adapter.py 51 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
"""
Copyright 2023-2024 SGLang Team
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
"""

16
"""Conversion between OpenAI APIs and native SRT APIs"""
Liangsheng Yin's avatar
Liangsheng Yin committed
17

18
import asyncio
19
import json
20
import logging
21
import os
22
23
import time
import uuid
24
from http import HTTPStatus
25
from typing import Dict, List
26

27
from fastapi import HTTPException, Request, UploadFile
28
from fastapi.responses import JSONResponse, StreamingResponse
29
from pydantic import ValidationError
30

31
32
33
34
35
36
37
try:
    from outlines.fsm.json_schema import convert_json_schema_to_str
except ImportError:
    # Before outlines 0.0.47, convert_json_schema_to_str is under
    # outlines.integrations.utils
    from outlines.integrations.utils import convert_json_schema_to_str

38
39
40
41
42
43
44
from sglang.srt.conversation import (
    Conversation,
    SeparatorStyle,
    chat_template_exists,
    generate_chat_conv,
    register_conv_template,
)
Ying Sheng's avatar
Ying Sheng committed
45
from sglang.srt.managers.io_struct import EmbeddingReqInput, GenerateReqInput
Mingyi's avatar
Mingyi committed
46
from sglang.srt.openai_api.protocol import (
47
48
    BatchRequest,
    BatchResponse,
49
50
51
52
53
    ChatCompletionRequest,
    ChatCompletionResponse,
    ChatCompletionResponseChoice,
    ChatCompletionResponseStreamChoice,
    ChatCompletionStreamResponse,
54
    ChatCompletionTokenLogprob,
55
    ChatMessage,
56
    ChoiceLogprobs,
57
58
59
60
61
62
    CompletionRequest,
    CompletionResponse,
    CompletionResponseChoice,
    CompletionResponseStreamChoice,
    CompletionStreamResponse,
    DeltaMessage,
Ying Sheng's avatar
Ying Sheng committed
63
    EmbeddingObject,
64
65
    EmbeddingRequest,
    EmbeddingResponse,
66
    ErrorResponse,
67
    FileDeleteResponse,
68
69
    FileRequest,
    FileResponse,
70
    LogProbs,
71
    TopLogprob,
72
73
74
    UsageInfo,
)

75
76
logger = logging.getLogger(__name__)

77
78
chat_template_name = None

Liangsheng Yin's avatar
Liangsheng Yin committed
79

80
81
82
83
84
85
86
87
88
89
class FileMetadata:
    def __init__(self, filename: str, purpose: str):
        self.filename = filename
        self.purpose = purpose


# In-memory storage for batch jobs and files
batch_storage: Dict[str, BatchResponse] = {}
file_id_request: Dict[str, FileMetadata] = {}
file_id_response: Dict[str, FileResponse] = {}
90
# map file id to file path in SGLang backend
91
92
93
94
95
96
97
file_id_storage: Dict[str, str] = {}


# backend storage directory
storage_dir = None


98
99
100
def create_error_response(
    message: str,
    err_type: str = "BadRequestError",
101
102
103
104
    status_code: HTTPStatus = HTTPStatus.BAD_REQUEST,
):
    error = ErrorResponse(message=message, type=err_type, code=status_code.value)
    return JSONResponse(content=error.model_dump(), status_code=error.code)
105
106
107
108
109


def create_streaming_error_response(
    message: str,
    err_type: str = "BadRequestError",
110
111
112
    status_code: HTTPStatus = HTTPStatus.BAD_REQUEST,
) -> str:
    error = ErrorResponse(message=message, type=err_type, code=status_code.value)
113
114
115
116
    json_str = json.dumps({"error": error.model_dump()})
    return json_str


117
def load_chat_template_for_openai_api(tokenizer_manager, chat_template_arg):
118
119
    global chat_template_name

120
121
122
    logger.info(
        f"Use chat template for the OpenAI-compatible API server: {chat_template_arg}"
    )
123
124
125
126
127
128
    if not chat_template_exists(chat_template_arg):
        if not os.path.exists(chat_template_arg):
            raise RuntimeError(
                f"Chat template {chat_template_arg} is not a built-in template name "
                "or a valid chat template file path."
            )
129
130
131
132
133
        if chat_template_arg.endswith(".jinja"):
            with open(chat_template_arg, "r") as f:
                chat_template = "".join(f.readlines()).strip("\n")
            tokenizer_manager.tokenizer.chat_template = chat_template.replace(
                "\\n", "\n"
134
            )
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
            chat_template_name = None
        else:
            assert chat_template_arg.endswith(
                ".json"
            ), "unrecognized format of chat template file"
            with open(chat_template_arg, "r") as filep:
                template = json.load(filep)
                try:
                    sep_style = SeparatorStyle[template["sep_style"]]
                except KeyError:
                    raise ValueError(
                        f"Unknown separator style: {template['sep_style']}"
                    ) from None
                register_conv_template(
                    Conversation(
                        name=template["name"],
                        system_template=template["system"] + "\n{system_message}",
                        system_message=template.get("system_message", ""),
                        roles=(template["user"], template["assistant"]),
                        sep_style=sep_style,
                        sep=template.get("sep", "\n"),
                        stop_str=template["stop_str"],
                    ),
                    override=True,
                )
            chat_template_name = template["name"]
161
162
163
164
    else:
        chat_template_name = chat_template_arg


165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
async def v1_files_create(file: UploadFile, purpose: str, file_storage_pth: str = None):
    try:
        global storage_dir
        if file_storage_pth:
            storage_dir = file_storage_pth
        # Read the file content
        file_content = await file.read()

        # Create an instance of RequestBody
        request_body = FileRequest(file=file_content, purpose=purpose)

        # Save the file to the sglang_oai_storage directory
        os.makedirs(storage_dir, exist_ok=True)
        file_id = f"backend_input_file-{uuid.uuid4()}"
        filename = f"{file_id}.jsonl"
        file_path = os.path.join(storage_dir, filename)

        with open(file_path, "wb") as f:
            f.write(request_body.file)

        # add info to global file map
        file_id_request[file_id] = FileMetadata(filename=file.filename, purpose=purpose)
        file_id_storage[file_id] = file_path

