serving_chat.py 37.9 KB
Newer Older
1
import copy
2
3
4
5
import json
import logging
import time
import uuid
6
from typing import Any, AsyncGenerator, Dict, List, Optional, Union
7
8

from fastapi import Request
9
from fastapi.responses import ORJSONResponse, StreamingResponse
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

from sglang.srt.conversation import generate_chat_conv
from sglang.srt.entrypoints.openai.protocol import (
    ChatCompletionRequest,
    ChatCompletionResponse,
    ChatCompletionResponseChoice,
    ChatCompletionResponseStreamChoice,
    ChatCompletionStreamResponse,
    ChatCompletionTokenLogprob,
    ChatMessage,
    ChoiceLogprobs,
    DeltaMessage,
    ErrorResponse,
    FunctionResponse,
    LogProbs,
25
    MessageProcessingResult,
26
27
28
29
    ToolCall,
    TopLogprob,
)
from sglang.srt.entrypoints.openai.serving_base import OpenAIServingBase
30
from sglang.srt.entrypoints.openai.usage_processor import UsageProcessor
31
from sglang.srt.entrypoints.openai.utils import (
32
    process_hidden_states_from_ret,
33
34
35
    to_openai_style_logprobs,
)
from sglang.srt.function_call.function_call_parser import FunctionCallParser
36
from sglang.srt.jinja_template_utils import process_content_for_template_format
37
from sglang.srt.managers.io_struct import GenerateReqInput
38
39
from sglang.srt.managers.template_manager import TemplateManager
from sglang.srt.managers.tokenizer_manager import TokenizerManager
40
41
42
43
44
45
46
from sglang.srt.reasoning_parser import ReasoningParser
from sglang.utils import convert_json_schema_to_str

logger = logging.getLogger(__name__)


class OpenAIServingChat(OpenAIServingBase):
47
    """Handler for /v1/chat/completions requests"""
48

49
50
51
52
53
    def __init__(
        self, tokenizer_manager: TokenizerManager, template_manager: TemplateManager
    ):
        super().__init__(tokenizer_manager)
        self.template_manager = template_manager
54
55
56
57

    def _request_id_prefix(self) -> str:
        return "chatcmpl-"

58
59
60
61
62
63
64
65
66
67
68
69
70
71
    def _validate_request(self, request: ChatCompletionRequest) -> Optional[str]:
        """Validate that the input is valid."""
        if not request.messages:
            return "Messages cannot be empty."

        if (
            isinstance(request.tool_choice, str)
            and request.tool_choice.lower() == "required"
            and not request.tools
        ):
            return "Tools cannot be empty if tool choice is set to required."

        return None

72
73
    def _convert_to_internal_request(
        self,
74
75
        request: ChatCompletionRequest,
    ) -> tuple[GenerateReqInput, ChatCompletionRequest]:
76
77
78
        """Convert OpenAI chat completion request to internal format"""
        is_multimodal = self.tokenizer_manager.model_config.is_multimodal

79
        # Process messages and apply chat template
80
        processed_messages = self._process_messages(request, is_multimodal)
81

82
83
        # Build sampling parameters
        sampling_params = self._build_sampling_params(
84
            request, processed_messages.stop, processed_messages.tool_call_constraint
85
        )
86
87

        # Handle single vs multiple requests
88
        if is_multimodal:
89
            prompt_kwargs = {"text": processed_messages.prompt}
90
        else:
91
92
            if isinstance(processed_messages.prompt_ids, str):
                prompt_kwargs = {"text": processed_messages.prompt_ids}
93
            else:
94
                prompt_kwargs = {"input_ids": processed_messages.prompt_ids}
95
96
97

        adapted_request = GenerateReqInput(
            **prompt_kwargs,
98
            image_data=processed_messages.image_data,
99
            video_data=processed_messages.video_data,
100
            audio_data=processed_messages.audio_data,
101
102
103
104
105
            sampling_params=sampling_params,
            return_logprob=request.logprobs,
            logprob_start_len=-1,
            top_logprobs_num=request.top_logprobs or 0,
            stream=request.stream,
106
            return_text_in_logprobs=True,
107
            modalities=processed_messages.modalities,
108
109
110
111
            lora_path=request.lora_path,
            bootstrap_host=request.bootstrap_host,
            bootstrap_port=request.bootstrap_port,
            bootstrap_room=request.bootstrap_room,
112
            return_hidden_states=request.return_hidden_states,
113
            rid=request.rid,
114
115
        )

