profile_gemm_reduce_impl.hpp 15.2 KB
Newer Older
Chao Liu's avatar
Chao Liu committed
1
2
3
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.

Chao Liu's avatar
Chao Liu committed
4
#pragma once
Chao Liu's avatar
Chao Liu committed
5
6
7
8
9
10
11
12

#include "ck/ck.hpp"
#include "ck/utility/reduction_operator.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_gemm_reduce.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"

#include "ck/library/utility/check_err.hpp"
13
14
15
16
#include "ck/library/utility/convolution_parameter.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
17
#include "ck/library/utility/literals.hpp"
Chao Liu's avatar
Chao Liu committed
18
#include "ck/library/reference_tensor_operation/cpu/reference_gemm.hpp"
Chao Liu's avatar
Chao Liu committed
19
20
21
22

namespace ck {
namespace tensor_operation {
namespace device {
23
namespace instance {
Chao Liu's avatar
Chao Liu committed
24

25
26
27
28
29
30
31
32
33
34
35
using F32                 = float;
using F16                 = ck::half_t;
using ReducePtrsGlobal    = ck::Tuple<F32*, F32*>;
using Div                 = ck::tensor_operation::element_wise::UnaryDivide;
using Identity            = ck::tensor_operation::element_wise::PassThrough;
using Square              = ck::tensor_operation::element_wise::UnarySquare;
using ReduceInElementOps  = ck::Tuple<Identity, Square>;
using ReduceOutElementOps = ck::Tuple<Div, Div>;

using DeviceGemmReduceNoOpPtr =
    ck::tensor_operation::device::DeviceGemmReducePtr<0, ReducePtrsGlobal::Size()>;
Chao Liu's avatar
Chao Liu committed
36
37
38
39
40
41
42
43
44
45
46
47
48

void add_device_gemm_reduce_xdl_cshuffle_f16_f16_f16_f32_f32_mk_kn_mn_instances(
    std::vector<DeviceGemmReduceNoOpPtr>&);

void add_device_gemm_reduce_xdl_cshuffle_f16_f16_f16_f32_f32_mk_nk_mn_instances(
    std::vector<DeviceGemmReduceNoOpPtr>&);

void add_device_gemm_reduce_xdl_cshuffle_f16_f16_f16_f32_f32_km_kn_mn_instances(
    std::vector<DeviceGemmReduceNoOpPtr>&);

void add_device_gemm_reduce_xdl_cshuffle_f16_f16_f16_f32_f32_km_nk_mn_instances(
    std::vector<DeviceGemmReduceNoOpPtr>&);

49
} // namespace instance
Chao Liu's avatar
Chao Liu committed
50
51
52
53
54
55
56
57
58
59
} // namespace device
} // namespace tensor_operation
} // namespace ck

namespace ck {
namespace profiler {

template <typename ADataType,
          typename BDataType,
          typename CDataType,
60
          typename ReduceDataType,
Chao Liu's avatar
Chao Liu committed
61
62
63
64
65
66
          typename ALayout,
          typename BLayout,
          typename CLayout>
bool profile_gemm_reduce_impl(int do_verification,
                              int init_method,
                              bool do_log,
JD's avatar
JD committed
67
                              bool time_kernel,
Chao Liu's avatar
Chao Liu committed
68
69
70
71
72
73
74
75
76
77
78
                              int M,
                              int N,
                              int K,
                              int StrideA,
                              int StrideB,
                              int StrideC)
{
    bool pass = true;

    auto f_host_tensor_descriptor =
        [](std::size_t row, std::size_t col, std::size_t stride, auto layout) {
79
80
            using namespace ck::literals;

Chao Liu's avatar
Chao Liu committed
81
82
            if(is_same<decltype(layout), tensor_layout::gemm::RowMajor>::value)
            {
83
                return HostTensorDescriptor({row, col}, {stride, 1_uz});
Chao Liu's avatar
Chao Liu committed
84
85
86
            }
            else
            {
87
                return HostTensorDescriptor({row, col}, {1_uz, stride});
Chao Liu's avatar
Chao Liu committed
88
89
90
91
92
93
94
            }
        };

    Tensor<ADataType> a_m_k(f_host_tensor_descriptor(M, K, StrideA, ALayout{}));
    Tensor<BDataType> b_k_n(f_host_tensor_descriptor(K, N, StrideB, BLayout{}));

    Tensor<CDataType> c_m_n_host_result(f_host_tensor_descriptor(M, N, StrideC, CLayout{}));
95
96
    Tensor<ReduceDataType> reduce0_m_host_result({M});
    Tensor<ReduceDataType> reduce1_m_host_result({M});
Chao Liu's avatar
Chao Liu committed
97
98

