serving_chat.py 35.7 KB
Newer Older
1
import copy
2
3
4
5
import json
import logging
import time
import uuid
6
from typing import Any, AsyncGenerator, Dict, List, Optional, Union
7
8

from fastapi import Request
9
from fastapi.responses import ORJSONResponse, StreamingResponse
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

from sglang.srt.conversation import generate_chat_conv
from sglang.srt.entrypoints.openai.protocol import (
    ChatCompletionRequest,
    ChatCompletionResponse,
    ChatCompletionResponseChoice,
    ChatCompletionResponseStreamChoice,
    ChatCompletionStreamResponse,
    ChatCompletionTokenLogprob,
    ChatMessage,
    ChoiceLogprobs,
    DeltaMessage,
    ErrorResponse,
    FunctionResponse,
    LogProbs,
    ToolCall,
    TopLogprob,
)
from sglang.srt.entrypoints.openai.serving_base import OpenAIServingBase
29
from sglang.srt.entrypoints.openai.usage_processor import UsageProcessor
30
from sglang.srt.entrypoints.openai.utils import (
31
    process_hidden_states_from_ret,
32
33
34
    to_openai_style_logprobs,
)
from sglang.srt.function_call.function_call_parser import FunctionCallParser
35
from sglang.srt.jinja_template_utils import process_content_for_template_format
36
from sglang.srt.managers.io_struct import GenerateReqInput
37
38
from sglang.srt.managers.template_manager import TemplateManager
from sglang.srt.managers.tokenizer_manager import TokenizerManager
39
40
41
42
43
44
45
from sglang.srt.reasoning_parser import ReasoningParser
from sglang.utils import convert_json_schema_to_str

logger = logging.getLogger(__name__)


class OpenAIServingChat(OpenAIServingBase):
46
    """Handler for /v1/chat/completions requests"""
47

48
49
50
51
52
    def __init__(
        self, tokenizer_manager: TokenizerManager, template_manager: TemplateManager
    ):
        super().__init__(tokenizer_manager)
        self.template_manager = template_manager
53
54
55
56
57
58

    def _request_id_prefix(self) -> str:
        return "chatcmpl-"

    def _convert_to_internal_request(
        self,
59
60
        request: ChatCompletionRequest,
    ) -> tuple[GenerateReqInput, ChatCompletionRequest]:
61
62
63
        """Convert OpenAI chat completion request to internal format"""
        is_multimodal = self.tokenizer_manager.model_config.is_multimodal

64
65
66
67
68
69
70
71
72
73
        # Process messages and apply chat template
        (
            prompt,
            prompt_ids,
            image_data,
            audio_data,
            modalities,
            stop,
            tool_call_constraint,
        ) = self._process_messages(request, is_multimodal)
74

75
76
77
78
        # Build sampling parameters
        sampling_params = self._build_sampling_params(
            request, stop, tool_call_constraint
        )
79
80

        # Handle single vs multiple requests
81
82
        if is_multimodal:
            prompt_kwargs = {"text": prompt}
83
        else:
84
85
            if isinstance(prompt_ids, str):
                prompt_kwargs = {"text": prompt_ids}
86
            else:
87
                prompt_kwargs = {"input_ids": prompt_ids}
88
89
90

        adapted_request = GenerateReqInput(
            **prompt_kwargs,
91
92
93
94
95
96
97
            image_data=image_data,
            audio_data=audio_data,
            sampling_params=sampling_params,
            return_logprob=request.logprobs,
            logprob_start_len=-1,
            top_logprobs_num=request.top_logprobs or 0,
            stream=request.stream,
98
            return_text_in_logprobs=True,
99
100
101
102
103
            modalities=modalities,
            lora_path=request.lora_path,
            bootstrap_host=request.bootstrap_host,
            bootstrap_port=request.bootstrap_port,
            bootstrap_room=request.bootstrap_room,
104
            return_hidden_states=request.return_hidden_states,
105
106
        )