        # Return the response in the required format
        response = FileResponse(
            id=file_id,
            bytes=len(request_body.file),
            created_at=int(time.time()),
            filename=file.filename,
            purpose=request_body.purpose,
        )
        file_id_response[file_id] = response

        return response
    except ValidationError as e:
        return {"error": "Invalid input", "details": e.errors()}


204
205
206
207
208
209
210
211
212
213
214
215
216
217
async def v1_delete_file(file_id: str):
    # Retrieve the file job from the in-memory storage
    file_response = file_id_response.get(file_id)
    if file_response is None:
        raise HTTPException(status_code=404, detail="File not found")
    file_path = file_id_storage.get(file_id)
    if file_path is None:
        raise HTTPException(status_code=404, detail="File not found")
    os.remove(file_path)
    del file_id_response[file_id]
    del file_id_storage[file_id]
    return FileDeleteResponse(id=file_id, deleted=True)


218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
async def v1_batches(tokenizer_manager, raw_request: Request):
    try:
        body = await raw_request.json()

        batch_request = BatchRequest(**body)

        batch_id = f"batch_{uuid.uuid4()}"

        # Create an instance of BatchResponse
        batch_response = BatchResponse(
            id=batch_id,
            endpoint=batch_request.endpoint,
            input_file_id=batch_request.input_file_id,
            completion_window=batch_request.completion_window,
            created_at=int(time.time()),
            metadata=batch_request.metadata,
        )

        batch_storage[batch_id] = batch_response

        # Start processing the batch asynchronously
        asyncio.create_task(process_batch(tokenizer_manager, batch_id, batch_request))

        # Return the initial batch_response
        return batch_response

    except ValidationError as e:
        return {"error": "Invalid input", "details": e.errors()}
    except Exception as e:
        return {"error": str(e)}


async def process_batch(tokenizer_manager, batch_id: str, batch_request: BatchRequest):
    try:
        # Update the batch status to "in_progress"
        batch_storage[batch_id].status = "in_progress"
        batch_storage[batch_id].in_progress_at = int(time.time())

        # Retrieve the input file content
        input_file_request = file_id_request.get(batch_request.input_file_id)
        if not input_file_request:
            raise ValueError("Input file not found")

        # Parse the JSONL file and process each request
        input_file_path = file_id_storage.get(batch_request.input_file_id)
        with open(input_file_path, "r", encoding="utf-8") as f:
            lines = f.readlines()

        total_requests = len(lines)
        completed_requests = 0
        failed_requests = 0

        all_ret = []
        end_point = batch_storage[batch_id].endpoint
        file_request_list = []
        all_requests = []
274
        request_ids = []
275
276
277
278
        for line in lines:
            request_data = json.loads(line)
            file_request_list.append(request_data)
            body = request_data["body"]
279
            request_ids.append(request_data["custom_id"])
280
281
282
283
284
285

            # Although streaming is supported for standalone completions, it is not supported in
            # batch mode (multiple completions in single request).
            if body.get("stream", False):
                raise ValueError("Streaming requests are not supported in batch mode")

286
287
288
289
            if end_point == "/v1/chat/completions":
                all_requests.append(ChatCompletionRequest(**body))
            elif end_point == "/v1/completions":
                all_requests.append(CompletionRequest(**body))
290

291
292
        if end_point == "/v1/chat/completions":
            adapted_request, request = v1_chat_generate_request(
293
                all_requests, tokenizer_manager, request_ids=request_ids
294
295
            )
        elif end_point == "/v1/completions":
296
297
298
299
            adapted_request, request = v1_generate_request(
                all_requests, request_ids=request_ids
            )

300
301
302
303
304
305
306
        try:
            ret = await tokenizer_manager.generate_request(adapted_request).__anext__()
            if not isinstance(ret, list):
                ret = [ret]
            if end_point == "/v1/chat/completions":
                responses = v1_chat_generate_response(request, ret, to_file=True)
            else:
yichuan~'s avatar
yichuan~ committed
307
308
309
                responses = v1_generate_response(
                    request, ret, tokenizer_manager, to_file=True
                )
310
311
312
313
314
315
316
317
318
319
320
321

        except Exception as e:
            error_json = {
                "id": f"batch_req_{uuid.uuid4()}",
                "custom_id": request_data.get("custom_id"),
                "response": None,
                "error": {"message": str(e)},
            }
            all_ret.append(error_json)
            failed_requests += len(file_request_list)

        for idx, response in enumerate(responses):
322
            # the batch_req here can be changed to be named within a batch granularity
323
324
325
326
327
328
329
330
            response_json = {
                "id": f"batch_req_{uuid.uuid4()}",
                "custom_id": file_request_list[idx].get("custom_id"),
                "response": response,
                "error": None,
            }
            all_ret.append(response_json)
            completed_requests += 1
331

332
333
334
335
336
337
338
339
340
341
342
343
        # Write results to a new file
        output_file_id = f"backend_result_file-{uuid.uuid4()}"
        global storage_dir
        output_file_path = os.path.join(storage_dir, f"{output_file_id}.jsonl")
        with open(output_file_path, "w", encoding="utf-8") as f:
            for ret in all_ret:
                f.write(json.dumps(ret) + "\n")

        # Update batch response with output file information
        retrieve_batch = batch_storage[batch_id]
        retrieve_batch.output_file_id = output_file_id
        file_id_storage[output_file_id] = output_file_path
344
345
346
347
348
349
350
        file_id_response[output_file_id] = FileResponse(
            id=output_file_id,
            bytes=os.path.getsize(output_file_path),
            created_at=int(time.time()),
            filename=f"{output_file_id}.jsonl",
            purpose="batch_result",
        )
351
352
353
354
355
356
357
358
359
360
        # Update batch status to "completed"
        retrieve_batch.status = "completed"
        retrieve_batch.completed_at = int(time.time())
        retrieve_batch.request_counts = {
            "total": total_requests,
            "completed": completed_requests,
            "failed": failed_requests,
        }

    except Exception as e:
361
        logger.error("error in SGLang:", e)
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
        # Update batch status to "failed"
        retrieve_batch = batch_storage[batch_id]
        retrieve_batch.status = "failed"
        retrieve_batch.failed_at = int(time.time())
        retrieve_batch.errors = {"message": str(e)}


async def v1_retrieve_batch(batch_id: str):
    # Retrieve the batch job from the in-memory storage
    batch_response = batch_storage.get(batch_id)
    if batch_response is None:
        raise HTTPException(status_code=404, detail="Batch not found")

    return batch_response


378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
async def v1_cancel_batch(tokenizer_manager, batch_id: str):
    # Retrieve the batch job from the in-memory storage
    batch_response = batch_storage.get(batch_id)
    if batch_response is None:
        raise HTTPException(status_code=404, detail="Batch not found")

