serving_chat.py 44.3 KB
Newer Older
1
2
from __future__ import annotations

3
import copy
4
5
6
7
import json
import logging
import time
import uuid
8
from typing import TYPE_CHECKING, Any, AsyncGenerator, Dict, List, Optional, Union
9
10

from fastapi import Request
11
from fastapi.responses import ORJSONResponse, StreamingResponse
12
13
14
15
16
17
18
19
20
21
22
23
24
25

from sglang.srt.entrypoints.openai.protocol import (
    ChatCompletionRequest,
    ChatCompletionResponse,
    ChatCompletionResponseChoice,
    ChatCompletionResponseStreamChoice,
    ChatCompletionStreamResponse,
    ChatCompletionTokenLogprob,
    ChatMessage,
    ChoiceLogprobs,
    DeltaMessage,
    ErrorResponse,
    FunctionResponse,
    LogProbs,
26
    MessageProcessingResult,
27
28
29
30
    ToolCall,
    TopLogprob,
)
from sglang.srt.entrypoints.openai.serving_base import OpenAIServingBase
31
from sglang.srt.entrypoints.openai.usage_processor import UsageProcessor
32
from sglang.srt.entrypoints.openai.utils import (
33
    process_hidden_states_from_ret,
34
35
    to_openai_style_logprobs,
)
36
from sglang.srt.function_call.core_types import ToolCallItem
37
38
from sglang.srt.function_call.function_call_parser import FunctionCallParser
from sglang.srt.managers.io_struct import GenerateReqInput
39
40
41
from sglang.srt.parser.conversation import generate_chat_conv
from sglang.srt.parser.jinja_template_utils import process_content_for_template_format
from sglang.srt.parser.reasoning_parser import ReasoningParser
42
43
from sglang.utils import convert_json_schema_to_str

44
45
46
47
if TYPE_CHECKING:
    from sglang.srt.managers.template_manager import TemplateManager
    from sglang.srt.managers.tokenizer_manager import TokenizerManager

48
49
50
51
logger = logging.getLogger(__name__)


class OpenAIServingChat(OpenAIServingBase):
52
    """Handler for /v1/chat/completions requests"""
53

54
    def __init__(
55
56
57
        self,
        tokenizer_manager: TokenizerManager,
        template_manager: TemplateManager,
58
59
60
    ):
        super().__init__(tokenizer_manager)
        self.template_manager = template_manager
61
        self.tool_call_parser = self.tokenizer_manager.server_args.tool_call_parser
62
63
64
65

    def _request_id_prefix(self) -> str:
        return "chatcmpl-"

66
67
68
69
70
71
72
73
74
75
76
77
    def _validate_request(self, request: ChatCompletionRequest) -> Optional[str]:
        """Validate that the input is valid."""
        if not request.messages:
            return "Messages cannot be empty."

        if (
            isinstance(request.tool_choice, str)
            and request.tool_choice.lower() == "required"
            and not request.tools
        ):
            return "Tools cannot be empty if tool choice is set to required."

78
79
80
81
82
83
84
85
86
87
88
89
        max_output_tokens = request.max_completion_tokens or request.max_tokens
        server_context_length = self.tokenizer_manager.server_args.context_length
        if (
            max_output_tokens
            and server_context_length
            and max_output_tokens > server_context_length
        ):
            return (
                f"max_completion_tokens is too large: {max_output_tokens}."
                f"This model supports at most {server_context_length} completion tokens."
            )

90
91
92
93
94
        if request.response_format and request.response_format.type == "json_schema":
            schema = getattr(request.response_format.json_schema, "schema_", None)
            if schema is None:
                return "schema_ is required for json_schema response format request."

95
96
        return None

97
98
    def _convert_to_internal_request(
        self,
99
        request: ChatCompletionRequest,
100
        raw_request: Request = None,
101
    ) -> tuple[GenerateReqInput, ChatCompletionRequest]:
102
103
104
105
106
107
108
109
        reasoning_effort = (
            request.chat_template_kwargs.pop("reasoning_effort", None)
            if request.chat_template_kwargs
            else None
        )
        if reasoning_effort is not None:
            request.reasoning_effort = reasoning_effort

110
111
112
        """Convert OpenAI chat completion request to internal format"""
        is_multimodal = self.tokenizer_manager.model_config.is_multimodal

113
        # Process messages and apply chat template
114
        processed_messages = self._process_messages(request, is_multimodal)
115

116
117
118
119
120
121
122
123
124
125
        # Build sampling parameters
        sampling_params = self._build_sampling_params(
            request,
            processed_messages.stop,
            processed_messages.tool_call_constraint,
        )

        # Handle single vs multiple requests
        if is_multimodal:
            prompt_kwargs = {"text": processed_messages.prompt}
126
        else:
127
128
129
130
131
            if isinstance(processed_messages.prompt_ids, str):
                prompt_kwargs = {"text": processed_messages.prompt_ids}
            else:
                prompt_kwargs = {"input_ids": processed_messages.prompt_ids}

132
133
        # Extract custom labels from raw request headers
        custom_labels = self.extract_custom_labels(raw_request)
134

