"docs/vscode:/vscode.git/clone" did not exist on "b9b3b098b9e238ab745cb955a8899d1f24a532ba"
profile_gemm_reduce_impl.hpp 14.9 KB
Newer Older
Chao Liu's avatar
Chao Liu committed
1
2
3
4
5
6
7
8
9
#pragma once
#include "config.hpp"
#include "device.hpp"
#include "host_tensor.hpp"
#include "host_tensor_generator.hpp"
#include "host_conv.hpp"
#include "tensor_layout.hpp"
#include "device_tensor.hpp"
#include "element_wise_operation.hpp"
10
#include "reduction_operator.hpp"
Chao Liu's avatar
Chao Liu committed
11
12
13
14
15
16
17
18
#include "device_gemm_reduce.hpp"
#include "reference_gemm.hpp"

namespace ck {
namespace tensor_operation {
namespace device {
namespace device_gemm_instance {

rocking5566's avatar
rocking5566 committed
19
20
21
using F32            = float;
using F16            = ck::half_t;
using DPtrsGlobal    = ck::Tuple<F32*, F32*>;
rocking5566's avatar
rocking5566 committed
22
using Div            = ck::tensor_operation::element_wise::UnaryIdentic<F32, F32, true>;
rocking5566's avatar
rocking5566 committed
23
24
25
using Identity       = ck::tensor_operation::element_wise::UnaryIdentic<F32, F32, false>;
using Square         = ck::tensor_operation::element_wise::UnarySquare<F32, F32, false>;
using DInElementOps  = ck::Tuple<Identity, Square>;
rocking5566's avatar
rocking5566 committed
26
using DOutElementOps = ck::Tuple<Div, Div>;
rocking5566's avatar
rocking5566 committed
27

Chao Liu's avatar
Chao Liu committed
28
using DeviceGemmReduceNoOpPtr = ck::tensor_operation::device::DeviceGemmReducePtr<
rocking5566's avatar
rocking5566 committed
29
    DPtrsGlobal,
Chao Liu's avatar
Chao Liu committed
30
31
32
    ck::tensor_operation::element_wise::PassThrough,
    ck::tensor_operation::element_wise::PassThrough,
    ck::tensor_operation::element_wise::PassThrough,
rocking5566's avatar
rocking5566 committed
33
34
    DInElementOps,
    DOutElementOps>;
Chao Liu's avatar
Chao Liu committed
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

void add_device_gemm_reduce_xdl_cshuffle_f16_f16_f16_f32_f32_mk_kn_mn_instances(
    std::vector<DeviceGemmReduceNoOpPtr>&);

void add_device_gemm_reduce_xdl_cshuffle_f16_f16_f16_f32_f32_mk_nk_mn_instances(
    std::vector<DeviceGemmReduceNoOpPtr>&);

void add_device_gemm_reduce_xdl_cshuffle_f16_f16_f16_f32_f32_km_kn_mn_instances(
    std::vector<DeviceGemmReduceNoOpPtr>&);

void add_device_gemm_reduce_xdl_cshuffle_f16_f16_f16_f32_f32_km_nk_mn_instances(
    std::vector<DeviceGemmReduceNoOpPtr>&);

} // namespace device_gemm_instance
} // namespace device
} // namespace tensor_operation
} // namespace ck

namespace ck {
namespace profiler {

template <typename ADataType,
          typename BDataType,
          typename CDataType,
          typename DDataType,
          typename ALayout,
          typename BLayout,
          typename CLayout>
bool profile_gemm_reduce_impl(int do_verification,
                              int init_method,
                              bool do_log,
JD's avatar
JD committed
66
                              bool time_kernel,
Chao Liu's avatar
Chao Liu committed
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
                              int M,
                              int N,
                              int K,
                              int StrideA,
                              int StrideB,
                              int StrideC)
{
    bool pass = true;

    auto f_host_tensor_descriptor =
        [](std::size_t row, std::size_t col, std::size_t stride, auto layout) {
            if(is_same<decltype(layout), tensor_layout::gemm::RowMajor>::value)
            {
                return HostTensorDescriptor(std::vector<std::size_t>({row, col}),
                                            std::vector<std::size_t>({stride, 1}));
            }
            else
            {
                return HostTensorDescriptor(std::vector<std::size_t>({row, col}),
                                            std::vector<std::size_t>({1, stride}));
            }
        };

    Tensor<ADataType> a_m_k(f_host_tensor_descriptor(M, K, StrideA, ALayout{}));
    Tensor<BDataType> b_k_n(f_host_tensor_descriptor(K, N, StrideB, BLayout{}));