116
        return adapted_request, request
117
118
119

    def _process_messages(
        self, request: ChatCompletionRequest, is_multimodal: bool
120
    ) -> MessageProcessingResult:
121
122
123
        """Process chat messages and apply chat template"""
        tool_call_constraint = None

124
125
126
127
128
129
        # Apply chat template and its stop strings
        tools = None
        if request.tools and request.tool_choice != "none":
            request.skip_special_tokens = False
            if not isinstance(request.tool_choice, str):
                tools = [
130
                    item.function.model_dump()
131
132
133
                    for item in request.tools
                    if item.function.name == request.tool_choice.function.name
                ]
134
            else:
135
                tools = [item.function.model_dump() for item in request.tools]
136
137
138
139
140
141
142
143

            tool_call_parser = self.tokenizer_manager.server_args.tool_call_parser
            parser = FunctionCallParser(request.tools, tool_call_parser)
            tool_call_constraint = parser.get_structure_constraint(request.tool_choice)

        # Use chat template
        if self.template_manager.chat_template_name is None:
            result = self._apply_jinja_template(request, tools, is_multimodal)
144
        else:
145
146
147
148
            result = self._apply_conversation_template(request, is_multimodal)

        result.tool_call_constraint = tool_call_constraint
        return result
149
150
151
152
153
154

    def _apply_jinja_template(
        self,
        request: ChatCompletionRequest,
        tools: Optional[List[Dict]],
        is_multimodal: bool,
155
    ) -> MessageProcessingResult:
156
        """Apply Jinja chat template"""
157
158
        prompt = ""
        prompt_ids = []
159
160
        openai_compatible_messages = []
        image_data = []
161
        video_data = []
162
163
164
        audio_data = []
        modalities = []

165
        template_content_format = self.template_manager.jinja_template_content_format
166
167
168
169
170
171
172
173
174
175
176

        for message in request.messages:
            if message.content is None:
                message.content = ""
            msg_dict = message.model_dump()

            # Process content based on detected template format
            processed_msg = process_content_for_template_format(
                msg_dict,
                template_content_format,
                image_data,
177
                video_data,
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
                audio_data,
                modalities,
            )
            openai_compatible_messages.append(processed_msg)

        # Handle assistant prefix for continue_final_message
        assistant_prefix = None
        if (
            openai_compatible_messages
            and openai_compatible_messages[-1]["role"] == "assistant"
        ):
            if request.continue_final_message:
                assistant_prefix = openai_compatible_messages[-1]["content"]
                openai_compatible_messages = openai_compatible_messages[:-1]

        try:
            prompt_ids = self.tokenizer_manager.tokenizer.apply_chat_template(
                openai_compatible_messages,
                tokenize=True,
                add_generation_prompt=True,
                tools=tools,
                **(
                    request.chat_template_kwargs if request.chat_template_kwargs else {}
                ),
            )
        except Exception:
            #  This except branch will be triggered when the chosen model
            #  has a different tools input format that is not compatible
            #  with openAI's apply_chat_template tool_call format, like Mistral.
            tools = (
                [t if "function" in t else {"function": t} for t in tools]
                if tools
                else None
            )
            prompt_ids = self.tokenizer_manager.tokenizer.apply_chat_template(
                openai_compatible_messages,
                tokenize=True,
                add_generation_prompt=True,
                tools=tools,
                **(
                    request.chat_template_kwargs if request.chat_template_kwargs else {}
                ),
            )

        if assistant_prefix:
            encoded = self.tokenizer_manager.tokenizer.encode(assistant_prefix)
            if encoded and encoded[0] == self.tokenizer_manager.tokenizer.bos_token_id:
                encoded = encoded[1:]
            prompt_ids += encoded

        if is_multimodal:
            prompt = self.tokenizer_manager.tokenizer.decode(prompt_ids)