135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
        adapted_request = GenerateReqInput(
            **prompt_kwargs,
            image_data=processed_messages.image_data,
            video_data=processed_messages.video_data,
            audio_data=processed_messages.audio_data,
            sampling_params=sampling_params,
            return_logprob=request.logprobs,
            logprob_start_len=-1,
            top_logprobs_num=request.top_logprobs or 0,
            stream=request.stream,
            return_text_in_logprobs=True,
            modalities=processed_messages.modalities,
            lora_path=request.lora_path,
            bootstrap_host=request.bootstrap_host,
            bootstrap_port=request.bootstrap_port,
            bootstrap_room=request.bootstrap_room,
            return_hidden_states=request.return_hidden_states,
            rid=request.rid,
153
            extra_key=self._compute_extra_key(request),
154
            priority=request.priority,
155
            custom_labels=custom_labels,
156
        )
157

158
        return adapted_request, request
159
160
161

    def _process_messages(
        self, request: ChatCompletionRequest, is_multimodal: bool
162
    ) -> MessageProcessingResult:
163
        """Process chat messages and apply chat template"""
164
165
166
167
168
169
170
171
172
173
        is_gpt_oss = (
            hasattr(self.tokenizer_manager.model_config, "hf_config")
            and hasattr(self.tokenizer_manager.model_config.hf_config, "model_type")
            and self.tokenizer_manager.model_config.hf_config.model_type == "gpt_oss"
        )

        # GptOss model needs to keep special tokens for harmony parsing
        if is_gpt_oss:
            request.skip_special_tokens = False

174
175
        tool_call_constraint = None

176
177
178
179
180
181
        # Apply chat template and its stop strings
        tools = None
        if request.tools and request.tool_choice != "none":
            request.skip_special_tokens = False
            if not isinstance(request.tool_choice, str):
                tools = [
182
                    item.function.model_dump()
183
184
185
                    for item in request.tools
                    if item.function.name == request.tool_choice.function.name
                ]
186
            else:
187
                tools = [item.function.model_dump() for item in request.tools]
188
189
190
191
192
            if self.tool_call_parser:
                parser = FunctionCallParser(request.tools, self.tool_call_parser)
                tool_call_constraint = parser.get_structure_constraint(
                    request.tool_choice
                )
193
194
195
196

        # Use chat template
        if self.template_manager.chat_template_name is None:
            result = self._apply_jinja_template(request, tools, is_multimodal)
197
        else:
198
199
200
201
            result = self._apply_conversation_template(request, is_multimodal)

        result.tool_call_constraint = tool_call_constraint
        return result
202
203
204
205
206
207

    def _apply_jinja_template(
        self,
        request: ChatCompletionRequest,
        tools: Optional[List[Dict]],
        is_multimodal: bool,
208
    ) -> MessageProcessingResult:
209
        """Apply Jinja chat template"""
210
211
        prompt = ""
        prompt_ids = []
212
213
        openai_compatible_messages = []
        image_data = []
214
        video_data = []
215
216
217
        audio_data = []
        modalities = []

218
        template_content_format = self.template_manager.jinja_template_content_format
219
220
221
222
223
224
225
226
227
228
229

        for message in request.messages:
            if message.content is None:
                message.content = ""
            msg_dict = message.model_dump()

            # Process content based on detected template format
            processed_msg = process_content_for_template_format(
                msg_dict,
                template_content_format,
                image_data,
230
                video_data,
231
232
233
                audio_data,
                modalities,
            )
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252

            # per the Transformers docs & maintainers, tool call arguments in
            # assistant-role messages with tool_calls need to be dicts not JSON str -
            # this is how tool-use chat templates will expect them moving forwards
            # so, for messages that have tool_calls, parse the string (which we get
            # from openAI format) to dict
            if (
                processed_msg["role"] == "assistant"
                and "tool_calls" in processed_msg
                and isinstance(processed_msg["tool_calls"], list)
            ):
                for item in processed_msg["tool_calls"]:
                    if "arguments" in item["function"] and isinstance(
                        item["function"]["arguments"], str
                    ):
                        item["function"]["arguments"] = json.loads(
                            item["function"]["arguments"]
                        )

253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
            openai_compatible_messages.append(processed_msg)

        # Handle assistant prefix for continue_final_message
        assistant_prefix = None
        if (
            openai_compatible_messages
            and openai_compatible_messages[-1]["role"] == "assistant"
        ):
            if request.continue_final_message:
                assistant_prefix = openai_compatible_messages[-1]["content"]
                openai_compatible_messages = openai_compatible_messages[:-1]

