serving_chat.py 42.4 KB
Newer Older
1
2
from __future__ import annotations

3
import copy
4
5
6
7
import json
import logging
import time
import uuid
8
from typing import TYPE_CHECKING, Any, AsyncGenerator, Dict, List, Optional, Union
9
10

from fastapi import Request
11
from fastapi.responses import ORJSONResponse, StreamingResponse
12
13
14
15
16
17
18
19
20
21
22
23
24
25

from sglang.srt.entrypoints.openai.protocol import (
    ChatCompletionRequest,
    ChatCompletionResponse,
    ChatCompletionResponseChoice,
    ChatCompletionResponseStreamChoice,
    ChatCompletionStreamResponse,
    ChatCompletionTokenLogprob,
    ChatMessage,
    ChoiceLogprobs,
    DeltaMessage,
    ErrorResponse,
    FunctionResponse,
    LogProbs,
26
    MessageProcessingResult,
27
28
29
30
    ToolCall,
    TopLogprob,
)
from sglang.srt.entrypoints.openai.serving_base import OpenAIServingBase
31
from sglang.srt.entrypoints.openai.usage_processor import UsageProcessor
32
from sglang.srt.entrypoints.openai.utils import (
33
    process_hidden_states_from_ret,
34
35
36
37
    to_openai_style_logprobs,
)
from sglang.srt.function_call.function_call_parser import FunctionCallParser
from sglang.srt.managers.io_struct import GenerateReqInput
38
39
40
from sglang.srt.parser.conversation import generate_chat_conv
from sglang.srt.parser.jinja_template_utils import process_content_for_template_format
from sglang.srt.parser.reasoning_parser import ReasoningParser
41
42
from sglang.utils import convert_json_schema_to_str

43
44
45
46
if TYPE_CHECKING:
    from sglang.srt.managers.template_manager import TemplateManager
    from sglang.srt.managers.tokenizer_manager import TokenizerManager

47
48
49
50
logger = logging.getLogger(__name__)


class OpenAIServingChat(OpenAIServingBase):
51
    """Handler for /v1/chat/completions requests"""
52

53
    def __init__(
54
55
56
        self,
        tokenizer_manager: TokenizerManager,
        template_manager: TemplateManager,
57
58
59
    ):
        super().__init__(tokenizer_manager)
        self.template_manager = template_manager
60
        self.tool_call_parser = self.tokenizer_manager.server_args.tool_call_parser
61
62
63
64

    def _request_id_prefix(self) -> str:
        return "chatcmpl-"

65
66
67
68
69
70
71
72
73
74
75
76
    def _validate_request(self, request: ChatCompletionRequest) -> Optional[str]:
        """Validate that the input is valid."""
        if not request.messages:
            return "Messages cannot be empty."

        if (
            isinstance(request.tool_choice, str)
            and request.tool_choice.lower() == "required"
            and not request.tools
        ):
            return "Tools cannot be empty if tool choice is set to required."

77
78
79
80
81
82
83
84
85
86
87
88
        max_output_tokens = request.max_completion_tokens or request.max_tokens
        server_context_length = self.tokenizer_manager.server_args.context_length
        if (
            max_output_tokens
            and server_context_length
            and max_output_tokens > server_context_length
        ):
            return (
                f"max_completion_tokens is too large: {max_output_tokens}."
                f"This model supports at most {server_context_length} completion tokens."
            )

89
90
91
92
93
        if request.response_format and request.response_format.type == "json_schema":
            schema = getattr(request.response_format.json_schema, "schema_", None)
            if schema is None:
                return "schema_ is required for json_schema response format request."

94
95
        return None

96
97
    def _convert_to_internal_request(
        self,
98
99
        request: ChatCompletionRequest,
    ) -> tuple[GenerateReqInput, ChatCompletionRequest]:
100
101
102
103
104
105
106
107
        reasoning_effort = (
            request.chat_template_kwargs.pop("reasoning_effort", None)
            if request.chat_template_kwargs
            else None
        )
        if reasoning_effort is not None:
            request.reasoning_effort = reasoning_effort

108
109
110
        """Convert OpenAI chat completion request to internal format"""
        is_multimodal = self.tokenizer_manager.model_config.is_multimodal

111
        # Process messages and apply chat template
112
        processed_messages = self._process_messages(request, is_multimodal)
113

114
115
116
117
118
119
120
121
122
123
        # Build sampling parameters
        sampling_params = self._build_sampling_params(
            request,
            processed_messages.stop,
            processed_messages.tool_call_constraint,
        )