    Tensor<CDataType> c_m_n_device_result(f_host_tensor_descriptor(M, N, StrideC, CLayout{}));
99
100
    Tensor<ReduceDataType> reduce0_m_device_result({M});
    Tensor<ReduceDataType> reduce1_m_device_result({M});
Chao Liu's avatar
Chao Liu committed
101
102
103
104

    std::cout << "a_m_k: " << a_m_k.mDesc << std::endl;
    std::cout << "b_k_n: " << b_k_n.mDesc << std::endl;
    std::cout << "c_m_n: " << c_m_n_host_result.mDesc << std::endl;
105
106
    std::cout << "reduce0_m: " << reduce0_m_host_result.mDesc << std::endl;
    std::cout << "reduce1_m: " << reduce1_m_host_result.mDesc << std::endl;
Chao Liu's avatar
Chao Liu committed
107

108
    std::size_t num_thread = 1;
Chao Liu's avatar
Chao Liu committed
109
110
111
112
113
114
115
116
117
118
119
120
121
122
    switch(init_method)
    {
    case 0: break;
    case 1:
        std::srand(0);
        a_m_k.GenerateTensorValue(GeneratorTensor_2<ADataType>{-5, 5}, num_thread);
        b_k_n.GenerateTensorValue(GeneratorTensor_2<BDataType>{-5, 5}, num_thread);
        break;
    default:
        std::srand(0);
        a_m_k.GenerateTensorValue(GeneratorTensor_3<ADataType>{0.0, 1.0}, num_thread);
        b_k_n.GenerateTensorValue(GeneratorTensor_3<BDataType>{-0.5, 0.5}, num_thread);
    }

123
124
125
    using AElementOp            = ck::tensor_operation::element_wise::PassThrough;
    using BElementOp            = ck::tensor_operation::element_wise::PassThrough;
    using CElementOp            = ck::tensor_operation::element_wise::PassThrough;
126
127
    using ReduceOp0             = ck::reduce::Add;
    using ReduceOp1             = ck::reduce::Add;
128
129
    using UnaryIdenticElementOp = ck::tensor_operation::element_wise::PassThrough;
    using UnarySquareElementOp  = ck::tensor_operation::element_wise::UnarySquare;
130
131
132
133
134
135
    using UnaryDivElementOp     = ck::tensor_operation::element_wise::UnaryDivide;

    auto a_element_op                     = AElementOp{};
    auto b_element_op                     = BElementOp{};
    auto c_element_op                     = CElementOp{};
    std::array<void*, 3> gemm_element_ops = {&a_element_op, &b_element_op, &c_element_op};
rocking5566's avatar
rocking5566 committed
136

137
138
    const auto reduce0_op = ReduceOp0{};
    const auto reduce1_op = ReduceOp1{};
rocking5566's avatar
rocking5566 committed
139

140
141
142
143
144
    auto passthrough                            = UnaryIdenticElementOp{};
    auto square                                 = UnarySquareElementOp{};
    auto div                                    = UnaryDivElementOp{N};
    std::array<void*, 2> reduce_in_element_ops  = {&passthrough, &square};
    std::array<void*, 2> reduce_out_element_ops = {&div, &div};
Chao Liu's avatar
Chao Liu committed
145
146
147

    if(do_verification)
    {
148
149
150
        using ReferenceGemmInstance = ck::tensor_operation::host::ReferenceGemm<ADataType,
                                                                                BDataType,
                                                                                CDataType,
151
                                                                                ReduceDataType,
152
153
154
                                                                                AElementOp,
                                                                                BElementOp,
                                                                                CElementOp>;
Chao Liu's avatar
Chao Liu committed
155

156
        using ReduceAccDataType = ReduceDataType;
157

Chao Liu's avatar
Chao Liu committed
158
159
160
161
162
163
164
165
166
167
        auto ref_gemm    = ReferenceGemmInstance{};
        auto ref_invoker = ref_gemm.MakeInvoker();

        auto ref_argument = ref_gemm.MakeArgument(
            a_m_k, b_k_n, c_m_n_host_result, a_element_op, b_element_op, c_element_op);

        ref_invoker.Run(ref_argument);

        for(int m = 0; m < M; ++m)
        {
168
169
            auto reduce0_acc = reduce0_op.GetIdentityValue<ReduceAccDataType>();
            auto reduce1_acc = reduce1_op.GetIdentityValue<ReduceAccDataType>();
Chao Liu's avatar
Chao Liu committed
170
171
172

            for(int n = 0; n < N; ++n)
            {
173
                ReduceAccDataType d0_val =
174
                    ck::type_convert<ReduceAccDataType>(c_m_n_host_result(m, n));
175
                ReduceAccDataType d1_val;
176