231
232
233
        stop = request.stop
        image_data = image_data if image_data else None
        audio_data = audio_data if audio_data else None
234
        video_data = video_data if video_data else None
235
        modalities = modalities if modalities else []
236
237
238
239
        return MessageProcessingResult(
            prompt=prompt,
            prompt_ids=prompt_ids,
            image_data=image_data,
240
            video_data=video_data,
241
242
243
244
            audio_data=audio_data,
            modalities=modalities,
            stop=stop,
        )
245
246

    def _apply_conversation_template(
247
248
249
        self,
        request: ChatCompletionRequest,
        is_multimodal: bool,
250
    ) -> MessageProcessingResult:
251
        """Apply conversation template"""
252
253
254
        prompt = ""
        prompt_ids = []
        conv = generate_chat_conv(request, self.template_manager.chat_template_name)
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280

        # If we should continue the final assistant message, adjust the conversation.
        if (
            request.continue_final_message
            and request.messages
            and request.messages[-1].role == "assistant"
        ):
            # Remove the auto-added blank assistant turn, if present.
            if conv.messages and conv.messages[-1][1] is None:
                conv.messages.pop()
            # Rebuild the prompt from the conversation.
            prompt = conv.get_prompt()
            # Strip trailing stop tokens or separators that indicate end-of-assistant.
            if isinstance(conv.stop_str, list):
                for stop_token in conv.stop_str:
                    if prompt.endswith(stop_token):
                        prompt = prompt[: -len(stop_token)]
            elif isinstance(conv.stop_str, str) and prompt.endswith(conv.stop_str):
                prompt = prompt[: -len(conv.stop_str)]
            if conv.sep and prompt.endswith(conv.sep):
                prompt = prompt[: -len(conv.sep)]
            if getattr(conv, "sep2", None) and prompt.endswith(conv.sep2):
                prompt = prompt[: -len(conv.sep2)]
        else:
            prompt = conv.get_prompt()

281
        image_data = conv.image_data if conv.image_data else None
282
        video_data = conv.video_data if conv.video_data else None
283
284
        audio_data = conv.audio_data if conv.audio_data else None
        modalities = conv.modalities if conv.modalities else []
285
        stop = copy.copy(conv.stop_str or [] if not request.ignore_eos else [])
286
287
288
289
290
291
292

        if request.stop:
            if isinstance(request.stop, str):
                stop.append(request.stop)
            else:
                stop.extend(request.stop)

293
294
295
        if not is_multimodal:
            prompt_ids = self.tokenizer_manager.tokenizer.encode(prompt)

296
297
298
299
        return MessageProcessingResult(
            prompt=prompt,
            prompt_ids=prompt_ids,
            image_data=image_data,
300
            video_data=video_data,
301
302
303
304
            audio_data=audio_data,
            modalities=modalities,
            stop=stop,
        )
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374

    def _build_sampling_params(
        self,
        request: ChatCompletionRequest,
        stop: List[str],
        tool_call_constraint: Optional[Any],
    ) -> Dict[str, Any]:
        """Build sampling parameters for the request"""

        sampling_params = {
            "temperature": request.temperature,
            "max_new_tokens": request.max_tokens or request.max_completion_tokens,
            "min_new_tokens": request.min_tokens,
            "stop": stop,
            "stop_token_ids": request.stop_token_ids,
            "top_p": request.top_p,
            "top_k": request.top_k,
            "min_p": request.min_p,
            "presence_penalty": request.presence_penalty,
            "frequency_penalty": request.frequency_penalty,
            "repetition_penalty": request.repetition_penalty,
            "regex": request.regex,
            "ebnf": request.ebnf,
            "n": request.n,
            "no_stop_trim": request.no_stop_trim,
            "ignore_eos": request.ignore_eos,
            "skip_special_tokens": request.skip_special_tokens,
            "logit_bias": request.logit_bias,
        }

        if request.response_format and request.response_format.type == "json_schema":
            sampling_params["json_schema"] = convert_json_schema_to_str(
                request.response_format.json_schema.schema_
            )
        elif request.response_format and request.response_format.type == "json_object":
            sampling_params["json_schema"] = '{"type": "object"}'
        elif (
            request.response_format and request.response_format.type == "structural_tag"
        ):
            sampling_params["structural_tag"] = convert_json_schema_to_str(
                request.response_format.model_dump(by_alias=True)
            )