107
        return adapted_request, request
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145

    def _process_messages(
        self, request: ChatCompletionRequest, is_multimodal: bool
    ) -> tuple[
        str,
        Union[str, List[int]],
        Optional[Any],
        Optional[Any],
        List[str],
        List[str],
        Optional[Any],
    ]:
        """Process chat messages and apply chat template"""
        tool_call_constraint = None
        prompt = ""
        prompt_ids = []

        if not isinstance(request.messages, str):
            # Apply chat template and its stop strings
            tools = None
            if request.tools and request.tool_choice != "none":
                request.skip_special_tokens = False
                if not isinstance(request.tool_choice, str):
                    tools = [
                        item.function.model_dump()
                        for item in request.tools
                        if item.function.name == request.tool_choice.function.name
                    ]
                else:
                    tools = [item.function.model_dump() for item in request.tools]

                tool_call_parser = self.tokenizer_manager.server_args.tool_call_parser
                parser = FunctionCallParser(request.tools, tool_call_parser)
                tool_call_constraint = parser.get_structure_constraint(
                    request.tool_choice
                )

            # Use chat template
146
            if self.template_manager.chat_template_name is None:
147
148
149
150
                prompt, prompt_ids, image_data, audio_data, modalities, stop = (
                    self._apply_jinja_template(request, tools, is_multimodal)
                )
            else:
151
152
                prompt, prompt_ids, image_data, audio_data, modalities, stop = (
                    self._apply_conversation_template(request, is_multimodal)
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
                )
        else:
            # Use raw prompt
            prompt_ids = request.messages
            stop = request.stop or []
            image_data = None
            audio_data = None
            modalities = []
            prompt = request.messages

        return (
            prompt,
            prompt_ids,
            image_data,
            audio_data,
            modalities,
            stop,
            tool_call_constraint,
        )

    def _apply_jinja_template(
        self,
        request: ChatCompletionRequest,
        tools: Optional[List[Dict]],
        is_multimodal: bool,
    ) -> tuple[str, List[int], Optional[Any], Optional[Any], List[str], List[str]]:
        """Apply Jinja chat template"""
180
181
        prompt = ""
        prompt_ids = []
182
183
184
185
186
        openai_compatible_messages = []
        image_data = []
        audio_data = []
        modalities = []

187
        template_content_format = self.template_manager.jinja_template_content_format
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251

        for message in request.messages:
            if message.content is None:
                message.content = ""
            msg_dict = message.model_dump()

            # Process content based on detected template format
            processed_msg = process_content_for_template_format(
                msg_dict,
                template_content_format,
                image_data,
                audio_data,
                modalities,
            )
            openai_compatible_messages.append(processed_msg)

        # Handle assistant prefix for continue_final_message
        assistant_prefix = None
        if (
            openai_compatible_messages
            and openai_compatible_messages[-1]["role"] == "assistant"
        ):
            if request.continue_final_message:
                assistant_prefix = openai_compatible_messages[-1]["content"]
                openai_compatible_messages = openai_compatible_messages[:-1]

        try:
            prompt_ids = self.tokenizer_manager.tokenizer.apply_chat_template(
                openai_compatible_messages,
                tokenize=True,
                add_generation_prompt=True,
                tools=tools,
                **(
                    request.chat_template_kwargs if request.chat_template_kwargs else {}
                ),
            )
        except Exception:
            #  This except branch will be triggered when the chosen model
            #  has a different tools input format that is not compatible
            #  with openAI's apply_chat_template tool_call format, like Mistral.
            tools = (
                [t if "function" in t else {"function": t} for t in tools]
                if tools
                else None
            )
            prompt_ids = self.tokenizer_manager.tokenizer.apply_chat_template(
                openai_compatible_messages,
                tokenize=True,
                add_generation_prompt=True,
                tools=tools,
                **(
                    request.chat_template_kwargs if request.chat_template_kwargs else {}
                ),
            )

        if assistant_prefix:
            encoded = self.tokenizer_manager.tokenizer.encode(assistant_prefix)
            if encoded and encoded[0] == self.tokenizer_manager.tokenizer.bos_token_id:
                encoded = encoded[1:]
            prompt_ids += encoded

        if is_multimodal:
            prompt = self.tokenizer_manager.tokenizer.decode(prompt_ids)