        # Handle single vs multiple requests
        if is_multimodal:
            prompt_kwargs = {"text": processed_messages.prompt}
124
        else:
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
            if isinstance(processed_messages.prompt_ids, str):
                prompt_kwargs = {"text": processed_messages.prompt_ids}
            else:
                prompt_kwargs = {"input_ids": processed_messages.prompt_ids}

        adapted_request = GenerateReqInput(
            **prompt_kwargs,
            image_data=processed_messages.image_data,
            video_data=processed_messages.video_data,
            audio_data=processed_messages.audio_data,
            sampling_params=sampling_params,
            return_logprob=request.logprobs,
            logprob_start_len=-1,
            top_logprobs_num=request.top_logprobs or 0,
            stream=request.stream,
            return_text_in_logprobs=True,
            modalities=processed_messages.modalities,
            lora_path=request.lora_path,
            bootstrap_host=request.bootstrap_host,
            bootstrap_port=request.bootstrap_port,
            bootstrap_room=request.bootstrap_room,
            return_hidden_states=request.return_hidden_states,
            rid=request.rid,
        )
149

150
        return adapted_request, request
151
152
153

    def _process_messages(
        self, request: ChatCompletionRequest, is_multimodal: bool
154
    ) -> MessageProcessingResult:
155
        """Process chat messages and apply chat template"""
156
157
158
159
160
161
162
163
164
165
        is_gpt_oss = (
            hasattr(self.tokenizer_manager.model_config, "hf_config")
            and hasattr(self.tokenizer_manager.model_config.hf_config, "model_type")
            and self.tokenizer_manager.model_config.hf_config.model_type == "gpt_oss"
        )

        # GptOss model needs to keep special tokens for harmony parsing
        if is_gpt_oss:
            request.skip_special_tokens = False

166
167
        tool_call_constraint = None

168
169
170
171
172
173
        # Apply chat template and its stop strings
        tools = None
        if request.tools and request.tool_choice != "none":
            request.skip_special_tokens = False
            if not isinstance(request.tool_choice, str):
                tools = [
174
                    item.function.model_dump()
175
176
177
                    for item in request.tools
                    if item.function.name == request.tool_choice.function.name
                ]
178
            else:
179
                tools = [item.function.model_dump() for item in request.tools]
180
181
182
183
184
            if self.tool_call_parser:
                parser = FunctionCallParser(request.tools, self.tool_call_parser)
                tool_call_constraint = parser.get_structure_constraint(
                    request.tool_choice
                )
185
186
187
188

        # Use chat template
        if self.template_manager.chat_template_name is None:
            result = self._apply_jinja_template(request, tools, is_multimodal)
189
        else:
190
191
192
193
            result = self._apply_conversation_template(request, is_multimodal)

        result.tool_call_constraint = tool_call_constraint
        return result
194
195
196
197
198
199

    def _apply_jinja_template(
        self,
        request: ChatCompletionRequest,
        tools: Optional[List[Dict]],
        is_multimodal: bool,
200
    ) -> MessageProcessingResult:
201
        """Apply Jinja chat template"""
202
203
        prompt = ""
        prompt_ids = []
204
205
        openai_compatible_messages = []
        image_data = []
206
        video_data = []
207
208
209
        audio_data = []
        modalities = []

210
        template_content_format = self.template_manager.jinja_template_content_format
211
212
213
214
215
216
217
218
219
220
221

        for message in request.messages:
            if message.content is None:
                message.content = ""
            msg_dict = message.model_dump()

            # Process content based on detected template format
            processed_msg = process_content_for_template_format(
                msg_dict,
                template_content_format,
                image_data,
222
                video_data,
223
224
225
                audio_data,
                modalities,
            )
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244

            # per the Transformers docs & maintainers, tool call arguments in
            # assistant-role messages with tool_calls need to be dicts not JSON str -
            # this is how tool-use chat templates will expect them moving forwards
            # so, for messages that have tool_calls, parse the string (which we get
            # from openAI format) to dict
            if (
                processed_msg["role"] == "assistant"
                and "tool_calls" in processed_msg
                and isinstance(processed_msg["tool_calls"], list)
            ):
                for item in processed_msg["tool_calls"]:
                    if "arguments" in item["function"] and isinstance(
                        item["function"]["arguments"], str
                    ):
                        item["function"]["arguments"] = json.loads(
                            item["function"]["arguments"]
                        )

245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
            openai_compatible_messages.append(processed_msg)

        # Handle assistant prefix for continue_final_message
        assistant_prefix = None
        if (
            openai_compatible_messages
            and openai_compatible_messages[-1]["role"] == "assistant"
        ):
            if request.continue_final_message:
                assistant_prefix = openai_compatible_messages[-1]["content"]
                openai_compatible_messages = openai_compatible_messages[:-1]