        # Check if there are already existing output constraints
        has_existing_constraints = (
            sampling_params.get("regex")
            or sampling_params.get("ebnf")
            or sampling_params.get("structural_tag")
            or sampling_params.get("json_schema")
        )

        if tool_call_constraint and has_existing_constraints:
            logger.warning("Constrained decoding is not compatible with tool calls.")
        elif tool_call_constraint:
            constraint_type, constraint_value = tool_call_constraint
            if constraint_type == "structural_tag":
                sampling_params[constraint_type] = convert_json_schema_to_str(
                    constraint_value.model_dump(by_alias=True)
                )
            else:
                sampling_params[constraint_type] = constraint_value
        return sampling_params

    async def _handle_streaming_request(
        self,
        adapted_request: GenerateReqInput,
        request: ChatCompletionRequest,
        raw_request: Request,
    ) -> StreamingResponse:
        """Handle streaming chat completion request"""
375
376
377
378
379
        return StreamingResponse(
            self._generate_chat_stream(adapted_request, request, raw_request),
            media_type="text/event-stream",
            background=self.tokenizer_manager.create_abort_task(adapted_request),
        )
380

381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
    async def _generate_chat_stream(
        self,
        adapted_request: GenerateReqInput,
        request: ChatCompletionRequest,
        raw_request: Request,
    ) -> AsyncGenerator[str, None]:
        """Generate streaming chat completion response"""
        # Parsers for tool calls and reasoning
        parser_dict = {}
        reasoning_parser_dict = {}

        # State tracking for streaming
        is_firsts = {}
        stream_buffers = {}
        n_prev_tokens = {}
396
397
        has_tool_calls = {}
        finish_reasons = {}
398
399
400
401
402

        # Usage tracking
        prompt_tokens = {}
        completion_tokens = {}
        cached_tokens = {}
403
        hidden_states = {}
404

405
406
407
408
409
        try:
            async for content in self.tokenizer_manager.generate_request(
                adapted_request, raw_request
            ):
                index = content.get("index", 0)
410

411
412
413
                prompt_tokens[index] = content["meta_info"]["prompt_tokens"]
                completion_tokens[index] = content["meta_info"]["completion_tokens"]
                cached_tokens[index] = content["meta_info"].get("cached_tokens", 0)
414
                hidden_states[index] = content["meta_info"].get("hidden_states", None)
415

416
417
418
419
420
421
422
423
424
                # Handle logprobs
                choice_logprobs = None
                if request.logprobs:
                    choice_logprobs = self._process_streaming_logprobs(
                        content, n_prev_tokens.get(index, 0)
                    )
                    n_prev_tokens[index] = len(
                        content["meta_info"]["output_token_logprobs"]
                    )
425

426
427
428
                finish_reason = content["meta_info"]["finish_reason"]
                finish_reason_type = finish_reason["type"] if finish_reason else None

429
430
431
432
                # Track finish_reason for each index
                if finish_reason_type:
                    finish_reasons[index] = finish_reason

433
434
435
436
437
438
439
                # First chunk with role
                if is_firsts.get(index, True):
                    is_firsts[index] = False
                    delta = DeltaMessage(role="assistant", content="")
                    choice_data = ChatCompletionResponseStreamChoice(
                        index=index,
                        delta=delta,
440
441
                        finish_reason=None,
                        logprobs=None,
442
443
444
445
446
447
                    )
                    chunk = ChatCompletionStreamResponse(
                        id=content["meta_info"]["id"],
                        created=int(time.time()),
                        choices=[choice_data],
                        model=request.model,
448
                    )
449
                    yield f"data: {chunk.model_dump_json()}\n\n"
450

451
452
453
454
455
456
457
458
459
460
461
462
463
464
                # Process content delta
                stream_buffer = stream_buffers.get(index, "")
                delta = content["text"][len(stream_buffer) :]
                stream_buffers[index] = stream_buffer + delta

                # Handle reasoning content
                if (
                    self.tokenizer_manager.server_args.reasoning_parser
                    and request.separate_reasoning
                ):
                    reasoning_text, delta = self._process_reasoning_stream(
                        index, delta, reasoning_parser_dict, content, request
                    )
                    if reasoning_text:
465
466
                        choice_data = ChatCompletionResponseStreamChoice(
                            index=index,
467
                            delta=DeltaMessage(reasoning_content=reasoning_text),
468
                            finish_reason=None,
469
470
471
472
473
474
475
476
477
478
479
                        )
                        chunk = ChatCompletionStreamResponse(
                            id=content["meta_info"]["id"],
                            created=int(time.time()),
                            choices=[choice_data],
                            model=request.model,
                        )
                        yield f"data: {chunk.model_dump_json()}\n\n"