252
253
254
255
        stop = request.stop
        image_data = image_data if image_data else None
        audio_data = audio_data if audio_data else None
        modalities = modalities if modalities else []
256
257
258
        return prompt, prompt_ids, image_data, audio_data, modalities, stop

    def _apply_conversation_template(
259
260
261
262
        self,
        request: ChatCompletionRequest,
        is_multimodal: bool,
    ) -> tuple[str, Optional[Any], Optional[Any], List[str], List[str], List[str]]:
263
        """Apply conversation template"""
264
265
266
        prompt = ""
        prompt_ids = []
        conv = generate_chat_conv(request, self.template_manager.chat_template_name)
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292

        # If we should continue the final assistant message, adjust the conversation.
        if (
            request.continue_final_message
            and request.messages
            and request.messages[-1].role == "assistant"
        ):
            # Remove the auto-added blank assistant turn, if present.
            if conv.messages and conv.messages[-1][1] is None:
                conv.messages.pop()
            # Rebuild the prompt from the conversation.
            prompt = conv.get_prompt()
            # Strip trailing stop tokens or separators that indicate end-of-assistant.
            if isinstance(conv.stop_str, list):
                for stop_token in conv.stop_str:
                    if prompt.endswith(stop_token):
                        prompt = prompt[: -len(stop_token)]
            elif isinstance(conv.stop_str, str) and prompt.endswith(conv.stop_str):
                prompt = prompt[: -len(conv.stop_str)]
            if conv.sep and prompt.endswith(conv.sep):
                prompt = prompt[: -len(conv.sep)]
            if getattr(conv, "sep2", None) and prompt.endswith(conv.sep2):
                prompt = prompt[: -len(conv.sep2)]
        else:
            prompt = conv.get_prompt()

293
294
295
        image_data = conv.image_data if conv.image_data else None
        audio_data = conv.audio_data if conv.audio_data else None
        modalities = conv.modalities if conv.modalities else []
296
        stop = copy.copy(conv.stop_str or [] if not request.ignore_eos else [])
297
298
299
300
301
302
303

        if request.stop:
            if isinstance(request.stop, str):
                stop.append(request.stop)
            else:
                stop.extend(request.stop)

304
305
306
307
        if not is_multimodal:
            prompt_ids = self.tokenizer_manager.tokenizer.encode(prompt)

        return prompt, prompt_ids, image_data, audio_data, modalities, stop
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

    def _build_sampling_params(
        self,
        request: ChatCompletionRequest,
        stop: List[str],
        tool_call_constraint: Optional[Any],
    ) -> Dict[str, Any]:
        """Build sampling parameters for the request"""

        sampling_params = {
            "temperature": request.temperature,
            "max_new_tokens": request.max_tokens or request.max_completion_tokens,
            "min_new_tokens": request.min_tokens,
            "stop": stop,
            "stop_token_ids": request.stop_token_ids,
            "top_p": request.top_p,
            "top_k": request.top_k,
            "min_p": request.min_p,
            "presence_penalty": request.presence_penalty,
            "frequency_penalty": request.frequency_penalty,
            "repetition_penalty": request.repetition_penalty,
            "regex": request.regex,
            "ebnf": request.ebnf,
            "n": request.n,
            "no_stop_trim": request.no_stop_trim,
            "ignore_eos": request.ignore_eos,
            "skip_special_tokens": request.skip_special_tokens,
            "logit_bias": request.logit_bias,
        }

        if request.response_format and request.response_format.type == "json_schema":
            sampling_params["json_schema"] = convert_json_schema_to_str(
                request.response_format.json_schema.schema_
            )
        elif request.response_format and request.response_format.type == "json_object":
            sampling_params["json_schema"] = '{"type": "object"}'
        elif (
            request.response_format and request.response_format.type == "structural_tag"
        ):
            sampling_params["structural_tag"] = convert_json_schema_to_str(
                request.response_format.model_dump(by_alias=True)
            )