        try:
            prompt_ids = self.tokenizer_manager.tokenizer.apply_chat_template(
                openai_compatible_messages,
                tokenize=True,
                add_generation_prompt=True,
                tools=tools,
263
                reasoning_effort=request.reasoning_effort,
264
265
266
267
268
                **(
                    request.chat_template_kwargs if request.chat_template_kwargs else {}
                ),
            )
        except Exception:
269
270
271
            # This except branch will be triggered when the chosen model
            # has a different tools input format that is not compatible
            # with openAI's apply_chat_template tool_call format, like Mistral.
272
273
274
275
276
277
278
279
280
281
            tools = (
                [t if "function" in t else {"function": t} for t in tools]
                if tools
                else None
            )
            prompt_ids = self.tokenizer_manager.tokenizer.apply_chat_template(
                openai_compatible_messages,
                tokenize=True,
                add_generation_prompt=True,
                tools=tools,
282
                reasoning_effort=request.reasoning_effort,
283
284
285
286
287
288
289
290
291
292
293
294
295
296
                **(
                    request.chat_template_kwargs if request.chat_template_kwargs else {}
                ),
            )

        if assistant_prefix:
            encoded = self.tokenizer_manager.tokenizer.encode(assistant_prefix)
            if encoded and encoded[0] == self.tokenizer_manager.tokenizer.bos_token_id:
                encoded = encoded[1:]
            prompt_ids += encoded

        if is_multimodal:
            prompt = self.tokenizer_manager.tokenizer.decode(prompt_ids)

297
298
299
        stop = request.stop
        image_data = image_data if image_data else None
        audio_data = audio_data if audio_data else None
300
        video_data = video_data if video_data else None
301
        modalities = modalities if modalities else []
302
303
304
305
        return MessageProcessingResult(
            prompt=prompt,
            prompt_ids=prompt_ids,
            image_data=image_data,
306
            video_data=video_data,
307
308
309
310
            audio_data=audio_data,
            modalities=modalities,
            stop=stop,
        )
311
312

    def _apply_conversation_template(
313
314
315
        self,
        request: ChatCompletionRequest,
        is_multimodal: bool,
316
    ) -> MessageProcessingResult:
317
        """Apply conversation template"""
318
319
320
        prompt = ""
        prompt_ids = []
        conv = generate_chat_conv(request, self.template_manager.chat_template_name)
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345

        # If we should continue the final assistant message, adjust the conversation.
        if (
            request.continue_final_message
            and request.messages
            and request.messages[-1].role == "assistant"
        ):
            # Remove the auto-added blank assistant turn, if present.
            if conv.messages and conv.messages[-1][1] is None:
                conv.messages.pop()
            # Rebuild the prompt from the conversation.
            prompt = conv.get_prompt()
            # Strip trailing stop tokens or separators that indicate end-of-assistant.
            if isinstance(conv.stop_str, list):
                for stop_token in conv.stop_str:
                    if prompt.endswith(stop_token):
                        prompt = prompt[: -len(stop_token)]
            elif isinstance(conv.stop_str, str) and prompt.endswith(conv.stop_str):
                prompt = prompt[: -len(conv.stop_str)]
            if conv.sep and prompt.endswith(conv.sep):
                prompt = prompt[: -len(conv.sep)]
            if getattr(conv, "sep2", None) and prompt.endswith(conv.sep2):
                prompt = prompt[: -len(conv.sep2)]
        else:
            prompt = conv.get_prompt()
346
347
            if self._get_enable_thinking_from_request(request):
                prompt += "<think>"  # Note(Xinyuan): hard code thinking token
348

349
        image_data = conv.image_data if conv.image_data else None
350
        video_data = conv.video_data if conv.video_data else None
351
352
        audio_data = conv.audio_data if conv.audio_data else None
        modalities = conv.modalities if conv.modalities else []
353
        stop = copy.copy(conv.stop_str or [] if not request.ignore_eos else [])
354
355
356
357
358
359
360

        if request.stop:
            if isinstance(request.stop, str):
                stop.append(request.stop)
            else:
                stop.extend(request.stop)

361
362
363
        if not is_multimodal:
            prompt_ids = self.tokenizer_manager.tokenizer.encode(prompt)

364
365
366
367
        return MessageProcessingResult(
            prompt=prompt,
            prompt_ids=prompt_ids,
            image_data=image_data,
368
            video_data=video_data,
369
370
371
372
            audio_data=audio_data,
            modalities=modalities,
            stop=stop,
        )
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442

    def _build_sampling_params(
        self,
        request: ChatCompletionRequest,
        stop: List[str],
        tool_call_constraint: Optional[Any],
    ) -> Dict[str, Any]:
        """Build sampling parameters for the request"""

        sampling_params = {
            "temperature": request.temperature,
            "max_new_tokens": request.max_tokens or request.max_completion_tokens,
            "min_new_tokens": request.min_tokens,
            "stop": stop,
            "stop_token_ids": request.stop_token_ids,
            "top_p": request.top_p,
            "top_k": request.top_k,
            "min_p": request.min_p,
            "presence_penalty": request.presence_penalty,
            "frequency_penalty": request.frequency_penalty,
            "repetition_penalty": request.repetition_penalty,
            "regex": request.regex,
            "ebnf": request.ebnf,
            "n": request.n,
            "no_stop_trim": request.no_stop_trim,
            "ignore_eos": request.ignore_eos,
            "skip_special_tokens": request.skip_special_tokens,
            "logit_bias": request.logit_bias,
        }