    # Only do cancal when status is "validating" or "in_progress"
    if batch_response.status in ["validating", "in_progress"]:
        # Start cancelling the batch asynchronously
        asyncio.create_task(
            cancel_batch(
                tokenizer_manager=tokenizer_manager,
                batch_id=batch_id,
                input_file_id=batch_response.input_file_id,
            )
        )

        # Update batch status to "cancelling"
        batch_response.status = "cancelling"

        return batch_response
    else:
        raise HTTPException(
            status_code=500,
            detail=f"Current status is {batch_response.status}, no need to cancel",
        )


async def cancel_batch(tokenizer_manager, batch_id: str, input_file_id: str):
    try:
        # Update the batch status to "cancelling"
        batch_storage[batch_id].status = "cancelling"

        # Retrieve the input file content
        input_file_request = file_id_request.get(input_file_id)
        if not input_file_request:
            raise ValueError("Input file not found")

        # Parse the JSONL file and process each request
        input_file_path = file_id_storage.get(input_file_id)
        with open(input_file_path, "r", encoding="utf-8") as f:
            lines = f.readlines()

        file_request_list = []
        request_ids = []
        for line in lines:
            request_data = json.loads(line)
            file_request_list.append(request_data)
            request_ids.append(request_data["custom_id"])

        # Cancel requests by request_ids
        for rid in request_ids:
            tokenizer_manager.abort_request(rid=rid)

        retrieve_batch = batch_storage[batch_id]
        retrieve_batch.status = "cancelled"

    except Exception as e:
        logger.error("error in SGLang:", e)
        # Update batch status to "failed"
        retrieve_batch = batch_storage[batch_id]
        retrieve_batch.status = "failed"
        retrieve_batch.failed_at = int(time.time())
        retrieve_batch.errors = {"message": str(e)}


444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
async def v1_retrieve_file(file_id: str):
    # Retrieve the batch job from the in-memory storage
    file_response = file_id_response.get(file_id)
    if file_response is None:
        raise HTTPException(status_code=404, detail="File not found")
    return file_response


async def v1_retrieve_file_content(file_id: str):
    file_pth = file_id_storage.get(file_id)
    if not file_pth or not os.path.exists(file_pth):
        raise HTTPException(status_code=404, detail="File not found")

    def iter_file():
        with open(file_pth, mode="rb") as file_like:
            yield from file_like

    return StreamingResponse(iter_file(), media_type="application/octet-stream")


464
465
466
def v1_generate_request(
    all_requests: List[CompletionRequest], request_ids: List[str] = None
):
467
468
    prompts = []
    sampling_params_list = []
469
    return_logprobs = []
470
    logprob_start_lens = []
471
    top_logprobs_nums = []
yichuan~'s avatar
yichuan~ committed
472

473
474
    # NOTE: with openai API, the prompt's logprobs are always not computed
    first_prompt_type = type(all_requests[0].prompt)
475
476
    for request in all_requests:
        assert (
477
            type(request.prompt) is first_prompt_type
478
        ), "All prompts must be of the same type in file input settings"
479
480
481
482
483
        if len(all_requests) > 1 and request.n > 1:
            raise ValueError(
                "Parallel sampling is not supported for completions from files"
            )
        if request.echo and request.logprobs:
484
            logger.warning(
485
486
487
488
489
490
                "Echo is not compatible with logprobs. "
                "To compute logprobs of input prompt, please use SGLang /request API."
            )

    for request in all_requests:
        prompts.append(request.prompt)
491
        return_logprobs.append(request.logprobs is not None and request.logprobs > 0)
492
        logprob_start_lens.append(-1)
493
494
495
        top_logprobs_nums.append(
            request.logprobs if request.logprobs is not None else 0
        )
496
        sampling_params = []
497
        if isinstance(request.no_stop_trim, list):
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
            num_reqs = len(request.prompt)
        else:
            num_reqs = 1
        for i in range(num_reqs):
            sampling_params.append(
                {
                    "temperature": request.temperature,
                    "max_new_tokens": request.max_tokens,
                    "min_new_tokens": request.min_tokens,
                    "stop": request.stop,
                    "stop_token_ids": request.stop_token_ids,
                    "top_p": request.top_p,
                    "presence_penalty": request.presence_penalty,
                    "frequency_penalty": request.frequency_penalty,
                    "repetition_penalty": request.repetition_penalty,
                    "regex": request.regex,
                    "json_schema": request.json_schema,
                    "n": request.n,
                    "ignore_eos": request.ignore_eos,
517
518
519
520
                    "no_stop_trim": (
                        request.no_stop_trim
                        if not isinstance(request.no_stop_trim, list)
                        else request.no_stop_trim[i]
521
522
523
524
525
526
527
                    ),
                }
            )
        if num_reqs == 1:
            sampling_params_list.append(sampling_params[0])
        else:
            sampling_params_list.append(sampling_params)
528
529
530
531

    if len(all_requests) == 1:
        prompt = prompts[0]
        sampling_params_list = sampling_params_list[0]
532
        logprob_start_lens = logprob_start_lens[0]
533
534
        return_logprobs = return_logprobs[0]
        top_logprobs_nums = top_logprobs_nums[0]
yichuan~'s avatar
yichuan~ committed
535
        if isinstance(prompt, str) or isinstance(prompt[0], str):
536
537
538
            prompt_kwargs = {"text": prompt}
        else:
            prompt_kwargs = {"input_ids": prompt}
539
    else:
540
        if isinstance(prompts[0], str):
541
542
543
            prompt_kwargs = {"text": prompts}
        else:
            prompt_kwargs = {"input_ids": prompts}
yichuan~'s avatar
yichuan~ committed
544