        # Check if there are already existing output constraints
        has_existing_constraints = (
            sampling_params.get("regex")
            or sampling_params.get("ebnf")
            or sampling_params.get("structural_tag")
            or sampling_params.get("json_schema")
        )

        if tool_call_constraint and has_existing_constraints:
            logger.warning("Constrained decoding is not compatible with tool calls.")
        elif tool_call_constraint:
            constraint_type, constraint_value = tool_call_constraint
            if constraint_type == "structural_tag":
                sampling_params[constraint_type] = convert_json_schema_to_str(
                    constraint_value.model_dump(by_alias=True)
                )
            else:
                sampling_params[constraint_type] = constraint_value
        return sampling_params

    async def _handle_streaming_request(
        self,
        adapted_request: GenerateReqInput,
        request: ChatCompletionRequest,
        raw_request: Request,
    ) -> StreamingResponse:
        """Handle streaming chat completion request"""
378
379
380
381
382
        return StreamingResponse(
            self._generate_chat_stream(adapted_request, request, raw_request),
            media_type="text/event-stream",
            background=self.tokenizer_manager.create_abort_task(adapted_request),
        )
383

384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
    async def _generate_chat_stream(
        self,
        adapted_request: GenerateReqInput,
        request: ChatCompletionRequest,
        raw_request: Request,
    ) -> AsyncGenerator[str, None]:
        """Generate streaming chat completion response"""
        # Parsers for tool calls and reasoning
        parser_dict = {}
        reasoning_parser_dict = {}

        # State tracking for streaming
        is_firsts = {}
        stream_buffers = {}
        n_prev_tokens = {}

        # Usage tracking
        prompt_tokens = {}
        completion_tokens = {}
        cached_tokens = {}
404
        hidden_states = {}
405

406
407
408
409
410
        try:
            async for content in self.tokenizer_manager.generate_request(
                adapted_request, raw_request
            ):
                index = content.get("index", 0)
411

412
413
414
                prompt_tokens[index] = content["meta_info"]["prompt_tokens"]
                completion_tokens[index] = content["meta_info"]["completion_tokens"]
                cached_tokens[index] = content["meta_info"].get("cached_tokens", 0)
415
                hidden_states[index] = content["meta_info"].get("hidden_states", None)
416

417
418
419
420
421
422
423
424
425
                # Handle logprobs
                choice_logprobs = None
                if request.logprobs:
                    choice_logprobs = self._process_streaming_logprobs(
                        content, n_prev_tokens.get(index, 0)
                    )
                    n_prev_tokens[index] = len(
                        content["meta_info"]["output_token_logprobs"]
                    )
426

427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
                finish_reason = content["meta_info"]["finish_reason"]
                finish_reason_type = finish_reason["type"] if finish_reason else None

                # First chunk with role
                if is_firsts.get(index, True):
                    is_firsts[index] = False
                    delta = DeltaMessage(role="assistant", content="")
                    choice_data = ChatCompletionResponseStreamChoice(
                        index=index,
                        delta=delta,
                        finish_reason=finish_reason_type,
                        matched_stop=(
                            finish_reason["matched"]
                            if finish_reason and "matched" in finish_reason
                            else None
                        ),
                        logprobs=choice_logprobs,
                    )
                    chunk = ChatCompletionStreamResponse(
                        id=content["meta_info"]["id"],
                        created=int(time.time()),
                        choices=[choice_data],
                        model=request.model,
450
                    )
451
                    yield f"data: {chunk.model_dump_json()}\n\n"
452