        if request.response_format and request.response_format.type == "json_schema":
            sampling_params["json_schema"] = convert_json_schema_to_str(
                request.response_format.json_schema.schema_
            )
        elif request.response_format and request.response_format.type == "json_object":
            sampling_params["json_schema"] = '{"type": "object"}'
        elif (
            request.response_format and request.response_format.type == "structural_tag"
        ):
            sampling_params["structural_tag"] = convert_json_schema_to_str(
                request.response_format.model_dump(by_alias=True)
            )

        # Check if there are already existing output constraints
        has_existing_constraints = (
            sampling_params.get("regex")
            or sampling_params.get("ebnf")
            or sampling_params.get("structural_tag")
            or sampling_params.get("json_schema")
        )

        if tool_call_constraint and has_existing_constraints:
            logger.warning("Constrained decoding is not compatible with tool calls.")
        elif tool_call_constraint:
            constraint_type, constraint_value = tool_call_constraint
            if constraint_type == "structural_tag":
                sampling_params[constraint_type] = convert_json_schema_to_str(
                    constraint_value.model_dump(by_alias=True)
                )
            else:
                sampling_params[constraint_type] = constraint_value
        return sampling_params

    async def _handle_streaming_request(
        self,
        adapted_request: GenerateReqInput,
        request: ChatCompletionRequest,
        raw_request: Request,
    ) -> StreamingResponse:
        """Handle streaming chat completion request"""
443
444
445
446
447
        return StreamingResponse(
            self._generate_chat_stream(adapted_request, request, raw_request),
            media_type="text/event-stream",
            background=self.tokenizer_manager.create_abort_task(adapted_request),
        )
448

449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
    async def _generate_chat_stream(
        self,
        adapted_request: GenerateReqInput,
        request: ChatCompletionRequest,
        raw_request: Request,
    ) -> AsyncGenerator[str, None]:
        """Generate streaming chat completion response"""
        # Parsers for tool calls and reasoning
        parser_dict = {}
        reasoning_parser_dict = {}

        # State tracking for streaming
        is_firsts = {}
        stream_buffers = {}
        n_prev_tokens = {}
464
465
        has_tool_calls = {}
        finish_reasons = {}
466
467
468
469
470

        # Usage tracking
        prompt_tokens = {}
        completion_tokens = {}
        cached_tokens = {}
471
        hidden_states = {}
472

473
474
475
476
477
        try:
            async for content in self.tokenizer_manager.generate_request(
                adapted_request, raw_request
            ):
                index = content.get("index", 0)
478

479
480
481
                prompt_tokens[index] = content["meta_info"]["prompt_tokens"]
                completion_tokens[index] = content["meta_info"]["completion_tokens"]
                cached_tokens[index] = content["meta_info"].get("cached_tokens", 0)
482
                hidden_states[index] = content["meta_info"].get("hidden_states", None)
483

484
485
486
487
488
489
490
491
492
                # Handle logprobs
                choice_logprobs = None
                if request.logprobs:
                    choice_logprobs = self._process_streaming_logprobs(
                        content, n_prev_tokens.get(index, 0)
                    )
                    n_prev_tokens[index] = len(
                        content["meta_info"]["output_token_logprobs"]
                    )
493

494
495
496
                finish_reason = content["meta_info"]["finish_reason"]
                finish_reason_type = finish_reason["type"] if finish_reason else None

497
498
499
500
                # Track finish_reason for each index
                if finish_reason_type:
                    finish_reasons[index] = finish_reason

501
502
503
504
505
506
507
                # First chunk with role
                if is_firsts.get(index, True):
                    is_firsts[index] = False
                    delta = DeltaMessage(role="assistant", content="")
                    choice_data = ChatCompletionResponseStreamChoice(
                        index=index,
                        delta=delta,
508
509
                        finish_reason=None,
                        logprobs=None,
510
511
512
513
514
515
                    )
                    chunk = ChatCompletionStreamResponse(
                        id=content["meta_info"]["id"],
                        created=int(time.time()),
                        choices=[choice_data],
                        model=request.model,
516
                    )
517
                    yield f"data: {chunk.model_dump_json()}\n\n"
518

519
520
521
                stream_buffer = stream_buffers.get(index, "")
                delta = content["text"][len(stream_buffer) :]
                stream_buffers[index] = stream_buffer + delta
522
523
524
525
526
527
528
529
530
531