        try:
            prompt_ids = self.tokenizer_manager.tokenizer.apply_chat_template(
                openai_compatible_messages,
                tokenize=True,
                add_generation_prompt=True,
                tools=tools,
271
                reasoning_effort=request.reasoning_effort,
272
273
274
275
276
                **(
                    request.chat_template_kwargs if request.chat_template_kwargs else {}
                ),
            )
        except Exception:
277
278
279
            # This except branch will be triggered when the chosen model
            # has a different tools input format that is not compatible
            # with openAI's apply_chat_template tool_call format, like Mistral.
280
281
282
283
284
285
286
287
288
289
            tools = (
                [t if "function" in t else {"function": t} for t in tools]
                if tools
                else None
            )
            prompt_ids = self.tokenizer_manager.tokenizer.apply_chat_template(
                openai_compatible_messages,
                tokenize=True,
                add_generation_prompt=True,
                tools=tools,
290
                reasoning_effort=request.reasoning_effort,
291
292
293
294
295
296
297
298
299
300
301
302
303
304
                **(
                    request.chat_template_kwargs if request.chat_template_kwargs else {}
                ),
            )

        if assistant_prefix:
            encoded = self.tokenizer_manager.tokenizer.encode(assistant_prefix)
            if encoded and encoded[0] == self.tokenizer_manager.tokenizer.bos_token_id:
                encoded = encoded[1:]
            prompt_ids += encoded

        if is_multimodal:
            prompt = self.tokenizer_manager.tokenizer.decode(prompt_ids)

305
306
307
        stop = request.stop
        image_data = image_data if image_data else None
        audio_data = audio_data if audio_data else None
308
        video_data = video_data if video_data else None
309
        modalities = modalities if modalities else []
310
311
312
313
        return MessageProcessingResult(
            prompt=prompt,
            prompt_ids=prompt_ids,
            image_data=image_data,
314
            video_data=video_data,
315
316
317
318
            audio_data=audio_data,
            modalities=modalities,
            stop=stop,
        )
319
320

    def _apply_conversation_template(
321
322
323
        self,
        request: ChatCompletionRequest,
        is_multimodal: bool,
324
    ) -> MessageProcessingResult:
325
        """Apply conversation template"""
326
327
328
        prompt = ""
        prompt_ids = []
        conv = generate_chat_conv(request, self.template_manager.chat_template_name)
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353

        # If we should continue the final assistant message, adjust the conversation.
        if (
            request.continue_final_message
            and request.messages
            and request.messages[-1].role == "assistant"
        ):
            # Remove the auto-added blank assistant turn, if present.
            if conv.messages and conv.messages[-1][1] is None:
                conv.messages.pop()
            # Rebuild the prompt from the conversation.
            prompt = conv.get_prompt()
            # Strip trailing stop tokens or separators that indicate end-of-assistant.
            if isinstance(conv.stop_str, list):
                for stop_token in conv.stop_str:
                    if prompt.endswith(stop_token):
                        prompt = prompt[: -len(stop_token)]
            elif isinstance(conv.stop_str, str) and prompt.endswith(conv.stop_str):
                prompt = prompt[: -len(conv.stop_str)]
            if conv.sep and prompt.endswith(conv.sep):
                prompt = prompt[: -len(conv.sep)]
            if getattr(conv, "sep2", None) and prompt.endswith(conv.sep2):
                prompt = prompt[: -len(conv.sep2)]
        else:
            prompt = conv.get_prompt()
354
355
            if self._get_enable_thinking_from_request(request):
                prompt += "<think>"  # Note(Xinyuan): hard code thinking token
356

357
        image_data = conv.image_data if conv.image_data else None
358
        video_data = conv.video_data if conv.video_data else None
359
360
        audio_data = conv.audio_data if conv.audio_data else None
        modalities = conv.modalities if conv.modalities else []
361
        stop = copy.copy(conv.stop_str or [] if not request.ignore_eos else [])
362
363
364
365
366
367
368

        if request.stop:
            if isinstance(request.stop, str):
                stop.append(request.stop)
            else:
                stop.extend(request.stop)

369
370
371
        if not is_multimodal:
            prompt_ids = self.tokenizer_manager.tokenizer.encode(prompt)

372
373
374
375
        return MessageProcessingResult(
            prompt=prompt,
            prompt_ids=prompt_ids,
            image_data=image_data,
376
            video_data=video_data,
377
378
379
380
            audio_data=audio_data,
            modalities=modalities,
            stop=stop,
        )
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450

    def _build_sampling_params(
        self,
        request: ChatCompletionRequest,
        stop: List[str],
        tool_call_constraint: Optional[Any],
    ) -> Dict[str, Any]:
        """Build sampling parameters for the request"""

        sampling_params = {
            "temperature": request.temperature,
            "max_new_tokens": request.max_tokens or request.max_completion_tokens,
            "min_new_tokens": request.min_tokens,
            "stop": stop,
            "stop_token_ids": request.stop_token_ids,
            "top_p": request.top_p,
            "top_k": request.top_k,
            "min_p": request.min_p,
            "presence_penalty": request.presence_penalty,
            "frequency_penalty": request.frequency_penalty,
            "repetition_penalty": request.repetition_penalty,
            "regex": request.regex,
            "ebnf": request.ebnf,
            "n": request.n,
            "no_stop_trim": request.no_stop_trim,
            "ignore_eos": request.ignore_eos,
            "skip_special_tokens": request.skip_special_tokens,
            "logit_bias": request.logit_bias,
        }

        if request.response_format and request.response_format.type == "json_schema":
            sampling_params["json_schema"] = convert_json_schema_to_str(
                request.response_format.json_schema.schema_
            )
        elif request.response_format and request.response_format.type == "json_object":
            sampling_params["json_schema"] = '{"type": "object"}'
        elif (
            request.response_format and request.response_format.type == "structural_tag"
        ):
            sampling_params["structural_tag"] = convert_json_schema_to_str(
                request.response_format.model_dump(by_alias=True)
            )

