
1564
    if input_token_logprobs is not None:
        append_token_logprobs(input_token_logprobs)
    if output_token_logprobs is not None:
        append_token_logprobs(output_token_logprobs)
    if input_top_logprobs is not None:
        append_top_logprobs(input_top_logprobs)
    if output_top_logprobs is not None:
        append_top_logprobs(output_top_logprobs)
1565

Liangsheng Yin's avatar
Liangsheng Yin committed
1566
    return ret_logprobs