545
    adapted_request = GenerateReqInput(
546
        **prompt_kwargs,
547
        sampling_params=sampling_params_list,
548
549
        return_logprob=return_logprobs,
        top_logprobs_num=top_logprobs_nums,
550
        logprob_start_len=logprob_start_lens,
551
        return_text_in_logprobs=True,
552
        stream=all_requests[0].stream,
553
        rid=request_ids,
554
    )
yichuan~'s avatar
yichuan~ committed
555

556
557
558
559
560
    if len(all_requests) == 1:
        return adapted_request, all_requests[0]
    return adapted_request, all_requests


yichuan~'s avatar
yichuan~ committed
561
def v1_generate_response(request, ret, tokenizer_manager, to_file=False):
562
563
564
    choices = []
    echo = False

yichuan~'s avatar
yichuan~ committed
565
    if (not isinstance(request, list)) and request.echo:
566
        # TODO: handle the case propmt is token ids
yichuan~'s avatar
yichuan~ committed
567
568
        if isinstance(request.prompt, list) and isinstance(request.prompt[0], str):
            # for the case of multiple str prompts
569
            prompts = request.prompt
yichuan~'s avatar
yichuan~ committed
570
571
572
573
574
575
576
577
578
579
580
581
582
        elif isinstance(request.prompt, list) and isinstance(request.prompt[0], list):
            # for the case of multiple token ids prompts
            prompts = [
                tokenizer_manager.tokenizer.decode(prompt, skip_special_tokens=True)
                for prompt in request.prompt
            ]
        elif isinstance(request.prompt, list) and isinstance(request.prompt[0], int):
            # for the case of single token ids prompt
            prompts = [
                tokenizer_manager.tokenizer.decode(
                    request.prompt, skip_special_tokens=True
                )
            ]
583
        else:
yichuan~'s avatar
yichuan~ committed
584
            # for the case of single str prompt
585
586
587
588
589
            prompts = [request.prompt]
        echo = True

    for idx, ret_item in enumerate(ret):
        text = ret_item["text"]
yichuan~'s avatar
yichuan~ committed
590
        if isinstance(request, list) and request[idx].echo:
591
592
            echo = True
            text = request[idx].prompt + text
yichuan~'s avatar
yichuan~ committed
593
594
595
        if (not isinstance(request, list)) and echo:
            prompt_index = idx // request.n
            text = prompts[prompt_index] + text
596
597

        logprobs = False
yichuan~'s avatar
yichuan~ committed
598
        if isinstance(request, list) and request[idx].logprobs:
599
            logprobs = True
yichuan~'s avatar
yichuan~ committed
600
        elif (not isinstance(request, list)) and request.logprobs:
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
            logprobs = True
        if logprobs:
            if echo:
                input_token_logprobs = ret_item["meta_info"]["input_token_logprobs"]
                input_top_logprobs = ret_item["meta_info"]["input_top_logprobs"]
            else:
                input_token_logprobs = None
                input_top_logprobs = None

            logprobs = to_openai_style_logprobs(
                input_token_logprobs=input_token_logprobs,
                input_top_logprobs=input_top_logprobs,
                output_token_logprobs=ret_item["meta_info"]["output_token_logprobs"],
                output_top_logprobs=ret_item["meta_info"]["output_top_logprobs"],
            )
        else:
            logprobs = None

        if to_file:
620
            # to make the choise data json serializable
621
622
623
624
            choice_data = {
                "index": 0,
                "text": text,
                "logprobs": logprobs,
625
626
627
628
                "finish_reason": (
                    ret_item["meta_info"]["finish_reason"]["type"]
                    if ret_item["meta_info"]["finish_reason"]
                    else ""
629
                ),
630
631
632
633
634
635
            }
        else:
            choice_data = CompletionResponseChoice(
                index=idx,
                text=text,
                logprobs=logprobs,
636
637
638
639
                finish_reason=(
                    ret_item["meta_info"]["finish_reason"]["type"]
                    if ret_item["meta_info"]["finish_reason"]
                    else ""
640
                ),
641
642
643
644
645
646
647
648
649
650
651
            )

        choices.append(choice_data)

    if to_file:
        responses = []
        for i, choice in enumerate(choices):
            response = {
                "status_code": 200,
                "request_id": ret[i]["meta_info"]["id"],
                "body": {
652
                    # remain the same but if needed we can change that
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
                    "id": ret[i]["meta_info"]["id"],
                    "object": "text_completion",
                    "created": int(time.time()),
                    "model": request[i].model,
                    "choices": choice,
                    "usage": {
                        "prompt_tokens": ret[i]["meta_info"]["prompt_tokens"],
                        "completion_tokens": ret[i]["meta_info"]["completion_tokens"],
                        "total_tokens": ret[i]["meta_info"]["prompt_tokens"]
                        + ret[i]["meta_info"]["completion_tokens"],
                    },
                    "system_fingerprint": None,
                },
            }
            responses.append(response)
        return responses
    else:
670
671
672
        prompt_tokens = sum(
            ret[i]["meta_info"]["prompt_tokens"] for i in range(0, len(ret), request.n)
        )
673
674
675
676
677
678
        completion_tokens = sum(item["meta_info"]["completion_tokens"] for item in ret)
        response = CompletionResponse(
            id=ret[0]["meta_info"]["id"],
            model=request.model,
            choices=choices,
            usage=UsageInfo(
yichuan~'s avatar
yichuan~ committed
679
                prompt_tokens=prompt_tokens,
680
                completion_tokens=completion_tokens,
yichuan~'s avatar
yichuan~ committed
681
                total_tokens=prompt_tokens + completion_tokens,
682
683
684
685
686
687
688
689
690
            ),
        )
    return response


async def v1_completions(tokenizer_manager, raw_request: Request):
    request_json = await raw_request.json()
    all_requests = [CompletionRequest(**request_json)]
    adapted_request, request = v1_generate_request(all_requests)
691
692
693
694

    if adapted_request.stream:

        async def generate_stream_resp():
695
696
697
698
            stream_buffers = {}
            n_prev_tokens = {}
            prompt_tokens = {}
            completion_tokens = {}
699
700
            try:
                async for content in tokenizer_manager.generate_request(
701
702
                    adapted_request, raw_request
                ):
703
704
705
706
707
                    index = content["index"]

                    stream_buffer = stream_buffers.get(index, "")
                    n_prev_token = n_prev_tokens.get(index, 0)