                # Handle tool calls
                if request.tool_choice != "none" and request.tools:
480
                    async for chunk in self._process_tool_call_stream(
481
482
483
484
485
                        index,
                        delta,
                        parser_dict,
                        content,
                        request,
486
                        has_tool_calls,
487
                    ):
488
489
                        if chunk:
                            yield chunk
490
491
492
493
494
495
496
497
498

                    # Send any remaining tool call arguments when generation finishes
                    if finish_reason_type is not None and index in parser_dict:
                        parser = parser_dict[index]
                        remaining_chunk = self._check_for_unstreamed_tool_args(
                            parser, content, request, index
                        )
                        if remaining_chunk:
                            yield remaining_chunk
499

500
501
                else:
                    # Regular content
502
                    if delta:
503
504
505
                        choice_data = ChatCompletionResponseStreamChoice(
                            index=index,
                            delta=DeltaMessage(content=delta if delta else None),
506
507
                            finish_reason=None,
                            matched_stop=None,
508
509
510
511
512
513
514
515
516
517
                            logprobs=choice_logprobs,
                        )
                        chunk = ChatCompletionStreamResponse(
                            id=content["meta_info"]["id"],
                            created=int(time.time()),
                            choices=[choice_data],
                            model=request.model,
                        )
                        yield f"data: {chunk.model_dump_json()}\n\n"

518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
            # Send finish_reason chunks for each index that completed
            for idx, finish_reason_data in finish_reasons.items():
                finish_reason_type = finish_reason_data["type"]

                # Change finish_reason to "tool_calls" if we had tool calls and stopped naturally
                final_finish_reason = finish_reason_type
                if has_tool_calls.get(idx, False) and finish_reason_type == "stop":
                    final_finish_reason = "tool_calls"

                finish_reason_chunk = ChatCompletionStreamResponse(
                    id=content["meta_info"][
                        "id"
                    ],  # NOTE: openai uses the same chatcmpl-id for all indices
                    created=int(time.time()),
                    choices=[
                        ChatCompletionResponseStreamChoice(
                            index=idx,
                            delta=DeltaMessage(),
                            finish_reason=final_finish_reason,
                            matched_stop=(
                                finish_reason_data["matched"]
                                if "matched" in finish_reason_data
                                else None
                            ),
                        )
                    ],
                    model=request.model,
                    usage=None,
                )
                yield f"data: {finish_reason_chunk.model_dump_json()}\n\n"
548

549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
            # Send hidden states if requested
            if request.return_hidden_states and hidden_states:
                for index, choice_hidden_states in hidden_states.items():
                    if choice_hidden_states:
                        last_token_hidden_states = (
                            choice_hidden_states[-1]
                            if len(choice_hidden_states) > 1
                            else []
                        )
                        hidden_states_chunk = ChatCompletionStreamResponse(
                            id=content["meta_info"]["id"],
                            created=int(time.time()),
                            choices=[
                                ChatCompletionResponseStreamChoice(
                                    index=index,
                                    delta=DeltaMessage(
                                        hidden_states=last_token_hidden_states
                                    ),
567
                                    finish_reason=None,  # Hidden states don't need finish_reason
568
569
570
571
572
573
                                )
                            ],
                            model=request.model,
                        )
                        yield f"data: {hidden_states_chunk.model_dump_json()}\n\n"

574
575
            # Additional usage chunk
            if request.stream_options and request.stream_options.include_usage:
576
                usage = UsageProcessor.calculate_streaming_usage(
577
578
579
                    prompt_tokens,
                    completion_tokens,
                    cached_tokens,
580
581
                    n_choices=request.n,
                    enable_cache_report=self.tokenizer_manager.server_args.enable_cache_report,
582
583
                )
                usage_chunk = ChatCompletionStreamResponse(
584
585
                    id=content["meta_info"]["id"],
                    created=int(time.time()),
586
                    choices=[],  # Empty choices array as per OpenAI spec
587
588
589
                    model=request.model,
                    usage=usage,
                )
590
                yield f"data: {usage_chunk.model_dump_json()}\n\n"
591

592
        except ValueError as e:
593
594
            error = self.create_streaming_error_response(str(e))
            yield f"data: {error}\n\n"
595