177
178
179
                square(d1_val, d0_val);
                reduce0_op(reduce0_acc, d0_val);
                reduce1_op(reduce1_acc, d1_val);
Chao Liu's avatar
Chao Liu committed
180
181
            }

182
183
184
185
            div(reduce0_acc, reduce0_acc);
            div(reduce1_acc, reduce1_acc);
            reduce0_m_host_result(m) = ck::type_convert<ReduceDataType>(reduce0_acc);
            reduce1_m_host_result(m) = ck::type_convert<ReduceDataType>(reduce1_acc);
Chao Liu's avatar
Chao Liu committed
186
187
188
        }
    }

189
190
191
    DeviceMem a_device_buf(sizeof(ADataType) * a_m_k.mDesc.GetElementSpaceSize());
    DeviceMem b_device_buf(sizeof(BDataType) * b_k_n.mDesc.GetElementSpaceSize());
    DeviceMem c_device_buf(sizeof(CDataType) * c_m_n_device_result.mDesc.GetElementSpaceSize());
192
    DeviceMem reduce0_device_buf(sizeof(ReduceDataType) *
193
                                 reduce0_m_device_result.mDesc.GetElementSpaceSize());
194
    DeviceMem reduce1_device_buf(sizeof(ReduceDataType) *
195
                                 reduce1_m_device_result.mDesc.GetElementSpaceSize());
Chao Liu's avatar
Chao Liu committed
196

197
198
    std::array<void*, 2> p_reduces = {reduce0_device_buf.GetDeviceBuffer(),
                                      reduce1_device_buf.GetDeviceBuffer()};
rocking5566's avatar
rocking5566 committed
199

Chao Liu's avatar
Chao Liu committed
200
201
202
203
    a_device_buf.ToDevice(a_m_k.mData.data());
    b_device_buf.ToDevice(b_k_n.mData.data());

    // add device GEMM instances
204
    std::vector<ck::tensor_operation::device::instance::DeviceGemmReduceNoOpPtr> gemm_ptrs;
Chao Liu's avatar
Chao Liu committed
205
206
207
208
209
210
211
212

    if constexpr(is_same<ADataType, half_t>::value && is_same<BDataType, half_t>::value &&
                 is_same<CDataType, half_t>::value)
    {
        if constexpr(is_same<ALayout, tensor_layout::gemm::RowMajor>::value &&
                     is_same<BLayout, tensor_layout::gemm::RowMajor>::value &&
                     is_same<CLayout, tensor_layout::gemm::RowMajor>::value)
        {
213
            ck::tensor_operation::device::instance::
Chao Liu's avatar
Chao Liu committed
214
215
216
217
218
219
220
                add_device_gemm_reduce_xdl_cshuffle_f16_f16_f16_f32_f32_mk_kn_mn_instances(
                    gemm_ptrs);
        }
        else if constexpr(is_same<ALayout, tensor_layout::gemm::RowMajor>::value &&
                          is_same<BLayout, tensor_layout::gemm::ColumnMajor>::value &&
                          is_same<CLayout, tensor_layout::gemm::RowMajor>::value)
        {
221
            ck::tensor_operation::device::instance::
Chao Liu's avatar
Chao Liu committed
222
223
224
225
226
227
228
                add_device_gemm_reduce_xdl_cshuffle_f16_f16_f16_f32_f32_mk_nk_mn_instances(
                    gemm_ptrs);
        }
        else if constexpr(is_same<ALayout, tensor_layout::gemm::ColumnMajor>::value &&
                          is_same<BLayout, tensor_layout::gemm::RowMajor>::value &&
                          is_same<CLayout, tensor_layout::gemm::RowMajor>::value)
        {
229
            ck::tensor_operation::device::instance::
Chao Liu's avatar
Chao Liu committed
230
231
232
233
234
235
236
                add_device_gemm_reduce_xdl_cshuffle_f16_f16_f16_f32_f32_km_kn_mn_instances(
                    gemm_ptrs);
        }
        else if constexpr(is_same<ALayout, tensor_layout::gemm::ColumnMajor>::value &&
                          is_same<BLayout, tensor_layout::gemm::ColumnMajor>::value &&
                          is_same<CLayout, tensor_layout::gemm::RowMajor>::value)
        {
237
            ck::tensor_operation::device::instance::
Chao Liu's avatar
Chao Liu committed
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
                add_device_gemm_reduce_xdl_cshuffle_f16_f16_f16_f32_f32_km_nk_mn_instances(
                    gemm_ptrs);
        }
    }

    if(gemm_ptrs.size() <= 0)
    {
        throw std::runtime_error("wrong! no device GEMM instance found");
    }

    std::string best_gemm_name;
    float best_ave_time   = 0;
    float best_tflops     = 0;
    float best_gb_per_sec = 0;