708
                    text = content["text"]
709
710
                    prompt_tokens[index] = content["meta_info"]["prompt_tokens"]
                    completion_tokens[index] = content["meta_info"]["completion_tokens"]
711
712
713

                    if not stream_buffer:  # The first chunk
                        if request.echo:
yichuan~'s avatar
yichuan~ committed
714
715
716
                            if isinstance(request.prompt, str):
                                # for the case of single str prompts
                                prompts = request.prompt
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
                            elif isinstance(request.prompt, list):
                                if isinstance(request.prompt[0], str):
                                    # for the case of multiple str prompts
                                    prompts = request.prompt[index // request.n]
                                elif isinstance(request.prompt[0], int):
                                    # for the case of single token ids prompt
                                    prompts = tokenizer_manager.tokenizer.decode(
                                        request.prompt, skip_special_tokens=True
                                    )
                                elif isinstance(request.prompt[0], list) and isinstance(
                                    request.prompt[0][0], int
                                ):
                                    # for the case of multiple token ids prompts
                                    prompts = tokenizer_manager.tokenizer.decode(
                                        request.prompt[index // request.n],
                                        skip_special_tokens=True,
                                    )
yichuan~'s avatar
yichuan~ committed
734

735
                            # Prepend prompt in response text.
yichuan~'s avatar
yichuan~ committed
736
                            text = prompts + text
737
738
739
740

                    if request.logprobs:
                        # The first chunk and echo is enabled.
                        if not stream_buffer and request.echo:
741
742
                            input_token_logprobs = content["meta_info"][
                                "input_token_logprobs"
743
                            ]
744
745
                            input_top_logprobs = content["meta_info"][
                                "input_top_logprobs"
746
747
                            ]
                        else:
748
749
                            input_token_logprobs = None
                            input_top_logprobs = None
750
751

                        logprobs = to_openai_style_logprobs(
752
753
754
755
                            input_token_logprobs=input_token_logprobs,
                            input_top_logprobs=input_top_logprobs,
                            output_token_logprobs=content["meta_info"][
                                "output_token_logprobs"
756
                            ][n_prev_token:],
757
758
                            output_top_logprobs=content["meta_info"][
                                "output_top_logprobs"
759
                            ][n_prev_token:],
760
                        )
761
                        n_prev_token = len(
762
                            content["meta_info"]["output_token_logprobs"]
763
                        )
764
                    else:
765
                        logprobs = None
766

767
                    delta = text[len(stream_buffer) :]
Liangsheng Yin's avatar
Liangsheng Yin committed
768
                    stream_buffer = stream_buffer + delta
769
                    choice_data = CompletionResponseStreamChoice(
770
                        index=index,
771
772
                        text=delta,
                        logprobs=logprobs,
773
774
775
776
                        finish_reason=(
                            content["meta_info"]["finish_reason"]["type"]
                            if content["meta_info"]["finish_reason"]
                            else ""
777
                        ),
778
779
780
781
782
783
784
                    )
                    chunk = CompletionStreamResponse(
                        id=content["meta_info"]["id"],
                        object="text_completion",
                        choices=[choice_data],
                        model=request.model,
                    )
785
786
787
788

                    stream_buffers[index] = stream_buffer
                    n_prev_tokens[index] = n_prev_token

789
                    yield f"data: {chunk.model_dump_json()}\n\n"
790
                if request.stream_options and request.stream_options.include_usage:
791
792
793
794
795
796
797
798
                    total_prompt_tokens = sum(
                        tokens
                        for i, tokens in prompt_tokens.items()
                        if i % request.n == 0
                    )
                    total_completion_tokens = sum(
                        tokens for tokens in completion_tokens.values()
                    )
799
                    usage = UsageInfo(
800
801
802
                        prompt_tokens=total_prompt_tokens,
                        completion_tokens=total_completion_tokens,
                        total_tokens=total_prompt_tokens + total_completion_tokens,
803
804
805
806
807
808
809
810
811
812
813
814
                    )

                    final_usage_chunk = CompletionStreamResponse(
                        id=str(uuid.uuid4().hex),
                        choices=[],
                        model=request.model,
                        usage=usage,
                    )
                    final_usage_data = final_usage_chunk.model_dump_json(
                        exclude_unset=True, exclude_none=True
                    )
                    yield f"data: {final_usage_data}\n\n"
815
816
817
            except ValueError as e:
                error = create_streaming_error_response(str(e))
                yield f"data: {error}\n\n"
818
819
            yield "data: [DONE]\n\n"

820
821
822
823
824
        return StreamingResponse(
            generate_stream_resp(),
            media_type="text/event-stream",
            background=tokenizer_manager.create_abort_task(adapted_request),
        )
825
826

    # Non-streaming response.
827
828
    try:
        ret = await tokenizer_manager.generate_request(
829
830
            adapted_request, raw_request
        ).__anext__()
831
832
    except ValueError as e:
        return create_error_response(str(e))
833

834
835
836
    if not isinstance(ret, list):
        ret = [ret]

yichuan~'s avatar
yichuan~ committed
837
    response = v1_generate_response(request, ret, tokenizer_manager)
838
    return response
839

840

841
def v1_chat_generate_request(
842
843
844
    all_requests: List[ChatCompletionRequest],
    tokenizer_manager,
    request_ids: List[str] = None,
845
):
846
    input_ids = []
847
848
    sampling_params_list = []
    image_data_list = []
849
    return_logprobs = []
850
    logprob_start_lens = []
851
    top_logprobs_nums = []
852
    modalities_list = []
853
854
855