        # Check if there are already existing output constraints
        has_existing_constraints = (
            sampling_params.get("regex")
            or sampling_params.get("ebnf")
            or sampling_params.get("structural_tag")
            or sampling_params.get("json_schema")
        )

        if tool_call_constraint and has_existing_constraints:
            logger.warning("Constrained decoding is not compatible with tool calls.")
        elif tool_call_constraint:
            constraint_type, constraint_value = tool_call_constraint
            if constraint_type == "structural_tag":
                sampling_params[constraint_type] = convert_json_schema_to_str(
                    constraint_value.model_dump(by_alias=True)
                )
            else:
                sampling_params[constraint_type] = constraint_value
        return sampling_params

    async def _handle_streaming_request(
        self,
        adapted_request: GenerateReqInput,
        request: ChatCompletionRequest,
        raw_request: Request,
    ) -> StreamingResponse:
        """Handle streaming chat completion request"""
451
452
453
454
455
        return StreamingResponse(
            self._generate_chat_stream(adapted_request, request, raw_request),
            media_type="text/event-stream",
            background=self.tokenizer_manager.create_abort_task(adapted_request),
        )
456

457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
    async def _generate_chat_stream(
        self,
        adapted_request: GenerateReqInput,
        request: ChatCompletionRequest,
        raw_request: Request,
    ) -> AsyncGenerator[str, None]:
        """Generate streaming chat completion response"""
        # Parsers for tool calls and reasoning
        parser_dict = {}
        reasoning_parser_dict = {}

        # State tracking for streaming
        is_firsts = {}
        stream_buffers = {}
        n_prev_tokens = {}
472
473
        has_tool_calls = {}
        finish_reasons = {}
474
475
476
477
478

        # Usage tracking
        prompt_tokens = {}
        completion_tokens = {}
        cached_tokens = {}
479
        hidden_states = {}
480

481
482
483
484
485
        try:
            async for content in self.tokenizer_manager.generate_request(
                adapted_request, raw_request
            ):
                index = content.get("index", 0)
486

487
488
489
                prompt_tokens[index] = content["meta_info"]["prompt_tokens"]
                completion_tokens[index] = content["meta_info"]["completion_tokens"]
                cached_tokens[index] = content["meta_info"].get("cached_tokens", 0)
490
                hidden_states[index] = content["meta_info"].get("hidden_states", None)
491

492
493
494
495
496
497
498
499
500
                # Handle logprobs
                choice_logprobs = None
                if request.logprobs:
                    choice_logprobs = self._process_streaming_logprobs(
                        content, n_prev_tokens.get(index, 0)
                    )
                    n_prev_tokens[index] = len(
                        content["meta_info"]["output_token_logprobs"]
                    )
501

502
503
504
                finish_reason = content["meta_info"]["finish_reason"]
                finish_reason_type = finish_reason["type"] if finish_reason else None

505
506
507
508
                # Track finish_reason for each index
                if finish_reason_type:
                    finish_reasons[index] = finish_reason

509
510
511
512
513
514
515
                # First chunk with role
                if is_firsts.get(index, True):
                    is_firsts[index] = False
                    delta = DeltaMessage(role="assistant", content="")
                    choice_data = ChatCompletionResponseStreamChoice(
                        index=index,
                        delta=delta,
516
517
                        finish_reason=None,
                        logprobs=None,
518
519
520
521
522
523
                    )
                    chunk = ChatCompletionStreamResponse(
                        id=content["meta_info"]["id"],
                        created=int(time.time()),
                        choices=[choice_data],
                        model=request.model,
524
                    )
525
                    yield f"data: {chunk.model_dump_json()}\n\n"
526

527
528
529
                stream_buffer = stream_buffers.get(index, "")
                delta = content["text"][len(stream_buffer) :]
                stream_buffers[index] = stream_buffer + delta
530
531
532
533
534
535
536
537
538
539

                # Handle reasoning content
                if (
                    self.tokenizer_manager.server_args.reasoning_parser
                    and request.separate_reasoning
                ):
                    reasoning_text, delta = self._process_reasoning_stream(
                        index, delta, reasoning_parser_dict, content, request
                    )
                    if reasoning_text:
540
541
                        choice_data = ChatCompletionResponseStreamChoice(
                            index=index,
542
                            delta=DeltaMessage(reasoning_content=reasoning_text),
543
                            finish_reason=None,
544
545
546
547
548
549
550
551
552
553
                        )
                        chunk = ChatCompletionStreamResponse(
                            id=content["meta_info"]["id"],
                            created=int(time.time()),
                            choices=[choice_data],
                            model=request.model,
                        )
                        yield f"data: {chunk.model_dump_json()}\n\n"