                # Handle reasoning content
                if (
                    self.tokenizer_manager.server_args.reasoning_parser
                    and request.separate_reasoning
                ):
                    reasoning_text, delta = self._process_reasoning_stream(
                        index, delta, reasoning_parser_dict, content, request
                    )
                    if reasoning_text:
532
533
                        choice_data = ChatCompletionResponseStreamChoice(
                            index=index,
534
                            delta=DeltaMessage(reasoning_content=reasoning_text),
535
                            finish_reason=None,
536
537
538
539
540
541
542
543
544
545
                        )
                        chunk = ChatCompletionStreamResponse(
                            id=content["meta_info"]["id"],
                            created=int(time.time()),
                            choices=[choice_data],
                            model=request.model,
                        )
                        yield f"data: {chunk.model_dump_json()}\n\n"

                # Handle tool calls
546
547
548
549
550
                if (
                    request.tool_choice != "none"
                    and request.tools
                    and self.tool_call_parser
                ):
551
                    async for chunk in self._process_tool_call_stream(
552
553
554
555
556
                        index,
                        delta,
                        parser_dict,
                        content,
                        request,
557
                        has_tool_calls,
558
                    ):
559
560
                        if chunk:
                            yield chunk
561
562
563
564
565
566
567
568
569

                    # Send any remaining tool call arguments when generation finishes
                    if finish_reason_type is not None and index in parser_dict:
                        parser = parser_dict[index]
                        remaining_chunk = self._check_for_unstreamed_tool_args(
                            parser, content, request, index
                        )
                        if remaining_chunk:
                            yield remaining_chunk
570

571
572
                else:
                    # Regular content
573
                    if delta:
574
575
                        choice_data = ChatCompletionResponseStreamChoice(
                            index=index,
576
                            delta=DeltaMessage(content=delta),
577
578
                            finish_reason=None,
                            matched_stop=None,
579
580
581
582
583
584
585
586
587
588
                            logprobs=choice_logprobs,
                        )
                        chunk = ChatCompletionStreamResponse(
                            id=content["meta_info"]["id"],
                            created=int(time.time()),
                            choices=[choice_data],
                            model=request.model,
                        )
                        yield f"data: {chunk.model_dump_json()}\n\n"

589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
            # Send finish_reason chunks for each index that completed
            for idx, finish_reason_data in finish_reasons.items():
                finish_reason_type = finish_reason_data["type"]

                # Change finish_reason to "tool_calls" if we had tool calls and stopped naturally
                final_finish_reason = finish_reason_type
                if has_tool_calls.get(idx, False) and finish_reason_type == "stop":
                    final_finish_reason = "tool_calls"

                finish_reason_chunk = ChatCompletionStreamResponse(
                    id=content["meta_info"][
                        "id"
                    ],  # NOTE: openai uses the same chatcmpl-id for all indices
                    created=int(time.time()),
                    choices=[
                        ChatCompletionResponseStreamChoice(
                            index=idx,
                            delta=DeltaMessage(),
                            finish_reason=final_finish_reason,
                            matched_stop=(
                                finish_reason_data["matched"]
                                if "matched" in finish_reason_data
                                else None
                            ),
                        )
                    ],
                    model=request.model,
                    usage=None,
                )
                yield f"data: {finish_reason_chunk.model_dump_json()}\n\n"
619

620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
            # Send hidden states if requested
            if request.return_hidden_states and hidden_states:
                for index, choice_hidden_states in hidden_states.items():
                    if choice_hidden_states:
                        last_token_hidden_states = (
                            choice_hidden_states[-1]
                            if len(choice_hidden_states) > 1
                            else []
                        )
                        hidden_states_chunk = ChatCompletionStreamResponse(
                            id=content["meta_info"]["id"],
                            created=int(time.time()),
                            choices=[
                                ChatCompletionResponseStreamChoice(
                                    index=index,
                                    delta=DeltaMessage(
                                        hidden_states=last_token_hidden_states
                                    ),
638
                                    finish_reason=None,  # Hidden states don't need finish_reason
639
640
641
642
643
644
                                )
                            ],
                            model=request.model,
                        )
                        yield f"data: {hidden_states_chunk.model_dump_json()}\n\n"

645
646
            # Additional usage chunk
            if request.stream_options and request.stream_options.include_usage:
647
                usage = UsageProcessor.calculate_streaming_usage(
648
649
650
                    prompt_tokens,
                    completion_tokens,
                    cached_tokens,
651
652
                    n_choices=request.n,
                    enable_cache_report=self.tokenizer_manager.server_args.enable_cache_report,
653
654
                )
                usage_chunk = ChatCompletionStreamResponse(
655
656
                    id=content["meta_info"]["id"],
                    created=int(time.time()),
657
                    choices=[],  # Empty choices array as per OpenAI spec
658
659
660
                    model=request.model,
                    usage=usage,
                )
661
                yield f"data: {usage_chunk.model_dump_json()}\n\n"
662

663
        except ValueError as e:
664
665
            error = self.create_streaming_error_response(str(e))
            yield f"data: {error}\n\n"
666