    # NOTE: with openai API, the prompt's logprobs are always not computed

856
857
858
859
860
861
862
863
864
    for request in all_requests:
        # Prep the data needed for the underlying GenerateReqInput:
        #  - prompt: The full prompt string.
        #  - stop: Custom stop tokens.
        #  - image_data: None or a list of image strings (URLs or base64 strings).
        #    None skips any image processing in GenerateReqInput.
        if not isinstance(request.messages, str):
            # Apply chat template and its stop strings.
            if chat_template_name is None:
865
866
867
868
869
870
871
872
873
874
875
876
877
                openai_compatible_messages = []
                for message in request.messages:
                    if isinstance(message.content, str):
                        openai_compatible_messages.append(
                            {"role": message.role, "content": message.content}
                        )
                    else:
                        content_list = message.dict()["content"]
                        for content in content_list:
                            if content["type"] == "text":
                                openai_compatible_messages.append(
                                    {"role": message.role, "content": content["text"]}
                                )
878
879
880
881
882
                if openai_compatible_messages[-1]["role"] == "assistant":
                    assistant_prefix = openai_compatible_messages[-1]["content"]
                    openai_compatible_messages = openai_compatible_messages[:-1]
                else:
                    assistant_prefix = None
883
                prompt_ids = tokenizer_manager.tokenizer.apply_chat_template(
884
885
886
                    openai_compatible_messages,
                    tokenize=True,
                    add_generation_prompt=True,
887
                )
888
889
                if assistant_prefix:
                    prompt_ids += tokenizer_manager.tokenizer.encode(assistant_prefix)
890
891
                stop = request.stop
                image_data = None
892
                modalities = []
893
            else:
894
895
896
                conv = generate_chat_conv(request, chat_template_name)
                prompt = conv.get_prompt()
                image_data = conv.image_data
897
                modalities = conv.modalities
898
899
900
901
902
903
                stop = conv.stop_str or []
                if request.stop:
                    if isinstance(request.stop, str):
                        stop.append(request.stop)
                    else:
                        stop.extend(request.stop)
904
                prompt_ids = tokenizer_manager.tokenizer.encode(prompt)
905
        else:
906
            # Use the raw prompt and stop strings if the messages is already a string.
yichuan~'s avatar
yichuan~ committed
907
            prompt_ids = request.messages
908
909
            stop = request.stop
            image_data = None
910
            modalities = []
911
        input_ids.append(prompt_ids)
912
        return_logprobs.append(request.logprobs)
913
        logprob_start_lens.append(-1)
914
        top_logprobs_nums.append(request.top_logprobs or 0)
915
916
917
918
919
920
921
922
923
924
925
926
927

        sampling_params = {
            "temperature": request.temperature,
            "max_new_tokens": request.max_tokens,
            "min_new_tokens": request.min_tokens,
            "stop": stop,
            "stop_token_ids": request.stop_token_ids,
            "top_p": request.top_p,
            "presence_penalty": request.presence_penalty,
            "frequency_penalty": request.frequency_penalty,
            "repetition_penalty": request.repetition_penalty,
            "regex": request.regex,
            "n": request.n,
928
            "ignore_eos": request.ignore_eos,
929
930
931
932
933
934
935
        }
        if request.response_format and request.response_format.type == "json_schema":
            sampling_params["json_schema"] = convert_json_schema_to_str(
                request.response_format.json_schema.schema_
            )
        sampling_params_list.append(sampling_params)

936
        image_data_list.append(image_data)
937
        modalities_list.extend(modalities)
938
    if len(all_requests) == 1:
939
        input_ids = input_ids[0]
yichuan~'s avatar
yichuan~ committed
940
941
942
943
        if isinstance(input_ids, str):
            prompt_kwargs = {"text": input_ids}
        else:
            prompt_kwargs = {"input_ids": input_ids}
944
        sampling_params_list = sampling_params_list[0]
945
        image_data_list = image_data_list[0]
946
        return_logprobs = return_logprobs[0]
947
        logprob_start_lens = logprob_start_lens[0]
948
        top_logprobs_nums = top_logprobs_nums[0]
949
        modalities_list = modalities_list[:1]
yichuan~'s avatar
yichuan~ committed
950
951
952
953
954
    else:
        if isinstance(input_ids[0], str):
            prompt_kwargs = {"text": input_ids}
        else:
            prompt_kwargs = {"input_ids": input_ids}
955

956
    adapted_request = GenerateReqInput(
yichuan~'s avatar
yichuan~ committed
957
        **prompt_kwargs,
958
        image_data=image_data_list,
959
        sampling_params=sampling_params_list,
960
        return_logprob=return_logprobs,
961
        logprob_start_len=logprob_start_lens,
962
963
964
        top_logprobs_num=top_logprobs_nums,
        stream=all_requests[0].stream,
        return_text_in_logprobs=True,
965
        rid=request_ids,
966
        modalities=modalities_list,
967
    )
968
969
970
    if len(all_requests) == 1:
        return adapted_request, all_requests[0]
    return adapted_request, all_requests
971

972

973
974
975
976
def v1_chat_generate_response(request, ret, to_file=False):
    choices = []

    for idx, ret_item in enumerate(ret):
977
        logprobs = False
yichuan~'s avatar
yichuan~ committed
978
        if isinstance(request, list) and request[idx].logprobs:
979
            logprobs = True
yichuan~'s avatar
yichuan~ committed
980
        elif (not isinstance(request, list)) and request.logprobs:
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
            logprobs = True
        if logprobs:
            logprobs = to_openai_style_logprobs(
                output_token_logprobs=ret_item["meta_info"]["output_token_logprobs"],
                output_top_logprobs=ret_item["meta_info"]["output_top_logprobs"],
            )
            token_logprobs = []
            for token, logprob in zip(logprobs.tokens, logprobs.token_logprobs):
                token_bytes = list(token.encode("utf-8"))
                top_logprobs = []
                if logprobs.top_logprobs:
                    for top_token, top_logprob in logprobs.top_logprobs[0].items():
                        top_token_bytes = list(top_token.encode("utf-8"))
                        top_logprobs.append(
                            TopLogprob(
                                token=top_token,
                                bytes=top_token_bytes,
                                logprob=top_logprob,
                            )
                        )
                token_logprobs.append(
                    ChatCompletionTokenLogprob(
                        token=token,
                        bytes=token_bytes,
                        logprob=logprob,
                        top_logprobs=top_logprobs,
                    )
                )

            choice_logprobs = ChoiceLogprobs(content=token_logprobs)
        else:
            choice_logprobs = None
1013