                # Handle tool calls
554
555
556
557
558
                if (
                    request.tool_choice != "none"
                    and request.tools
                    and self.tool_call_parser
                ):
559
                    async for chunk in self._process_tool_call_stream(
560
561
562
563
564
                        index,
                        delta,
                        parser_dict,
                        content,
                        request,
565
                        has_tool_calls,
566
                    ):
567
568
                        if chunk:
                            yield chunk
569
570
571
572
573
574
575
576
577

                    # Send any remaining tool call arguments when generation finishes
                    if finish_reason_type is not None and index in parser_dict:
                        parser = parser_dict[index]
                        remaining_chunk = self._check_for_unstreamed_tool_args(
                            parser, content, request, index
                        )
                        if remaining_chunk:
                            yield remaining_chunk
578

579
580
                else:
                    # Regular content
581
                    if delta:
582
583
                        choice_data = ChatCompletionResponseStreamChoice(
                            index=index,
584
                            delta=DeltaMessage(content=delta),
585
586
                            finish_reason=None,
                            matched_stop=None,
587
588
589
590
591
592
593
594
595
596
                            logprobs=choice_logprobs,
                        )
                        chunk = ChatCompletionStreamResponse(
                            id=content["meta_info"]["id"],
                            created=int(time.time()),
                            choices=[choice_data],
                            model=request.model,
                        )
                        yield f"data: {chunk.model_dump_json()}\n\n"

597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
            # Send finish_reason chunks for each index that completed
            for idx, finish_reason_data in finish_reasons.items():
                finish_reason_type = finish_reason_data["type"]

                # Change finish_reason to "tool_calls" if we had tool calls and stopped naturally
                final_finish_reason = finish_reason_type
                if has_tool_calls.get(idx, False) and finish_reason_type == "stop":
                    final_finish_reason = "tool_calls"

                finish_reason_chunk = ChatCompletionStreamResponse(
                    id=content["meta_info"][
                        "id"
                    ],  # NOTE: openai uses the same chatcmpl-id for all indices
                    created=int(time.time()),
                    choices=[
                        ChatCompletionResponseStreamChoice(
                            index=idx,
                            delta=DeltaMessage(),
                            finish_reason=final_finish_reason,
                            matched_stop=(
                                finish_reason_data["matched"]
                                if "matched" in finish_reason_data
                                else None
                            ),
                        )
                    ],
                    model=request.model,
                    usage=None,
                )
                yield f"data: {finish_reason_chunk.model_dump_json()}\n\n"
627

628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
            # Send hidden states if requested
            if request.return_hidden_states and hidden_states:
                for index, choice_hidden_states in hidden_states.items():
                    if choice_hidden_states:
                        last_token_hidden_states = (
                            choice_hidden_states[-1]
                            if len(choice_hidden_states) > 1
                            else []
                        )
                        hidden_states_chunk = ChatCompletionStreamResponse(
                            id=content["meta_info"]["id"],
                            created=int(time.time()),
                            choices=[
                                ChatCompletionResponseStreamChoice(
                                    index=index,
                                    delta=DeltaMessage(
                                        hidden_states=last_token_hidden_states
                                    ),
646
                                    finish_reason=None,  # Hidden states don't need finish_reason
647
648
649
650
651
652
                                )
                            ],
                            model=request.model,
                        )
                        yield f"data: {hidden_states_chunk.model_dump_json()}\n\n"

653
654
            # Additional usage chunk
            if request.stream_options and request.stream_options.include_usage:
655
                usage = UsageProcessor.calculate_streaming_usage(
656
657
658
                    prompt_tokens,
                    completion_tokens,
                    cached_tokens,
659
660
                    n_choices=request.n,
                    enable_cache_report=self.tokenizer_manager.server_args.enable_cache_report,
661
662
                )
                usage_chunk = ChatCompletionStreamResponse(
663
664
                    id=content["meta_info"]["id"],
                    created=int(time.time()),
665
                    choices=[],  # Empty choices array as per OpenAI spec
666
667
668
                    model=request.model,
                    usage=usage,
                )
669
                yield f"data: {usage_chunk.model_dump_json()}\n\n"
670

671
        except ValueError as e:
672
673
            error = self.create_streaming_error_response(str(e))
            yield f"data: {error}\n\n"
674

675
        yield "data: [DONE]\n\n"
676
677
678
679
680
681

    async def _handle_non_streaming_request(
        self,
        adapted_request: GenerateReqInput,
        request: ChatCompletionRequest,
        raw_request: Request,
682
    ) -> Union[ChatCompletionResponse, ErrorResponse, ORJSONResponse]:
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
        """Handle non-streaming chat completion request"""
        try:
            ret = await self.tokenizer_manager.generate_request(
                adapted_request, raw_request
            ).__anext__()
        except ValueError as e:
            return self.create_error_response(str(e))

        if not isinstance(ret, list):
            ret = [ret]

        response = self._build_chat_response(
            request,
            ret,
            int(time.time()),
        )

        return response

    def _build_chat_response(
        self,
        request: ChatCompletionRequest,
        ret: List[Dict[str, Any]],
        created: int,
707
    ) -> Union[ChatCompletionResponse, ORJSONResponse]:
708
709
710
711
712
713
714
715
716
        """Build chat completion response from generation results"""
        choices = []

        for idx, ret_item in enumerate(ret):
            # Process logprobs
            choice_logprobs = None
            if request.logprobs:
                choice_logprobs = self._process_response_logprobs(ret_item)