667
        yield "data: [DONE]\n\n"
668
669
670
671
672
673

    async def _handle_non_streaming_request(
        self,
        adapted_request: GenerateReqInput,
        request: ChatCompletionRequest,
        raw_request: Request,
674
    ) -> Union[ChatCompletionResponse, ErrorResponse, ORJSONResponse]:
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
        """Handle non-streaming chat completion request"""
        try:
            ret = await self.tokenizer_manager.generate_request(
                adapted_request, raw_request
            ).__anext__()
        except ValueError as e:
            return self.create_error_response(str(e))

        if not isinstance(ret, list):
            ret = [ret]

        response = self._build_chat_response(
            request,
            ret,
            int(time.time()),
        )

        return response

    def _build_chat_response(
        self,
        request: ChatCompletionRequest,
        ret: List[Dict[str, Any]],
        created: int,
699
    ) -> Union[ChatCompletionResponse, ORJSONResponse]:
700
701
702
703
704
705
706
707
708
        """Build chat completion response from generation results"""
        choices = []

        for idx, ret_item in enumerate(ret):
            # Process logprobs
            choice_logprobs = None
            if request.logprobs:
                choice_logprobs = self._process_response_logprobs(ret_item)

709
710
711
            # Handle hidden states
            hidden_states = process_hidden_states_from_ret(ret_item, request)

712
713
714
715
716
            finish_reason = ret_item["meta_info"]["finish_reason"]
            text = ret_item["text"]

            # Handle reasoning content
            reasoning_text = None
717
            reasoning_parser = self.tokenizer_manager.server_args.reasoning_parser
718
            if reasoning_parser and request.separate_reasoning:
719
720
721
722
                is_force_reasoning = (
                    self.template_manager.force_reasoning
                    or self._get_enable_thinking_from_request(request)
                )
723
724
                try:
                    parser = ReasoningParser(
725
726
                        model_type=reasoning_parser,
                        stream_reasoning=False,
727
                        force_reasoning=is_force_reasoning,
728
729
730
731
732
733
734
735
736
737
738
739
                    )
                    reasoning_text, text = parser.parse_non_stream(text)
                except Exception as e:
                    logger.error(f"Reasoning parsing error: {e}")
                    return self.create_error_response(
                        "Failed to parse reasoning content",
                        err_type="InternalServerError",
                        status_code=500,
                    )

            # Handle tool calls
            tool_calls = None
740
741
742
743
744
            if (
                request.tool_choice != "none"
                and request.tools
                and self.tool_call_parser
            ):
745
                tool_calls, text, finish_reason = self._process_tool_calls(
746
                    text, request.tools, finish_reason
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
                )

            choice_data = ChatCompletionResponseChoice(
                index=idx,
                message=ChatMessage(
                    role="assistant",
                    content=text if text else None,
                    tool_calls=tool_calls,
                    reasoning_content=reasoning_text if reasoning_text else None,
                ),
                logprobs=choice_logprobs,
                finish_reason=finish_reason["type"] if finish_reason else None,
                matched_stop=(
                    finish_reason["matched"]
                    if finish_reason and "matched" in finish_reason
                    else None
                ),
764
                hidden_states=hidden_states,
765
766
767
768
            )
            choices.append(choice_data)

        # Calculate usage
769
        usage = UsageProcessor.calculate_response_usage(
770
771
772
            ret,
            n_choices=request.n,
            enable_cache_report=self.tokenizer_manager.server_args.enable_cache_report,
773
        )
774
775
776
777
778
779
780

        return ChatCompletionResponse(
            id=ret[0]["meta_info"]["id"],
            created=created,
            model=request.model,
            choices=choices,
            usage=usage,
781
            metadata={"weight_version": ret[0]["meta_info"]["weight_version"]},
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
        )

    def _process_logprobs_tokens(
        self, logprobs: LogProbs, use_token_index: bool = False
    ) -> List[ChatCompletionTokenLogprob]:
        """Common helper to process logprobs tokens for both streaming and non-streaming

        Args:
            logprobs: LogProbs data from model
            use_token_index: True for non-streaming (use token_idx), False for streaming (use index 0)
        """
        token_logprobs = []

        for token_idx, (token, logprob) in enumerate(
            zip(logprobs.tokens, logprobs.token_logprobs)
        ):
            token_bytes = list(token.encode("utf-8"))
            top_logprobs = []
            if logprobs.top_logprobs:
                # - Non-streaming (use_token_index=True): uses token_idx for full data
                # - Streaming (use_token_index=False): uses index 0 for pre-sliced data
                top_logprobs_idx = token_idx if use_token_index else 0
                for top_token, top_logprob in logprobs.top_logprobs[
                    top_logprobs_idx
                ].items():
                    top_token_bytes = list(top_token.encode("utf-8"))
                    top_logprobs.append(
                        TopLogprob(
                            token=top_token,
                            bytes=top_token_bytes,
                            logprob=top_logprob,
                        )
                    )
            token_logprobs.append(
                ChatCompletionTokenLogprob(
                    token=token,
                    bytes=token_bytes,
                    logprob=logprob,
                    top_logprobs=top_logprobs,
                )
            )