1014
        if to_file:
1015
            # to make the choice data json serializable
1016
1017
1018
            choice_data = {
                "index": 0,
                "message": {"role": "assistant", "content": ret_item["text"]},
1019
                "logprobs": choice_logprobs,
1020
1021
1022
1023
                "finish_reason": (
                    ret_item["meta_info"]["finish_reason"]["type"]
                    if ret_item["meta_info"]["finish_reason"]
                    else ""
1024
                ),
1025
            }
1026
        else:
1027
1028
1029
            choice_data = ChatCompletionResponseChoice(
                index=idx,
                message=ChatMessage(role="assistant", content=ret_item["text"]),
1030
                logprobs=choice_logprobs,
1031
1032
1033
1034
                finish_reason=(
                    ret_item["meta_info"]["finish_reason"]["type"]
                    if ret_item["meta_info"]["finish_reason"]
                    else ""
1035
                ),
1036
1037
1038
            )

        choices.append(choice_data)
1039

1040
1041
1042
1043
1044
1045
1046
1047
    if to_file:
        responses = []

        for i, choice in enumerate(choices):
            response = {
                "status_code": 200,
                "request_id": ret[i]["meta_info"]["id"],
                "body": {
1048
                    # remain the same but if needed we can change that
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
                    "id": ret[i]["meta_info"]["id"],
                    "object": "chat.completion",
                    "created": int(time.time()),
                    "model": request[i].model,
                    "choices": choice,
                    "usage": {
                        "prompt_tokens": ret[i]["meta_info"]["prompt_tokens"],
                        "completion_tokens": ret[i]["meta_info"]["completion_tokens"],
                        "total_tokens": ret[i]["meta_info"]["prompt_tokens"]
                        + ret[i]["meta_info"]["completion_tokens"],
                    },
                    "system_fingerprint": None,
                },
            }
            responses.append(response)
        return responses
1065
    else:
1066
1067
1068
1069
        prompt_tokens = sum(
            ret[i]["meta_info"]["prompt_tokens"] for i in range(0, len(ret), request.n)
        )
        completion_tokens = sum(item["meta_info"]["completion_tokens"] for item in ret)
1070
1071
1072
1073
1074
        response = ChatCompletionResponse(
            id=ret[0]["meta_info"]["id"],
            model=request.model,
            choices=choices,
            usage=UsageInfo(
1075
1076
1077
                prompt_tokens=prompt_tokens,
                completion_tokens=completion_tokens,
                total_tokens=prompt_tokens + completion_tokens,
1078
1079
1080
            ),
        )
        return response
1081

1082
1083
1084
1085
1086

async def v1_chat_completions(tokenizer_manager, raw_request: Request):
    request_json = await raw_request.json()
    all_requests = [ChatCompletionRequest(**request_json)]
    adapted_request, request = v1_chat_generate_request(all_requests, tokenizer_manager)
1087
1088
1089
1090

    if adapted_request.stream:

        async def generate_stream_resp():
1091
1092
1093
1094
1095
            is_firsts = {}
            stream_buffers = {}
            n_prev_tokens = {}
            prompt_tokens = {}
            completion_tokens = {}
1096
            try:
1097
1098
1099
                async for content in tokenizer_manager.generate_request(
                    adapted_request, raw_request
                ):
1100
1101
1102
1103
1104
1105
1106
1107
                    index = content["index"]

                    is_first = is_firsts.get(index, True)
                    stream_buffer = stream_buffers.get(index, "")
                    n_prev_token = n_prev_tokens.get(index, 0)

                    prompt_tokens[index] = content["meta_info"]["prompt_tokens"]
                    completion_tokens[index] = content["meta_info"]["completion_tokens"]
yichuan~'s avatar
yichuan~ committed
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
                    if request.logprobs:
                        logprobs = to_openai_style_logprobs(
                            output_token_logprobs=content["meta_info"][
                                "output_token_logprobs"
                            ][n_prev_token:],
                            output_top_logprobs=content["meta_info"][
                                "output_top_logprobs"
                            ][n_prev_token:],
                        )

                        n_prev_token = len(
                            content["meta_info"]["output_token_logprobs"]
                        )
                        token_logprobs = []
                        for token, logprob in zip(
                            logprobs.tokens, logprobs.token_logprobs
                        ):
                            token_bytes = list(token.encode("utf-8"))
                            top_logprobs = []
                            if logprobs.top_logprobs:
                                for top_token, top_logprob in logprobs.top_logprobs[
                                    0
                                ].items():
                                    top_token_bytes = list(top_token.encode("utf-8"))
                                    top_logprobs.append(
                                        TopLogprob(
                                            token=top_token,
                                            bytes=top_token_bytes,
                                            logprob=top_logprob,
                                        )
                                    )
                            token_logprobs.append(
                                ChatCompletionTokenLogprob(
                                    token=token,
                                    bytes=token_bytes,
                                    logprob=logprob,
                                    top_logprobs=top_logprobs,
                                )
                            )

                        choice_logprobs = ChoiceLogprobs(content=token_logprobs)

                    else:
                        choice_logprobs = None

1153
1154
1155
1156
                    if is_first:
                        # First chunk with role
                        is_first = False
                        choice_data = ChatCompletionResponseStreamChoice(
1157
                            index=index,
1158
                            delta=DeltaMessage(role="assistant"),
1159
1160
1161
1162
                            finish_reason=(
                                content["meta_info"]["finish_reason"]["type"]
                                if content["meta_info"]["finish_reason"]
                                else ""
1163
                            ),
yichuan~'s avatar
yichuan~ committed
1164
                            logprobs=choice_logprobs,
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
                        )
                        chunk = ChatCompletionStreamResponse(
                            id=content["meta_info"]["id"],
                            choices=[choice_data],
                            model=request.model,
                        )
                        yield f"data: {chunk.model_dump_json()}\n\n"

                    text = content["text"]
                    delta = text[len(stream_buffer) :]
Liangsheng Yin's avatar
Liangsheng Yin committed
1175
                    stream_buffer = stream_buffer + delta
1176
                    choice_data = ChatCompletionResponseStreamChoice(
1177
                        index=index,
1178
                        delta=DeltaMessage(content=delta),
1179
1180
1181
1182
                        finish_reason=(
                            content["meta_info"]["finish_reason"]["type"]
                            if content["meta_info"]["finish_reason"]
                            else ""
1183
                        ),
yichuan~'s avatar
yichuan~ committed
1184
                        logprobs=choice_logprobs,
1185
1186
1187
1188
1189
1190
                    )
                    chunk = ChatCompletionStreamResponse(
                        id=content["meta_info"]["id"],
                        choices=[choice_data],
                        model=request.model,
                    )
1191
1192
1193
1194
1195

                    is_firsts[index] = is_first
                    stream_buffers[index] = stream_buffer
                    n_prev_tokens[index] = n_prev_token