717
718
719
            # Handle hidden states
            hidden_states = process_hidden_states_from_ret(ret_item, request)

720
721
722
723
724
            finish_reason = ret_item["meta_info"]["finish_reason"]
            text = ret_item["text"]

            # Handle reasoning content
            reasoning_text = None
725
            reasoning_parser = self.tokenizer_manager.server_args.reasoning_parser
726
            if reasoning_parser and request.separate_reasoning:
727
728
729
730
                is_force_reasoning = (
                    self.template_manager.force_reasoning
                    or self._get_enable_thinking_from_request(request)
                )
731
732
                try:
                    parser = ReasoningParser(
733
734
                        model_type=reasoning_parser,
                        stream_reasoning=False,
735
                        force_reasoning=is_force_reasoning,
736
737
738
739
740
741
742
743
744
745
746
747
                    )
                    reasoning_text, text = parser.parse_non_stream(text)
                except Exception as e:
                    logger.error(f"Reasoning parsing error: {e}")
                    return self.create_error_response(
                        "Failed to parse reasoning content",
                        err_type="InternalServerError",
                        status_code=500,
                    )

            # Handle tool calls
            tool_calls = None
748
749
750
751
752
            if (
                request.tool_choice != "none"
                and request.tools
                and self.tool_call_parser
            ):
753
                history_tool_calls_cnt = self._get_history_tool_calls_cnt(request)
754
                tool_calls, text, finish_reason = self._process_tool_calls(
755
                    text, request.tools, finish_reason, history_tool_calls_cnt
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
                )

            choice_data = ChatCompletionResponseChoice(
                index=idx,
                message=ChatMessage(
                    role="assistant",
                    content=text if text else None,
                    tool_calls=tool_calls,
                    reasoning_content=reasoning_text if reasoning_text else None,
                ),
                logprobs=choice_logprobs,
                finish_reason=finish_reason["type"] if finish_reason else None,
                matched_stop=(
                    finish_reason["matched"]
                    if finish_reason and "matched" in finish_reason
                    else None
                ),
773
                hidden_states=hidden_states,
774
775
776
777
            )
            choices.append(choice_data)

        # Calculate usage
778
        usage = UsageProcessor.calculate_response_usage(
779
780
781
            ret,
            n_choices=request.n,
            enable_cache_report=self.tokenizer_manager.server_args.enable_cache_report,
782
        )
783
784
785
786
787
788
789

        return ChatCompletionResponse(
            id=ret[0]["meta_info"]["id"],
            created=created,
            model=request.model,
            choices=choices,
            usage=usage,
790
            metadata={"weight_version": ret[0]["meta_info"]["weight_version"]},
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
        )

    def _process_logprobs_tokens(
        self, logprobs: LogProbs, use_token_index: bool = False
    ) -> List[ChatCompletionTokenLogprob]:
        """Common helper to process logprobs tokens for both streaming and non-streaming

        Args:
            logprobs: LogProbs data from model
            use_token_index: True for non-streaming (use token_idx), False for streaming (use index 0)
        """
        token_logprobs = []

        for token_idx, (token, logprob) in enumerate(
            zip(logprobs.tokens, logprobs.token_logprobs)
        ):
            token_bytes = list(token.encode("utf-8"))
            top_logprobs = []
            if logprobs.top_logprobs:
                # - Non-streaming (use_token_index=True): uses token_idx for full data
                # - Streaming (use_token_index=False): uses index 0 for pre-sliced data
                top_logprobs_idx = token_idx if use_token_index else 0
                for top_token, top_logprob in logprobs.top_logprobs[
                    top_logprobs_idx
                ].items():
                    top_token_bytes = list(top_token.encode("utf-8"))
                    top_logprobs.append(
                        TopLogprob(
                            token=top_token,
                            bytes=top_token_bytes,
                            logprob=top_logprob,
                        )
                    )
            token_logprobs.append(
                ChatCompletionTokenLogprob(
                    token=token,
                    bytes=token_bytes,
                    logprob=logprob,
                    top_logprobs=top_logprobs,
                )
            )

        return token_logprobs

    def _process_response_logprobs(self, ret_item: Dict[str, Any]) -> ChoiceLogprobs:
        """Process logprobs for non-streaming response"""
        logprobs = to_openai_style_logprobs(
            output_token_logprobs=ret_item["meta_info"]["output_token_logprobs"],
            output_top_logprobs=ret_item["meta_info"].get("output_top_logprobs", None),
        )

        token_logprobs = self._process_logprobs_tokens(logprobs, use_token_index=True)
        return ChoiceLogprobs(content=token_logprobs)