596
        yield "data: [DONE]\n\n"
597
598
599
600
601
602

    async def _handle_non_streaming_request(
        self,
        adapted_request: GenerateReqInput,
        request: ChatCompletionRequest,
        raw_request: Request,
603
    ) -> Union[ChatCompletionResponse, ErrorResponse, ORJSONResponse]:
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
        """Handle non-streaming chat completion request"""
        try:
            ret = await self.tokenizer_manager.generate_request(
                adapted_request, raw_request
            ).__anext__()
        except ValueError as e:
            return self.create_error_response(str(e))

        if not isinstance(ret, list):
            ret = [ret]

        response = self._build_chat_response(
            request,
            ret,
            int(time.time()),
        )

        return response

    def _build_chat_response(
        self,
        request: ChatCompletionRequest,
        ret: List[Dict[str, Any]],
        created: int,
628
    ) -> Union[ChatCompletionResponse, ORJSONResponse]:
629
630
631
632
633
634
635
636
637
        """Build chat completion response from generation results"""
        choices = []

        for idx, ret_item in enumerate(ret):
            # Process logprobs
            choice_logprobs = None
            if request.logprobs:
                choice_logprobs = self._process_response_logprobs(ret_item)

638
639
640
            # Handle hidden states
            hidden_states = process_hidden_states_from_ret(ret_item, request)

641
642
643
644
645
            finish_reason = ret_item["meta_info"]["finish_reason"]
            text = ret_item["text"]

            # Handle reasoning content
            reasoning_text = None
646
            reasoning_parser = self.tokenizer_manager.server_args.reasoning_parser
647
            if reasoning_parser and request.separate_reasoning:
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
                try:
                    parser = ReasoningParser(
                        model_type=reasoning_parser, stream_reasoning=False
                    )
                    reasoning_text, text = parser.parse_non_stream(text)
                except Exception as e:
                    logger.error(f"Reasoning parsing error: {e}")
                    return self.create_error_response(
                        "Failed to parse reasoning content",
                        err_type="InternalServerError",
                        status_code=500,
                    )

            # Handle tool calls
            tool_calls = None
            if request.tool_choice != "none" and request.tools:
664
                tool_call_parser = self.tokenizer_manager.server_args.tool_call_parser
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
                tool_calls, text, finish_reason = self._process_tool_calls(
                    text, request.tools, tool_call_parser, finish_reason
                )

            choice_data = ChatCompletionResponseChoice(
                index=idx,
                message=ChatMessage(
                    role="assistant",
                    content=text if text else None,
                    tool_calls=tool_calls,
                    reasoning_content=reasoning_text if reasoning_text else None,
                ),
                logprobs=choice_logprobs,
                finish_reason=finish_reason["type"] if finish_reason else None,
                matched_stop=(
                    finish_reason["matched"]
                    if finish_reason and "matched" in finish_reason
                    else None
                ),
684
                hidden_states=hidden_states,
685
686
687
688
            )
            choices.append(choice_data)

        # Calculate usage
689
        usage = UsageProcessor.calculate_response_usage(
690
691
692
            ret,
            n_choices=request.n,
            enable_cache_report=self.tokenizer_manager.server_args.enable_cache_report,
693
        )
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771

        return ChatCompletionResponse(
            id=ret[0]["meta_info"]["id"],
            created=created,
            model=request.model,
            choices=choices,
            usage=usage,
        )

    def _process_logprobs_tokens(
        self, logprobs: LogProbs, use_token_index: bool = False
    ) -> List[ChatCompletionTokenLogprob]:
        """Common helper to process logprobs tokens for both streaming and non-streaming

        Args:
            logprobs: LogProbs data from model
            use_token_index: True for non-streaming (use token_idx), False for streaming (use index 0)
        """
        token_logprobs = []