1196
                    yield f"data: {chunk.model_dump_json()}\n\n"
1197
                if request.stream_options and request.stream_options.include_usage:
1198
1199
1200
1201
1202
1203
1204
1205
                    total_prompt_tokens = sum(
                        tokens
                        for i, tokens in prompt_tokens.items()
                        if i % request.n == 0
                    )
                    total_completion_tokens = sum(
                        tokens for tokens in completion_tokens.values()
                    )
1206
                    usage = UsageInfo(
1207
1208
1209
                        prompt_tokens=total_prompt_tokens,
                        completion_tokens=total_completion_tokens,
                        total_tokens=total_prompt_tokens + total_completion_tokens,
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
                    )

                    final_usage_chunk = ChatCompletionStreamResponse(
                        id=str(uuid.uuid4().hex),
                        choices=[],
                        model=request.model,
                        usage=usage,
                    )
                    final_usage_data = final_usage_chunk.model_dump_json(
                        exclude_unset=True, exclude_none=True
                    )
                    yield f"data: {final_usage_data}\n\n"
1222
1223
1224
            except ValueError as e:
                error = create_streaming_error_response(str(e))
                yield f"data: {error}\n\n"
1225
1226
            yield "data: [DONE]\n\n"

1227
1228
1229
1230
1231
        return StreamingResponse(
            generate_stream_resp(),
            media_type="text/event-stream",
            background=tokenizer_manager.create_abort_task(adapted_request),
        )
1232
1233

    # Non-streaming response.
1234
1235
    try:
        ret = await tokenizer_manager.generate_request(
1236
1237
            adapted_request, raw_request
        ).__anext__()
1238
1239
    except ValueError as e:
        return create_error_response(str(e))
1240
1241
1242
    if not isinstance(ret, list):
        ret = [ret]

1243
    response = v1_chat_generate_response(request, ret)
1244

1245
1246
1247
    return response


1248
1249
1250
def v1_embedding_request(all_requests, tokenizer_manager):
    prompts = []
    sampling_params_list = []
Ying Sheng's avatar
Ying Sheng committed
1251
    first_prompt_type = type(all_requests[0].input)
1252
1253

    for request in all_requests:
Ying Sheng's avatar
Ying Sheng committed
1254
        prompt = request.input
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
        assert (
            type(prompt) == first_prompt_type
        ), "All prompts must be of the same type in file input settings"
        prompts.append(prompt)

    if len(all_requests) == 1:
        prompt = prompts[0]
        if isinstance(prompt, str) or isinstance(prompt[0], str):
            prompt_kwargs = {"text": prompt}
        else:
            prompt_kwargs = {"input_ids": prompt}
    else:
        if isinstance(prompts[0], str) or isinstance(propmt[0][0], str):
            prompt_kwargs = {"text": prompts}
        else:
            prompt_kwargs = {"input_ids": prompts}

    adapted_request = EmbeddingReqInput(
        **prompt_kwargs,
    )

    if len(all_requests) == 1:
        return adapted_request, all_requests[0]
    return adapted_request, all_requests


Ying Sheng's avatar
Ying Sheng committed
1281
1282
1283
def v1_embedding_response(ret, model_path, to_file=False):
    embedding_objects = []
    prompt_tokens = 0
1284
    for idx, ret_item in enumerate(ret):
Ying Sheng's avatar
Ying Sheng committed
1285
1286
1287
        embedding_objects.append(
            EmbeddingObject(
                embedding=ret[idx]["embedding"],
1288
1289
1290
                index=idx,
            )
        )
Ying Sheng's avatar
Ying Sheng committed
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
        prompt_tokens += ret[idx]["meta_info"]["prompt_tokens"]

    return EmbeddingResponse(
        data=embedding_objects,
        model=model_path,
        usage=UsageInfo(
            prompt_tokens=prompt_tokens,
            total_tokens=prompt_tokens,
        ),
    )
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317


async def v1_embeddings(tokenizer_manager, raw_request: Request):
    request_json = await raw_request.json()
    all_requests = [EmbeddingRequest(**request_json)]
    adapted_request, request = v1_embedding_request(all_requests, tokenizer_manager)

    try:
        ret = await tokenizer_manager.generate_request(
            adapted_request, raw_request
        ).__anext__()
    except ValueError as e:
        return create_error_response(str(e))

    if not isinstance(ret, list):
        ret = [ret]

Ying Sheng's avatar
Ying Sheng committed
1318
    response = v1_embedding_response(ret, tokenizer_manager.model_path)
1319
1320
1321
1322

    return response


1323
def to_openai_style_logprobs(
1324
1325
1326
1327
    input_token_logprobs=None,
    output_token_logprobs=None,
    input_top_logprobs=None,
    output_top_logprobs=None,
1328
1329
1330
1331
1332
1333
1334
1335
):
    ret_logprobs = LogProbs()

    def append_token_logprobs(token_logprobs):
        for logprob, _, token_text in token_logprobs:
            ret_logprobs.tokens.append(token_text)
            ret_logprobs.token_logprobs.append(logprob)

1336
            # Not supported yet
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
            ret_logprobs.text_offset.append(-1)

    def append_top_logprobs(top_logprobs):
        for tokens in top_logprobs:
            if tokens is not None:
                ret_logprobs.top_logprobs.append(
                    {token[2]: token[0] for token in tokens}
                )
            else:
                ret_logprobs.top_logprobs.append(None)

1348
1349
1350
1351
1352
1353
1354
1355
    if input_token_logprobs is not None:
        append_token_logprobs(input_token_logprobs)
    if output_token_logprobs is not None:
        append_token_logprobs(output_token_logprobs)
    if input_top_logprobs is not None:
        append_top_logprobs(input_top_logprobs)
    if output_top_logprobs is not None:
        append_top_logprobs(output_top_logprobs)
1356

Liangsheng Yin's avatar
Liangsheng Yin committed
1357
    return ret_logprobs