        return token_logprobs

    def _process_response_logprobs(self, ret_item: Dict[str, Any]) -> ChoiceLogprobs:
        """Process logprobs for non-streaming response"""
        logprobs = to_openai_style_logprobs(
            output_token_logprobs=ret_item["meta_info"]["output_token_logprobs"],
            output_top_logprobs=ret_item["meta_info"].get("output_top_logprobs", None),
        )

        token_logprobs = self._process_logprobs_tokens(logprobs, use_token_index=True)
        return ChoiceLogprobs(content=token_logprobs)

    def _process_tool_calls(
        self,
        text: str,
        tools: List[Any],
        finish_reason: Dict[str, Any],
    ) -> tuple[Optional[List[ToolCall]], str, Dict[str, Any]]:
        """Process tool calls in the response"""
843
        parser = FunctionCallParser(tools, self.tool_call_parser)
844
845
846
847
848
849
        if parser.has_tool_call(text):
            if finish_reason["type"] == "stop":
                finish_reason["type"] = "tool_calls"
                finish_reason["matched"] = None
            try:
                text, call_info_list = parser.parse_non_stream(text)
850
851
852
                tool_calls = []
                for call_info in call_info_list:
                    # For Kimi-K2, align tool_call_id with the model format: functions.{name}:{index}
853
854
855
856
                    if (
                        self.tool_call_parser == "kimi_k2"
                        and call_info.name is not None
                    ):
857
858
859
860
861
862
863
864
865
866
867
868
                        tool_id = f"functions.{call_info.name}:{call_info.tool_index}"
                    else:
                        tool_id = f"call_{uuid.uuid4().hex[:24]}"

                    tool_calls.append(
                        ToolCall(
                            id=tool_id,
                            index=getattr(call_info, "tool_index", None),
                            function=FunctionResponse(
                                name=call_info.name, arguments=call_info.parameters
                            ),
                        )
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
                    )
                return tool_calls, text, finish_reason
            except Exception as e:
                logger.error(f"Tool call parsing error: {e}")
                # Return error but don't fail the whole request
                return None, text, finish_reason

        return None, text, finish_reason

    def _process_streaming_logprobs(
        self, content: Dict[str, Any], n_prev_token: int
    ) -> ChoiceLogprobs:
        """Process logprobs for streaming response"""
        logprobs = to_openai_style_logprobs(
            output_token_logprobs=content["meta_info"]["output_token_logprobs"][
                n_prev_token:
            ],
            output_top_logprobs=content["meta_info"].get("output_top_logprobs", [])[
                n_prev_token:
            ],
        )

        token_logprobs = self._process_logprobs_tokens(logprobs, use_token_index=False)
        return ChoiceLogprobs(content=token_logprobs)

    def _process_reasoning_stream(
        self,
        index: int,
        delta: str,
        reasoning_parser_dict: Dict[int, ReasoningParser],
        content: Dict[str, Any],
        request: ChatCompletionRequest,
    ) -> tuple[Optional[str], str]:
        """Process reasoning content in streaming response"""
        if index not in reasoning_parser_dict:
904
905
906
907
            is_force_reasoning = (
                self.template_manager.force_reasoning
                or self._get_enable_thinking_from_request(request)
            )
908
909
910
            reasoning_parser_dict[index] = ReasoningParser(
                self.tokenizer_manager.server_args.reasoning_parser,
                request.stream_reasoning,
911
                is_force_reasoning,
912
913
914
915
            )
        reasoning_parser = reasoning_parser_dict[index]
        return reasoning_parser.parse_stream_chunk(delta)

916
    def _get_enable_thinking_from_request(self, request: ChatCompletionRequest) -> bool:
917
918
919
920
921
922
923
924
        """Extracts the 'enable_thinking' flag from request chat_template_kwargs.

        NOTE: This parameter is only useful for models that support enable_thinking
        flag, such as Qwen3.

        Args:
            request_obj: The request object (or an item from a list of requests).
        Returns:
925
            The boolean value of 'enable_thinking' if found, otherwise False.
926
        """
927
928
929
930
931
932
933
934
935
        if hasattr(request, "chat_template_kwargs") and request.chat_template_kwargs:
            # For Qwen3 models, `enable_thinking` is supported.
            if request.chat_template_kwargs.get("enable_thinking") is not None:
                return request.chat_template_kwargs.get("enable_thinking")
            # For DeepSeek-V3.1 models, `thinking` is supported.
            elif request.chat_template_kwargs.get("thinking") is not None:
                return request.chat_template_kwargs.get("thinking")
            else:
                return False
936
        return False
937