453
454
455
456
457
458
459
460
461
462
463
464
465
466
                # Process content delta
                stream_buffer = stream_buffers.get(index, "")
                delta = content["text"][len(stream_buffer) :]
                stream_buffers[index] = stream_buffer + delta

                # Handle reasoning content
                if (
                    self.tokenizer_manager.server_args.reasoning_parser
                    and request.separate_reasoning
                ):
                    reasoning_text, delta = self._process_reasoning_stream(
                        index, delta, reasoning_parser_dict, content, request
                    )
                    if reasoning_text:
467
468
                        choice_data = ChatCompletionResponseStreamChoice(
                            index=index,
469
                            delta=DeltaMessage(reasoning_content=reasoning_text),
470
                            finish_reason=finish_reason_type,
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
                        )
                        chunk = ChatCompletionStreamResponse(
                            id=content["meta_info"]["id"],
                            created=int(time.time()),
                            choices=[choice_data],
                            model=request.model,
                        )
                        yield f"data: {chunk.model_dump_json()}\n\n"

                    if not delta:
                        continue

                # Handle tool calls
                if request.tool_choice != "none" and request.tools:
                    async for chunk in self._process_tool_call_stream(
                        index,
                        delta,
                        parser_dict,
                        content,
                        request,
                        finish_reason_type,
                    ):
                        yield chunk
                else:
                    # Regular content
                    if delta or not (
                        request.stream_options and request.stream_options.include_usage
                    ):
                        choice_data = ChatCompletionResponseStreamChoice(
                            index=index,
                            delta=DeltaMessage(content=delta if delta else None),
                            finish_reason=(
                                None
                                if request.stream_options
                                and request.stream_options.include_usage
                                else finish_reason_type
                            ),
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
                            matched_stop=(
                                finish_reason["matched"]
                                if finish_reason and "matched" in finish_reason
                                else None
                            ),
                            logprobs=choice_logprobs,
                        )
                        chunk = ChatCompletionStreamResponse(
                            id=content["meta_info"]["id"],
                            created=int(time.time()),
                            choices=[choice_data],
                            model=request.model,
                        )
                        yield f"data: {chunk.model_dump_json()}\n\n"

523
524
525
526
527
528
529
530
531
532
533
534
535
536
            # Final chunk with finish_reason
            finish_reason_chunk = ChatCompletionStreamResponse(
                id=content["meta_info"]["id"],
                created=int(time.time()),
                choices=[
                    ChatCompletionResponseStreamChoice(
                        index=index,
                        delta=DeltaMessage(),
                        finish_reason=finish_reason_type,
                        matched_stop=(
                            finish_reason["matched"]
                            if finish_reason and "matched" in finish_reason
                            else None
                        ),
537
                    )
538
539
540
541
542
543
                ],
                model=request.model,
                usage=None,
            )
            yield f"data: {finish_reason_chunk.model_dump_json()}\n\n"

544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
            # Send hidden states if requested
            if request.return_hidden_states and hidden_states:
                for index, choice_hidden_states in hidden_states.items():
                    if choice_hidden_states:
                        last_token_hidden_states = (
                            choice_hidden_states[-1]
                            if len(choice_hidden_states) > 1
                            else []
                        )
                        hidden_states_chunk = ChatCompletionStreamResponse(
                            id=content["meta_info"]["id"],
                            created=int(time.time()),
                            choices=[
                                ChatCompletionResponseStreamChoice(
                                    index=index,
                                    delta=DeltaMessage(
                                        hidden_states=last_token_hidden_states
                                    ),
                                    finish_reason=finish_reason_type,
                                )
                            ],
                            model=request.model,
                        )
                        yield f"data: {hidden_states_chunk.model_dump_json()}\n\n"