    Tensor<CDataType> c_m_n_host_result(f_host_tensor_descriptor(M, N, StrideC, CLayout{}));
    Tensor<DDataType> d0_m_host_result(
        HostTensorDescriptor(std::vector<std::size_t>({static_cast<std::size_t>(M)})));
    Tensor<DDataType> d1_m_host_result(
        HostTensorDescriptor(std::vector<std::size_t>({static_cast<std::size_t>(M)})));

    Tensor<CDataType> c_m_n_device_result(f_host_tensor_descriptor(M, N, StrideC, CLayout{}));
    Tensor<DDataType> d0_m_device_result(
        HostTensorDescriptor(std::vector<std::size_t>({static_cast<std::size_t>(M)})));
    Tensor<DDataType> d1_m_device_result(
        HostTensorDescriptor(std::vector<std::size_t>({static_cast<std::size_t>(M)})));

    std::cout << "a_m_k: " << a_m_k.mDesc << std::endl;
    std::cout << "b_k_n: " << b_k_n.mDesc << std::endl;
    std::cout << "c_m_n: " << c_m_n_host_result.mDesc << std::endl;
    std::cout << "d0_m: " << d0_m_host_result.mDesc << std::endl;
    std::cout << "d1_m: " << d1_m_host_result.mDesc << std::endl;

111
    std::size_t num_thread = 1;
Chao Liu's avatar
Chao Liu committed
112
113
114
115
116
117
118
119
120
121
122
123
124
125
    switch(init_method)
    {
    case 0: break;
    case 1:
        std::srand(0);
        a_m_k.GenerateTensorValue(GeneratorTensor_2<ADataType>{-5, 5}, num_thread);
        b_k_n.GenerateTensorValue(GeneratorTensor_2<BDataType>{-5, 5}, num_thread);
        break;
    default:
        std::srand(0);
        a_m_k.GenerateTensorValue(GeneratorTensor_3<ADataType>{0.0, 1.0}, num_thread);
        b_k_n.GenerateTensorValue(GeneratorTensor_3<BDataType>{-0.5, 0.5}, num_thread);
    }

rocking5566's avatar
rocking5566 committed
126
127
128
129
130
131
    using AElementOp        = ck::tensor_operation::element_wise::PassThrough;
    using BElementOp        = ck::tensor_operation::element_wise::PassThrough;
    using CElementOp        = ck::tensor_operation::element_wise::PassThrough;
    using D0ReduceOp        = ck::reduce::Add<float>;
    using D1ReduceOp        = ck::reduce::Add<float>;
    using UnaryDivElementOp = ck::tensor_operation::element_wise::UnaryIdentic<float, float, true>;
rocking5566's avatar
rocking5566 committed
132
133
134
135
136
    using UnaryIdenticElementOp =
        ck::tensor_operation::element_wise::UnaryIdentic<float, float, false>;
    using UnarySquareElementOp =
        ck::tensor_operation::element_wise::UnarySquare<float, float, false>;
    using DxsInElementOps  = ck::Tuple<UnaryIdenticElementOp, UnarySquareElementOp>;
rocking5566's avatar
rocking5566 committed
137
    using DxsOutElementOps = ck::Tuple<UnaryDivElementOp, UnaryDivElementOp>;
rocking5566's avatar
rocking5566 committed
138

rocking5566's avatar
rocking5566 committed
139
140
141
142
143
144
145
146
    const auto a_element_op = AElementOp{};
    const auto b_element_op = BElementOp{};
    const auto c_element_op = CElementOp{};
    const auto d0_reduce_op = D0ReduceOp{};
    const auto d1_reduce_op = D1ReduceOp{};

    auto dxs_in_element_op  = DxsInElementOps{};
    auto dxs_out_element_op = DxsOutElementOps{M, M};
Chao Liu's avatar
Chao Liu committed
147
148
149

    if(do_verification)
    {
150
151
152
153
154
155
156
        using ReferenceGemmInstance = ck::tensor_operation::host::ReferenceGemm<ADataType,
                                                                                BDataType,
                                                                                CDataType,
                                                                                DDataType,
                                                                                AElementOp,
                                                                                BElementOp,
                                                                                CElementOp>;
Chao Liu's avatar
Chao Liu committed
157
158
159
160
161
162
163
164
165
166
167

        auto ref_gemm    = ReferenceGemmInstance{};
        auto ref_invoker = ref_gemm.MakeInvoker();

        auto ref_argument = ref_gemm.MakeArgument(
            a_m_k, b_k_n, c_m_n_host_result, a_element_op, b_element_op, c_element_op);

        ref_invoker.Run(ref_argument);