        for token_idx, (token, logprob) in enumerate(
            zip(logprobs.tokens, logprobs.token_logprobs)
        ):
            token_bytes = list(token.encode("utf-8"))
            top_logprobs = []
            if logprobs.top_logprobs:
                # - Non-streaming (use_token_index=True): uses token_idx for full data
                # - Streaming (use_token_index=False): uses index 0 for pre-sliced data
                top_logprobs_idx = token_idx if use_token_index else 0
                for top_token, top_logprob in logprobs.top_logprobs[
                    top_logprobs_idx
                ].items():
                    top_token_bytes = list(top_token.encode("utf-8"))
                    top_logprobs.append(
                        TopLogprob(
                            token=top_token,
                            bytes=top_token_bytes,
                            logprob=top_logprob,
                        )
                    )
            token_logprobs.append(
                ChatCompletionTokenLogprob(
                    token=token,
                    bytes=token_bytes,
                    logprob=logprob,
                    top_logprobs=top_logprobs,
                )
            )

        return token_logprobs

    def _process_response_logprobs(self, ret_item: Dict[str, Any]) -> ChoiceLogprobs:
        """Process logprobs for non-streaming response"""
        logprobs = to_openai_style_logprobs(
            output_token_logprobs=ret_item["meta_info"]["output_token_logprobs"],
            output_top_logprobs=ret_item["meta_info"].get("output_top_logprobs", None),
        )

        token_logprobs = self._process_logprobs_tokens(logprobs, use_token_index=True)
        return ChoiceLogprobs(content=token_logprobs)

    def _process_tool_calls(
        self,
        text: str,
        tools: List[Any],
        tool_call_parser: Optional[str],
        finish_reason: Dict[str, Any],
    ) -> tuple[Optional[List[ToolCall]], str, Dict[str, Any]]:
        """Process tool calls in the response"""
        parser = FunctionCallParser(tools, tool_call_parser)
        if parser.has_tool_call(text):
            if finish_reason["type"] == "stop":
                finish_reason["type"] = "tool_calls"
                finish_reason["matched"] = None
            try:
                text, call_info_list = parser.parse_non_stream(text)
                tool_calls = [
                    ToolCall(
772
                        id=f"call_{uuid.uuid4().hex[:24]}",
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
                        function=FunctionResponse(
                            name=call_info.name, arguments=call_info.parameters
                        ),
                    )
                    for call_info in call_info_list
                ]
                return tool_calls, text, finish_reason
            except Exception as e:
                logger.error(f"Tool call parsing error: {e}")
                # Return error but don't fail the whole request
                return None, text, finish_reason

        return None, text, finish_reason

    def _process_streaming_logprobs(
        self, content: Dict[str, Any], n_prev_token: int
    ) -> ChoiceLogprobs:
        """Process logprobs for streaming response"""
        logprobs = to_openai_style_logprobs(
            output_token_logprobs=content["meta_info"]["output_token_logprobs"][
                n_prev_token:
            ],
            output_top_logprobs=content["meta_info"].get("output_top_logprobs", [])[
                n_prev_token:
            ],
        )

        token_logprobs = self._process_logprobs_tokens(logprobs, use_token_index=False)
        return ChoiceLogprobs(content=token_logprobs)

    def _process_reasoning_stream(
        self,
        index: int,
        delta: str,
        reasoning_parser_dict: Dict[int, ReasoningParser],
        content: Dict[str, Any],
        request: ChatCompletionRequest,
    ) -> tuple[Optional[str], str]:
        """Process reasoning content in streaming response"""
        if index not in reasoning_parser_dict:
            reasoning_parser_dict[index] = ReasoningParser(
                self.tokenizer_manager.server_args.reasoning_parser,
                request.stream_reasoning,
            )
        reasoning_parser = reasoning_parser_dict[index]
        return reasoning_parser.parse_stream_chunk(delta)

820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
    def _get_enable_thinking_from_request(request: ChatCompletionRequest) -> bool:
        """Extracts the 'enable_thinking' flag from request chat_template_kwargs.

        NOTE: This parameter is only useful for models that support enable_thinking
        flag, such as Qwen3.

        Args:
            request_obj: The request object (or an item from a list of requests).
        Returns:
            The boolean value of 'enable_thinking' if found and not True, otherwise True.
        """
        if (
            hasattr(request, "chat_template_kwargs")
            and request.chat_template_kwargs
            and request.chat_template_kwargs.get("enable_thinking") is not None
        ):
            return request.chat_template_kwargs.get("enable_thinking")
        return True