569
570
            # Additional usage chunk
            if request.stream_options and request.stream_options.include_usage:
571
                usage = UsageProcessor.calculate_streaming_usage(
572
573
574
                    prompt_tokens,
                    completion_tokens,
                    cached_tokens,
575
576
                    n_choices=request.n,
                    enable_cache_report=self.tokenizer_manager.server_args.enable_cache_report,
577
578
                )
                usage_chunk = ChatCompletionStreamResponse(
579
580
                    id=content["meta_info"]["id"],
                    created=int(time.time()),
581
                    choices=[],  # Empty choices array as per OpenAI spec
582
583
584
                    model=request.model,
                    usage=usage,
                )
585
                yield f"data: {usage_chunk.model_dump_json()}\n\n"
586

587
        except ValueError as e:
588
589
            error = self.create_streaming_error_response(str(e))
            yield f"data: {error}\n\n"
590

591
        yield "data: [DONE]\n\n"
592
593
594
595
596
597

    async def _handle_non_streaming_request(
        self,
        adapted_request: GenerateReqInput,
        request: ChatCompletionRequest,
        raw_request: Request,
598
    ) -> Union[ChatCompletionResponse, ErrorResponse, ORJSONResponse]:
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
        """Handle non-streaming chat completion request"""
        try:
            ret = await self.tokenizer_manager.generate_request(
                adapted_request, raw_request
            ).__anext__()
        except ValueError as e:
            return self.create_error_response(str(e))

        if not isinstance(ret, list):
            ret = [ret]

        response = self._build_chat_response(
            request,
            ret,
            int(time.time()),
        )

        return response

    def _build_chat_response(
        self,
        request: ChatCompletionRequest,
        ret: List[Dict[str, Any]],
        created: int,
623
    ) -> Union[ChatCompletionResponse, ORJSONResponse]:
624
625
626
627
628
629
630
631
632
        """Build chat completion response from generation results"""
        choices = []

        for idx, ret_item in enumerate(ret):
            # Process logprobs
            choice_logprobs = None
            if request.logprobs:
                choice_logprobs = self._process_response_logprobs(ret_item)

633
634
635
            # Handle hidden states
            hidden_states = process_hidden_states_from_ret(ret_item, request)

636
637
638
639
640
            finish_reason = ret_item["meta_info"]["finish_reason"]
            text = ret_item["text"]

            # Handle reasoning content
            reasoning_text = None
641
            reasoning_parser = self.tokenizer_manager.server_args.reasoning_parser
642
            if reasoning_parser and request.separate_reasoning:
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
                try:
                    parser = ReasoningParser(
                        model_type=reasoning_parser, stream_reasoning=False
                    )
                    reasoning_text, text = parser.parse_non_stream(text)
                except Exception as e:
                    logger.error(f"Reasoning parsing error: {e}")
                    return self.create_error_response(
                        "Failed to parse reasoning content",
                        err_type="InternalServerError",
                        status_code=500,
                    )

            # Handle tool calls
            tool_calls = None
            if request.tool_choice != "none" and request.tools:
659
                tool_call_parser = self.tokenizer_manager.server_args.tool_call_parser
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
                tool_calls, text, finish_reason = self._process_tool_calls(
                    text, request.tools, tool_call_parser, finish_reason
                )

            choice_data = ChatCompletionResponseChoice(
                index=idx,
                message=ChatMessage(
                    role="assistant",
                    content=text if text else None,
                    tool_calls=tool_calls,
                    reasoning_content=reasoning_text if reasoning_text else None,
                ),
                logprobs=choice_logprobs,
                finish_reason=finish_reason["type"] if finish_reason else None,
                matched_stop=(
                    finish_reason["matched"]
                    if finish_reason and "matched" in finish_reason
                    else None
                ),
679
                hidden_states=hidden_states,
680
681
682
683
            )
            choices.append(choice_data)

        # Calculate usage
684
        usage = UsageProcessor.calculate_response_usage(
685
686
687
            ret,
            n_choices=request.n,
            enable_cache_report=self.tokenizer_manager.server_args.enable_cache_report,
688
        )
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766

        return ChatCompletionResponse(
            id=ret[0]["meta_info"]["id"],
            created=created,
            model=request.model,
            choices=choices,
            usage=usage,
        )

    def _process_logprobs_tokens(
        self, logprobs: LogProbs, use_token_index: bool = False
    ) -> List[ChatCompletionTokenLogprob]:
        """Common helper to process logprobs tokens for both streaming and non-streaming