845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
    def _process_tool_call_id(
        self,
        call_item: ToolCallItem,
        history_tool_calls_cnt: int,
    ) -> str:
        """Process for generating a new and unique `tool_call_id`"""
        if self.tool_call_parser != "kimi_k2":
            # A simple uuid is sufficient for all models except for Kimi-K2.
            tool_call_id = f"call_{uuid.uuid4().hex[:24]}"
            return tool_call_id
        else:
            # Align with Kimi-K2 format: functions.{name}:{index}
            # Kimi-K2 allows multiple tool_calls in one message; SGLang sets call_item.tool_index to the *local* position inside that message.
            # Therefore, the index must be corrected by using `history_tool_calls_cnt + call_item.tool_index` to ensure globally unique and properly ordered.
            tool_call_id = f"functions.{call_item.name}:{history_tool_calls_cnt+call_item.tool_index}"
            logger.debug(
                f"Process tool call idx, parser: {self.tool_call_parser}, tool_call_id: {tool_call_id}, history_cnt: {history_tool_calls_cnt}"
            )
            return tool_call_id

865
866
867
868
869
    def _process_tool_calls(
        self,
        text: str,
        tools: List[Any],
        finish_reason: Dict[str, Any],
870
        history_tool_calls_cnt: int = 0,
871
872
    ) -> tuple[Optional[List[ToolCall]], str, Dict[str, Any]]:
        """Process tool calls in the response"""
873
        parser = FunctionCallParser(tools, self.tool_call_parser)
874
875
876
877
878
879
        if parser.has_tool_call(text):
            if finish_reason["type"] == "stop":
                finish_reason["type"] = "tool_calls"
                finish_reason["matched"] = None
            try:
                text, call_info_list = parser.parse_non_stream(text)
880
881
                tool_calls = []
                for call_info in call_info_list:
882
883
884
                    tool_id = self._process_tool_call_id(
                        call_info, history_tool_calls_cnt
                    )
885
886
887
888
889
890
891
892
                    tool_calls.append(
                        ToolCall(
                            id=tool_id,
                            index=getattr(call_info, "tool_index", None),
                            function=FunctionResponse(
                                name=call_info.name, arguments=call_info.parameters
                            ),
                        )
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
                    )
                return tool_calls, text, finish_reason
            except Exception as e:
                logger.error(f"Tool call parsing error: {e}")
                # Return error but don't fail the whole request
                return None, text, finish_reason

        return None, text, finish_reason

    def _process_streaming_logprobs(
        self, content: Dict[str, Any], n_prev_token: int
    ) -> ChoiceLogprobs:
        """Process logprobs for streaming response"""
        logprobs = to_openai_style_logprobs(
            output_token_logprobs=content["meta_info"]["output_token_logprobs"][
                n_prev_token:
            ],
            output_top_logprobs=content["meta_info"].get("output_top_logprobs", [])[
                n_prev_token:
            ],
        )

        token_logprobs = self._process_logprobs_tokens(logprobs, use_token_index=False)
        return ChoiceLogprobs(content=token_logprobs)

    def _process_reasoning_stream(
        self,
        index: int,
        delta: str,
        reasoning_parser_dict: Dict[int, ReasoningParser],
        content: Dict[str, Any],
        request: ChatCompletionRequest,
    ) -> tuple[Optional[str], str]:
        """Process reasoning content in streaming response"""
        if index not in reasoning_parser_dict:
928
929
930
931
            is_force_reasoning = (
                self.template_manager.force_reasoning
                or self._get_enable_thinking_from_request(request)
            )
932
933
934
            reasoning_parser_dict[index] = ReasoningParser(
                self.tokenizer_manager.server_args.reasoning_parser,
                request.stream_reasoning,
935
                is_force_reasoning,
936
937
938
939
            )
        reasoning_parser = reasoning_parser_dict[index]
        return reasoning_parser.parse_stream_chunk(delta)

940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
    def _get_history_tool_calls_cnt(self, request: ChatCompletionRequest) -> int:
        """Counts the number of tool calls in the request's message history.

        NOTE: This method is only useful for models that include self-increasing
        history tool call idx in tool calls id, such as kimi-k2

        Args:
            request: The chat completion request object.

        Returns:
            The total number of tool calls in the history, or 0 if not applicable.
        """
        messages = getattr(request, "messages", [])
        idx = 0
        for msg in messages:
            if msg.role == "assistant":
                tool_calls = getattr(msg, "tool_calls", None)
                idx += len(list(tool_calls)) if tool_calls is not None else 0  # noqa
        return idx

960
    def _get_enable_thinking_from_request(self, request: ChatCompletionRequest) -> bool:
961
962
963
964
965
966
967
968
        """Extracts the 'enable_thinking' flag from request chat_template_kwargs.

        NOTE: This parameter is only useful for models that support enable_thinking
        flag, such as Qwen3.