        for(int m = 0; m < M; ++m)
        {
168
169
            float d0_acc = d0_reduce_op.GetIdentityValue();
            float d1_acc = d1_reduce_op.GetIdentityValue();
Chao Liu's avatar
Chao Liu committed
170
171
172

            for(int n = 0; n < N; ++n)
            {
rocking5566's avatar
rocking5566 committed
173
174
175
                float c_val  = ck::type_convert<float>(c_m_n_host_result(m, n));
                float d0_val = 0;
                float d1_val = 0;
176

rocking5566's avatar
rocking5566 committed
177
178
                dxs_in_element_op(ck::Number<0>{})(d0_val, c_val);
                dxs_in_element_op(ck::Number<1>{})(d1_val, c_val);
179
180
                d0_reduce_op(d0_acc, d0_val);
                d1_reduce_op(d1_acc, d1_val);
Chao Liu's avatar
Chao Liu committed
181
182
            }

rocking5566's avatar
rocking5566 committed
183
184
            dxs_out_element_op(ck::Number<0>{})(d0_acc, d0_acc);
            dxs_out_element_op(ck::Number<1>{})(d1_acc, d1_acc);
185
186
            d0_m_host_result(m) = ck::type_convert<DDataType>(d0_acc);
            d1_m_host_result(m) = ck::type_convert<DDataType>(d1_acc);
Chao Liu's avatar
Chao Liu committed
187
188
189
190
191
192
193
194
195
        }
    }

    DeviceMem a_device_buf(sizeof(ADataType) * a_m_k.mDesc.GetElementSpace());
    DeviceMem b_device_buf(sizeof(BDataType) * b_k_n.mDesc.GetElementSpace());
    DeviceMem c_device_buf(sizeof(CDataType) * c_m_n_device_result.mDesc.GetElementSpace());
    DeviceMem d0_device_buf(sizeof(DDataType) * d0_m_device_result.mDesc.GetElementSpace());
    DeviceMem d1_device_buf(sizeof(DDataType) * d1_m_device_result.mDesc.GetElementSpace());

rocking5566's avatar
rocking5566 committed
196
197
198
    auto dxs_global = ck::make_tuple(static_cast<DDataType*>(d0_device_buf.GetDeviceBuffer()),
                                     static_cast<DDataType*>(d1_device_buf.GetDeviceBuffer()));

Chao Liu's avatar
Chao Liu committed
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
    a_device_buf.ToDevice(a_m_k.mData.data());
    b_device_buf.ToDevice(b_k_n.mData.data());

    // add device GEMM instances
    std::vector<ck::tensor_operation::device::device_gemm_instance::DeviceGemmReduceNoOpPtr>
        gemm_ptrs;

    if constexpr(is_same<ADataType, half_t>::value && is_same<BDataType, half_t>::value &&
                 is_same<CDataType, half_t>::value)
    {
        if constexpr(is_same<ALayout, tensor_layout::gemm::RowMajor>::value &&
                     is_same<BLayout, tensor_layout::gemm::RowMajor>::value &&
                     is_same<CLayout, tensor_layout::gemm::RowMajor>::value)
        {
            ck::tensor_operation::device::device_gemm_instance::
                add_device_gemm_reduce_xdl_cshuffle_f16_f16_f16_f32_f32_mk_kn_mn_instances(
                    gemm_ptrs);
        }
        else if constexpr(is_same<ALayout, tensor_layout::gemm::RowMajor>::value &&
                          is_same<BLayout, tensor_layout::gemm::ColumnMajor>::value &&
                          is_same<CLayout, tensor_layout::gemm::RowMajor>::value)
        {
            ck::tensor_operation::device::device_gemm_instance::
                add_device_gemm_reduce_xdl_cshuffle_f16_f16_f16_f32_f32_mk_nk_mn_instances(
                    gemm_ptrs);
        }
        else if constexpr(is_same<ALayout, tensor_layout::gemm::ColumnMajor>::value &&
                          is_same<BLayout, tensor_layout::gemm::RowMajor>::value &&
                          is_same<CLayout, tensor_layout::gemm::RowMajor>::value)
        {
            ck::tensor_operation::device::device_gemm_instance::
                add_device_gemm_reduce_xdl_cshuffle_f16_f16_f16_f32_f32_km_kn_mn_instances(
                    gemm_ptrs);
        }
        else if constexpr(is_same<ALayout, tensor_layout::gemm::ColumnMajor>::value &&
                          is_same<BLayout, tensor_layout::gemm::ColumnMajor>::value &&
                          is_same<CLayout, tensor_layout::gemm::RowMajor>::value)
        {
            ck::tensor_operation::device::device_gemm_instance::
                add_device_gemm_reduce_xdl_cshuffle_f16_f16_f16_f32_f32_km_nk_mn_instances(
                    gemm_ptrs);
        }
    }

    if(gemm_ptrs.size() <= 0)
    {
        throw std::runtime_error("wrong! no device GEMM instance found");
    }

    std::string best_gemm_name;
    float best_ave_time   = 0;
    float best_tflops     = 0;
    float best_gb_per_sec = 0;