        Args:
            logprobs: LogProbs data from model
            use_token_index: True for non-streaming (use token_idx), False for streaming (use index 0)
        """
        token_logprobs = []

        for token_idx, (token, logprob) in enumerate(
            zip(logprobs.tokens, logprobs.token_logprobs)
        ):
            token_bytes = list(token.encode("utf-8"))
            top_logprobs = []
            if logprobs.top_logprobs:
                # - Non-streaming (use_token_index=True): uses token_idx for full data
                # - Streaming (use_token_index=False): uses index 0 for pre-sliced data
                top_logprobs_idx = token_idx if use_token_index else 0
                for top_token, top_logprob in logprobs.top_logprobs[
                    top_logprobs_idx
                ].items():
                    top_token_bytes = list(top_token.encode("utf-8"))
                    top_logprobs.append(
                        TopLogprob(
                            token=top_token,
                            bytes=top_token_bytes,
                            logprob=top_logprob,
                        )
                    )
            token_logprobs.append(
                ChatCompletionTokenLogprob(
                    token=token,
                    bytes=token_bytes,
                    logprob=logprob,
                    top_logprobs=top_logprobs,
                )
            )

        return token_logprobs

    def _process_response_logprobs(self, ret_item: Dict[str, Any]) -> ChoiceLogprobs:
        """Process logprobs for non-streaming response"""
        logprobs = to_openai_style_logprobs(
            output_token_logprobs=ret_item["meta_info"]["output_token_logprobs"],
            output_top_logprobs=ret_item["meta_info"].get("output_top_logprobs", None),
        )

        token_logprobs = self._process_logprobs_tokens(logprobs, use_token_index=True)
        return ChoiceLogprobs(content=token_logprobs)

    def _process_tool_calls(
        self,
        text: str,
        tools: List[Any],
        tool_call_parser: Optional[str],
        finish_reason: Dict[str, Any],
    ) -> tuple[Optional[List[ToolCall]], str, Dict[str, Any]]:
        """Process tool calls in the response"""
        parser = FunctionCallParser(tools, tool_call_parser)
        if parser.has_tool_call(text):
            if finish_reason["type"] == "stop":
                finish_reason["type"] = "tool_calls"
                finish_reason["matched"] = None
            try:
                text, call_info_list = parser.parse_non_stream(text)
                tool_calls = [
                    ToolCall(
767
                        id=f"call_{uuid.uuid4().hex[:24]}",
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
                        function=FunctionResponse(
                            name=call_info.name, arguments=call_info.parameters
                        ),
                    )
                    for call_info in call_info_list
                ]
                return tool_calls, text, finish_reason
            except Exception as e:
                logger.error(f"Tool call parsing error: {e}")
                # Return error but don't fail the whole request
                return None, text, finish_reason

        return None, text, finish_reason

    def _process_streaming_logprobs(
        self, content: Dict[str, Any], n_prev_token: int
    ) -> ChoiceLogprobs:
        """Process logprobs for streaming response"""
        logprobs = to_openai_style_logprobs(
            output_token_logprobs=content["meta_info"]["output_token_logprobs"][
                n_prev_token:
            ],
            output_top_logprobs=content["meta_info"].get("output_top_logprobs", [])[
                n_prev_token:
            ],
        )

        token_logprobs = self._process_logprobs_tokens(logprobs, use_token_index=False)
        return ChoiceLogprobs(content=token_logprobs)

    def _process_reasoning_stream(
        self,
        index: int,
        delta: str,
        reasoning_parser_dict: Dict[int, ReasoningParser],
        content: Dict[str, Any],
        request: ChatCompletionRequest,
    ) -> tuple[Optional[str], str]:
        """Process reasoning content in streaming response"""
        if index not in reasoning_parser_dict:
            reasoning_parser_dict[index] = ReasoningParser(
                self.tokenizer_manager.server_args.reasoning_parser,
                request.stream_reasoning,
            )
        reasoning_parser = reasoning_parser_dict[index]
        return reasoning_parser.parse_stream_chunk(delta)

815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
    def _get_enable_thinking_from_request(request: ChatCompletionRequest) -> bool:
        """Extracts the 'enable_thinking' flag from request chat_template_kwargs.