839
840
841
842
843
844
845
    async def _process_tool_call_stream(
        self,
        index: int,
        delta: str,
        parser_dict: Dict[int, FunctionCallParser],
        content: Dict[str, Any],
        request: ChatCompletionRequest,
846
        has_tool_calls: Dict[int, bool],
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
    ):
        """Process tool calls in streaming response"""
        if index not in parser_dict:
            parser_dict[index] = FunctionCallParser(
                tools=request.tools,
                tool_call_parser=self.tokenizer_manager.server_args.tool_call_parser,
            )
        parser = parser_dict[index]

        normal_text, calls = parser.parse_stream_chunk(delta)

        # Yield normal text
        if normal_text:
            choice_data = ChatCompletionResponseStreamChoice(
                index=index,
                delta=DeltaMessage(content=normal_text),
863
                finish_reason=None,
864
865
866
867
868
869
870
            )
            chunk = ChatCompletionStreamResponse(
                id=content["meta_info"]["id"],
                created=int(time.time()),
                choices=[choice_data],
                model=request.model,
            )
871
            yield f"data: {chunk.model_dump_json()}\n\n"
872
873
874

        # Yield tool calls
        for call_item in calls:
875
876
877
            # Mark that this choice has tool calls
            has_tool_calls[index] = True

878
879
880
881
882
883
884
885
886
887
            # Tool call ID should be generated only once per tool call
            if call_item.name:
                # First chunk: include ID and function name
                tool_call_id = f"call_{uuid.uuid4().hex[:24]}"
                function_name = call_item.name
            else:
                # Subsequent chunks: null ID and name for argument deltas
                tool_call_id = None
                function_name = None

888
            tool_call = ToolCall(
889
                id=tool_call_id,
890
891
                index=call_item.tool_index,
                function=FunctionResponse(
892
                    name=function_name,
893
894
895
896
897
898
899
                    arguments=call_item.parameters,
                ),
            )

            choice_data = ChatCompletionResponseStreamChoice(
                index=index,
                delta=DeltaMessage(tool_calls=[tool_call]),
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
                finish_reason=None,
            )
            chunk = ChatCompletionStreamResponse(
                id=content["meta_info"]["id"],
                created=int(time.time()),
                choices=[choice_data],
                model=request.model,
            )
            yield f"data: {chunk.model_dump_json()}\n\n"

    def _check_for_unstreamed_tool_args(
        self,
        parser: FunctionCallParser,
        content: Dict[str, Any],
        request: ChatCompletionRequest,
        index: int,
    ) -> Optional[str]:
        """
        Check for any remaining tool call arguments that need to be streamed
        when generation finishes. This ensures tool calls are properly completed
        even if the model generates the final arguments in the last chunk.
        """
        # Only check if we have tool calls and the parser has tracked data
        if (
            not hasattr(parser.detector, "prev_tool_call_arr")
            or not parser.detector.prev_tool_call_arr
        ):
            return None

        if (
            not hasattr(parser.detector, "streamed_args_for_tool")
            or not parser.detector.streamed_args_for_tool
        ):
            return None

        # Get the last tool call that was being processed
        tool_index = len(parser.detector.prev_tool_call_arr) - 1
        if tool_index < 0 or tool_index >= len(parser.detector.streamed_args_for_tool):
            return None

        # Get expected vs actual arguments
        expected_args = parser.detector.prev_tool_call_arr[tool_index].get(
            "arguments", {}
        )
        expected_call = json.dumps(expected_args, ensure_ascii=False)
        actual_call = parser.detector.streamed_args_for_tool[tool_index]

        # Check if there are remaining arguments to send
        remaining_call = (
            expected_call.replace(actual_call, "", 1)
            if actual_call in expected_call
            else ""
        )

        if remaining_call:
            # Create tool call chunk with remaining arguments
            tool_call = ToolCall(
                id=None,  # No ID for argument deltas
                index=tool_index,
                function=FunctionResponse(
                    name=None,  # No name for argument deltas
                    arguments=remaining_call,
962
963
                ),
            )
964
965
966
967
968
969
970

            choice_data = ChatCompletionResponseStreamChoice(
                index=index,
                delta=DeltaMessage(tool_calls=[tool_call]),
                finish_reason=None,  # Don't send finish_reason with this chunk
            )

971
972
973
974
975
976
            chunk = ChatCompletionStreamResponse(
                id=content["meta_info"]["id"],
                created=int(time.time()),
                choices=[choice_data],
                model=request.model,
            )
977

978
979
980
            return f"data: {chunk.model_dump_json()}\n\n"

        return None