    // profile device GEMM instances
    for(auto& gemm_ptr : gemm_ptrs)
    {
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
        auto argument_ptr = gemm_ptr->MakeArgumentPointer(a_device_buf.GetDeviceBuffer(),
                                                          b_device_buf.GetDeviceBuffer(),
                                                          nullptr,
                                                          {},
                                                          c_device_buf.GetDeviceBuffer(),
                                                          p_reduces,
                                                          M,
                                                          N,
                                                          K,
                                                          StrideA,
                                                          StrideB,
                                                          StrideC,
                                                          {},
                                                          gemm_element_ops,
                                                          {},
                                                          reduce_in_element_ops,
                                                          reduce_out_element_ops);
Chao Liu's avatar
Chao Liu committed
273
274
275
276
277

        auto invoker_ptr = gemm_ptr->MakeInvokerPointer();

        if(gemm_ptr->IsSupportedArgument(argument_ptr.get()))
        {
JD's avatar
JD committed
278
            // init DO, D1 to 0
279
280
            reduce0_device_buf.SetZero();
            reduce1_device_buf.SetZero();
Chao Liu's avatar
Chao Liu committed
281

JD's avatar
JD committed
282
283
            float ave_time =
                invoker_ptr->Run(argument_ptr.get(), StreamConfig{nullptr, time_kernel});
Chao Liu's avatar
Chao Liu committed
284
285
286
287
288

            std::string gemm_name = gemm_ptr->GetTypeString();

            std::size_t flop = std::size_t(2) * M * N * K;

JD's avatar
JD committed
289
            std::size_t num_btype = sizeof(ADataType) * M * K + sizeof(BDataType) * K * N +
Chao Liu's avatar
Chao Liu committed
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
                                    sizeof(CDataType) * M * N + sizeof(CDataType) * N;

            float tflops = static_cast<float>(flop) / 1.E9 / ave_time;

            float gb_per_sec = num_btype / 1.E6 / ave_time;

            std::cout << "Perf: " << ave_time << " ms, " << tflops << " TFlops, " << gb_per_sec
                      << " GB/s, " << gemm_name << std::endl;

            if(tflops > best_tflops)
            {
                best_gemm_name  = gemm_name;
                best_tflops     = tflops;
                best_ave_time   = ave_time;
                best_gb_per_sec = gb_per_sec;
            }

            if(do_verification)
            {
                c_device_buf.FromDevice(c_m_n_device_result.mData.data());
310
311
                reduce0_device_buf.FromDevice(reduce0_m_device_result.mData.data());
                reduce1_device_buf.FromDevice(reduce1_m_device_result.mData.data());
Chao Liu's avatar
Chao Liu committed
312

313
314
315
                ck::utils::check_err(c_m_n_device_result, c_m_n_host_result);
                ck::utils::check_err(reduce0_m_device_result, reduce0_m_host_result);
                ck::utils::check_err(reduce1_m_device_result, reduce1_m_host_result);
Chao Liu's avatar
Chao Liu committed
316
317
318
319
320
321
322
323
324

                if(do_log)
                {
                    LogRangeAsType<float>(std::cout << "a : ", a_m_k.mData, ",") << std::endl;
                    LogRangeAsType<float>(std::cout << "b: ", b_k_n.mData, ",") << std::endl;
                    LogRangeAsType<float>(std::cout << "c_host: ", c_m_n_host_result.mData, ",")
                        << std::endl;
                    LogRangeAsType<float>(std::cout << "c_device: ", c_m_n_device_result.mData, ",")
                        << std::endl;
325
326
                    LogRangeAsType<float>(
                        std::cout << "d0_host: ", reduce0_m_host_result.mData, ",")
Chao Liu's avatar
Chao Liu committed
327
                        << std::endl;
328
329
                    LogRangeAsType<float>(
                        std::cout << "d0_device: ", reduce0_m_device_result.mData, ",")
Chao Liu's avatar
Chao Liu committed
330
                        << std::endl;
331
332
                    LogRangeAsType<float>(
                        std::cout << "d1_host: ", reduce1_m_host_result.mData, ",")
Chao Liu's avatar
Chao Liu committed
333
                        << std::endl;
334
335
                    LogRangeAsType<float>(
                        std::cout << "d1_device: ", reduce1_m_device_result.mData, ",")
Chao Liu's avatar
Chao Liu committed
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
                        << std::endl;
                }
            }
        }
        else
        {
            std::cout << "does not support this GEMM problem" << std::endl;
        }
    }

    std::cout << "Best Perf: " << best_ave_time << " ms, " << best_tflops << " TFlops, "
              << best_gb_per_sec << " GB/s, " << best_gemm_name << std::endl;

    return pass;
}

} // namespace profiler
} // namespace ck