        Args:
            request_obj: The request object (or an item from a list of requests).
        Returns:
969
            The boolean value of 'enable_thinking' if found, otherwise False.
970
        """
971
972
973
974
975
976
977
978
979
        if hasattr(request, "chat_template_kwargs") and request.chat_template_kwargs:
            # For Qwen3 models, `enable_thinking` is supported.
            if request.chat_template_kwargs.get("enable_thinking") is not None:
                return request.chat_template_kwargs.get("enable_thinking")
            # For DeepSeek-V3.1 models, `thinking` is supported.
            elif request.chat_template_kwargs.get("thinking") is not None:
                return request.chat_template_kwargs.get("thinking")
            else:
                return False
980
        return False
981

982
983
984
985
986
987
988
    async def _process_tool_call_stream(
        self,
        index: int,
        delta: str,
        parser_dict: Dict[int, FunctionCallParser],
        content: Dict[str, Any],
        request: ChatCompletionRequest,
989
        has_tool_calls: Dict[int, bool],
990
991
992
993
994
    ):
        """Process tool calls in streaming response"""
        if index not in parser_dict:
            parser_dict[index] = FunctionCallParser(
                tools=request.tools,
995
                tool_call_parser=self.tool_call_parser,
996
997
998
999
1000
1001
1002
1003
1004
1005
            )
        parser = parser_dict[index]

        normal_text, calls = parser.parse_stream_chunk(delta)

        # Yield normal text
        if normal_text:
            choice_data = ChatCompletionResponseStreamChoice(
                index=index,
                delta=DeltaMessage(content=normal_text),
1006
                finish_reason=None,
1007
1008
1009
1010
1011
1012
1013
            )
            chunk = ChatCompletionStreamResponse(
                id=content["meta_info"]["id"],
                created=int(time.time()),
                choices=[choice_data],
                model=request.model,
            )
1014
            yield f"data: {chunk.model_dump_json()}\n\n"
1015
1016

        # Yield tool calls
1017
        history_tool_calls_cnt = self._get_history_tool_calls_cnt(request)
1018
        for call_item in calls:
1019
1020
1021
            # Mark that this choice has tool calls
            has_tool_calls[index] = True

1022
1023
1024
            # Tool call ID should be generated only once per tool call
            if call_item.name:
                # First chunk: include ID and function name
1025
1026
1027
                tool_call_id = self._process_tool_call_id(
                    call_item, history_tool_calls_cnt
                )
1028
1029
1030
1031
1032
1033
                function_name = call_item.name
            else:
                # Subsequent chunks: null ID and name for argument deltas
                tool_call_id = None
                function_name = None

1034
            tool_call = ToolCall(
1035
                id=tool_call_id,
1036
1037
                index=call_item.tool_index,
                function=FunctionResponse(
1038
                    name=function_name,
1039
1040
1041
1042
1043
1044
1045
                    arguments=call_item.parameters,
                ),
            )

            choice_data = ChatCompletionResponseStreamChoice(
                index=index,
                delta=DeltaMessage(tool_calls=[tool_call]),
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
                finish_reason=None,
            )
            chunk = ChatCompletionStreamResponse(
                id=content["meta_info"]["id"],
                created=int(time.time()),
                choices=[choice_data],
                model=request.model,
            )
            yield f"data: {chunk.model_dump_json()}\n\n"

    def _check_for_unstreamed_tool_args(
        self,
        parser: FunctionCallParser,
        content: Dict[str, Any],
        request: ChatCompletionRequest,
        index: int,
    ) -> Optional[str]:
        """
        Check for any remaining tool call arguments that need to be streamed
        when generation finishes. This ensures tool calls are properly completed
        even if the model generates the final arguments in the last chunk.
        """
        # Only check if we have tool calls and the parser has tracked data
        if (
            not hasattr(parser.detector, "prev_tool_call_arr")
            or not parser.detector.prev_tool_call_arr
        ):
            return None

        if (
            not hasattr(parser.detector, "streamed_args_for_tool")
            or not parser.detector.streamed_args_for_tool
        ):
            return None

        # Get the last tool call that was being processed
        tool_index = len(parser.detector.prev_tool_call_arr) - 1
        if tool_index < 0 or tool_index >= len(parser.detector.streamed_args_for_tool):
            return None

        # Get expected vs actual arguments
        expected_args = parser.detector.prev_tool_call_arr[tool_index].get(
            "arguments", {}
        )
        expected_call = json.dumps(expected_args, ensure_ascii=False)
        actual_call = parser.detector.streamed_args_for_tool[tool_index]

        # Check if there are remaining arguments to send
        remaining_call = (
            expected_call.replace(actual_call, "", 1)
            if actual_call in expected_call
            else ""
        )

        if remaining_call:
            # Create tool call chunk with remaining arguments
            tool_call = ToolCall(
                id=None,  # No ID for argument deltas
                index=tool_index,
                function=FunctionResponse(
                    name=None,  # No name for argument deltas
                    arguments=remaining_call,
1108
1109
                ),
            )
1110
1111
1112
1113
1114
1115
1116

            choice_data = ChatCompletionResponseStreamChoice(
                index=index,
                delta=DeltaMessage(tool_calls=[tool_call]),
                finish_reason=None,  # Don't send finish_reason with this chunk
            )

1117
1118
1119
1120
1121
1122
            chunk = ChatCompletionStreamResponse(
                id=content["meta_info"]["id"],
                created=int(time.time()),
                choices=[choice_data],
                model=request.model,
            )
1123

1124
1125
1126
            return f"data: {chunk.model_dump_json()}\n\n"

        return None