938
939
940
941
942
943
944
    async def _process_tool_call_stream(
        self,
        index: int,
        delta: str,
        parser_dict: Dict[int, FunctionCallParser],
        content: Dict[str, Any],
        request: ChatCompletionRequest,
945
        has_tool_calls: Dict[int, bool],
946
947
948
949
950
    ):
        """Process tool calls in streaming response"""
        if index not in parser_dict:
            parser_dict[index] = FunctionCallParser(
                tools=request.tools,
951
                tool_call_parser=self.tool_call_parser,
952
953
954
955
956
957
958
959
960
961
            )
        parser = parser_dict[index]

        normal_text, calls = parser.parse_stream_chunk(delta)

        # Yield normal text
        if normal_text:
            choice_data = ChatCompletionResponseStreamChoice(
                index=index,
                delta=DeltaMessage(content=normal_text),
962
                finish_reason=None,
963
964
965
966
967
968
969
            )
            chunk = ChatCompletionStreamResponse(
                id=content["meta_info"]["id"],
                created=int(time.time()),
                choices=[choice_data],
                model=request.model,
            )
970
            yield f"data: {chunk.model_dump_json()}\n\n"
971
972
973

        # Yield tool calls
        for call_item in calls:
974
975
976
            # Mark that this choice has tool calls
            has_tool_calls[index] = True

977
978
979
            # Tool call ID should be generated only once per tool call
            if call_item.name:
                # First chunk: include ID and function name
980
                if self.tool_call_parser == "kimi_k2":
981
982
983
984
                    # Align with Kimi-K2 format: functions.{name}:{index}
                    tool_call_id = f"functions.{call_item.name}:{call_item.tool_index}"
                else:
                    tool_call_id = f"call_{uuid.uuid4().hex[:24]}"
985
986
987
988
989
990
                function_name = call_item.name
            else:
                # Subsequent chunks: null ID and name for argument deltas
                tool_call_id = None
                function_name = None

991
            tool_call = ToolCall(
992
                id=tool_call_id,
993
994
                index=call_item.tool_index,
                function=FunctionResponse(
995
                    name=function_name,
996
997
998
999
1000
1001
1002
                    arguments=call_item.parameters,
                ),
            )

            choice_data = ChatCompletionResponseStreamChoice(
                index=index,
                delta=DeltaMessage(tool_calls=[tool_call]),
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
                finish_reason=None,
            )
            chunk = ChatCompletionStreamResponse(
                id=content["meta_info"]["id"],
                created=int(time.time()),
                choices=[choice_data],
                model=request.model,
            )
            yield f"data: {chunk.model_dump_json()}\n\n"

    def _check_for_unstreamed_tool_args(
        self,
        parser: FunctionCallParser,
        content: Dict[str, Any],
        request: ChatCompletionRequest,
        index: int,
    ) -> Optional[str]:
        """
        Check for any remaining tool call arguments that need to be streamed
        when generation finishes. This ensures tool calls are properly completed
        even if the model generates the final arguments in the last chunk.
        """
        # Only check if we have tool calls and the parser has tracked data
        if (
            not hasattr(parser.detector, "prev_tool_call_arr")
            or not parser.detector.prev_tool_call_arr
        ):
            return None

        if (
            not hasattr(parser.detector, "streamed_args_for_tool")
            or not parser.detector.streamed_args_for_tool
        ):
            return None

        # Get the last tool call that was being processed
        tool_index = len(parser.detector.prev_tool_call_arr) - 1
        if tool_index < 0 or tool_index >= len(parser.detector.streamed_args_for_tool):
            return None

        # Get expected vs actual arguments
        expected_args = parser.detector.prev_tool_call_arr[tool_index].get(
            "arguments", {}
        )
        expected_call = json.dumps(expected_args, ensure_ascii=False)
        actual_call = parser.detector.streamed_args_for_tool[tool_index]

        # Check if there are remaining arguments to send
        remaining_call = (
            expected_call.replace(actual_call, "", 1)
            if actual_call in expected_call
            else ""
        )

        if remaining_call:
            # Create tool call chunk with remaining arguments
            tool_call = ToolCall(
                id=None,  # No ID for argument deltas
                index=tool_index,
                function=FunctionResponse(
                    name=None,  # No name for argument deltas
                    arguments=remaining_call,
1065
1066
                ),
            )
1067
1068
1069
1070
1071
1072
1073

            choice_data = ChatCompletionResponseStreamChoice(
                index=index,
                delta=DeltaMessage(tool_calls=[tool_call]),
                finish_reason=None,  # Don't send finish_reason with this chunk
            )

1074
1075
1076
1077
1078
1079
            chunk = ChatCompletionStreamResponse(
                id=content["meta_info"]["id"],
                created=int(time.time()),
                choices=[choice_data],
                model=request.model,
            )
1080

1081
1082
1083
            return f"data: {chunk.model_dump_json()}\n\n"

        return None