        NOTE: This parameter is only useful for models that support enable_thinking
        flag, such as Qwen3.

        Args:
            request_obj: The request object (or an item from a list of requests).
        Returns:
            The boolean value of 'enable_thinking' if found and not True, otherwise True.
        """
        if (
            hasattr(request, "chat_template_kwargs")
            and request.chat_template_kwargs
            and request.chat_template_kwargs.get("enable_thinking") is not None
        ):
            return request.chat_template_kwargs.get("enable_thinking")
        return True

834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
    async def _process_tool_call_stream(
        self,
        index: int,
        delta: str,
        parser_dict: Dict[int, FunctionCallParser],
        content: Dict[str, Any],
        request: ChatCompletionRequest,
        finish_reason_type: Optional[str],
    ):
        """Process tool calls in streaming response"""
        if index not in parser_dict:
            parser_dict[index] = FunctionCallParser(
                tools=request.tools,
                tool_call_parser=self.tokenizer_manager.server_args.tool_call_parser,
            )
        parser = parser_dict[index]

        normal_text, calls = parser.parse_stream_chunk(delta)

        # Yield normal text
        if normal_text:
            choice_data = ChatCompletionResponseStreamChoice(
                index=index,
                delta=DeltaMessage(content=normal_text),
                finish_reason=finish_reason_type,
            )
            chunk = ChatCompletionStreamResponse(
                id=content["meta_info"]["id"],
                created=int(time.time()),
                choices=[choice_data],
                model=request.model,
            )
            yield f"data: {chunk.model_dump_json()}\n\n"

        # Yield tool calls
        for call_item in calls:
870
871
872
873
874
875
876
877
878
879
            # Tool call ID should be generated only once per tool call
            if call_item.name:
                # First chunk: include ID and function name
                tool_call_id = f"call_{uuid.uuid4().hex[:24]}"
                function_name = call_item.name
            else:
                # Subsequent chunks: null ID and name for argument deltas
                tool_call_id = None
                function_name = None

880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
            if finish_reason_type == "stop":
                # Handle remaining arguments
                latest_delta_len = 0
                if isinstance(call_item.parameters, str):
                    latest_delta_len = len(call_item.parameters)

                expected_call = json.dumps(
                    parser.detector.prev_tool_call_arr[index].get("arguments", {}),
                    ensure_ascii=False,
                )
                actual_call = parser.detector.streamed_args_for_tool[index]
                if latest_delta_len > 0:
                    actual_call = actual_call[:-latest_delta_len]
                remaining_call = expected_call.replace(actual_call, "", 1)
                call_item.parameters = remaining_call
                finish_reason_type = "tool_calls"

            tool_call = ToolCall(
898
                id=tool_call_id,
899
900
                index=call_item.tool_index,
                function=FunctionResponse(
901
                    name=function_name,
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
                    arguments=call_item.parameters,
                ),
            )

            choice_data = ChatCompletionResponseStreamChoice(
                index=index,
                delta=DeltaMessage(tool_calls=[tool_call]),
                finish_reason=(
                    None
                    if request.stream_options and request.stream_options.include_usage
                    else finish_reason_type
                ),
            )
            chunk = ChatCompletionStreamResponse(
                id=content["meta_info"]["id"],
                created=int(time.time()),
                choices=[choice_data],
                model=request.model,
            )
            yield f"data: {chunk.model_dump_json()}\n\n"