    // profile device GEMM instances
    for(auto& gemm_ptr : gemm_ptrs)
    {
        auto argument_ptr =
            gemm_ptr->MakeArgumentPointer(static_cast<ADataType*>(a_device_buf.GetDeviceBuffer()),
                                          static_cast<BDataType*>(b_device_buf.GetDeviceBuffer()),
                                          static_cast<CDataType*>(c_device_buf.GetDeviceBuffer()),
rocking5566's avatar
rocking5566 committed
260
                                          dxs_global,
Chao Liu's avatar
Chao Liu committed
261
262
263
264
265
266
267
268
269
                                          M,
                                          N,
                                          K,
                                          StrideA,
                                          StrideB,
                                          StrideC,
                                          a_element_op,
                                          b_element_op,
                                          c_element_op,
rocking5566's avatar
rocking5566 committed
270
271
                                          dxs_in_element_op,
                                          dxs_out_element_op);
Chao Liu's avatar
Chao Liu committed
272
273
274
275
276

        auto invoker_ptr = gemm_ptr->MakeInvokerPointer();

        if(gemm_ptr->IsSupportedArgument(argument_ptr.get()))
        {
JD's avatar
JD committed
277
278
279
            // init DO, D1 to 0
            d0_device_buf.SetZero();
            d1_device_buf.SetZero();
Chao Liu's avatar
Chao Liu committed
280

JD's avatar
JD committed
281
282
            float ave_time =
                invoker_ptr->Run(argument_ptr.get(), StreamConfig{nullptr, time_kernel});
Chao Liu's avatar
Chao Liu committed
283
284
285
286
287

            std::string gemm_name = gemm_ptr->GetTypeString();

            std::size_t flop = std::size_t(2) * M * N * K;

JD's avatar
JD committed
288
            std::size_t num_btype = sizeof(ADataType) * M * K + sizeof(BDataType) * K * N +
Chao Liu's avatar
Chao Liu committed
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
                                    sizeof(CDataType) * M * N + sizeof(CDataType) * N;

            float tflops = static_cast<float>(flop) / 1.E9 / ave_time;

            float gb_per_sec = num_btype / 1.E6 / ave_time;

            std::cout << "Perf: " << ave_time << " ms, " << tflops << " TFlops, " << gb_per_sec
                      << " GB/s, " << gemm_name << std::endl;

            if(tflops > best_tflops)
            {
                best_gemm_name  = gemm_name;
                best_tflops     = tflops;
                best_ave_time   = ave_time;
                best_gb_per_sec = gb_per_sec;
            }

            if(do_verification)
            {
                c_device_buf.FromDevice(c_m_n_device_result.mData.data());
                d0_device_buf.FromDevice(d0_m_device_result.mData.data());
                d1_device_buf.FromDevice(d1_m_device_result.mData.data());

                float c_error  = check_error(c_m_n_host_result, c_m_n_device_result);
                float d0_error = check_error(d0_m_host_result, d0_m_device_result);
                float d1_error = check_error(d1_m_host_result, d1_m_device_result);

                pass = pass && (c_error < 1E-6);
                pass = pass && (d0_error < 1E-6);
                pass = pass && (d1_error < 1E-6);

                if(do_log)
                {
                    LogRangeAsType<float>(std::cout << "a : ", a_m_k.mData, ",") << std::endl;
                    LogRangeAsType<float>(std::cout << "b: ", b_k_n.mData, ",") << std::endl;
                    LogRangeAsType<float>(std::cout << "c_host: ", c_m_n_host_result.mData, ",")
                        << std::endl;
                    LogRangeAsType<float>(std::cout << "c_device: ", c_m_n_device_result.mData, ",")
                        << std::endl;
                    LogRangeAsType<float>(std::cout << "d0_host: ", d0_m_host_result.mData, ",")
                        << std::endl;
                    LogRangeAsType<float>(std::cout << "d0_device: ", d0_m_device_result.mData, ",")
                        << std::endl;
                    LogRangeAsType<float>(std::cout << "d1_host: ", d1_m_host_result.mData, ",")
                        << std::endl;
                    LogRangeAsType<float>(std::cout << "d1_device: ", d1_m_device_result.mData, ",")
                        << std::endl;
                }
            }
        }
        else
        {
            std::cout << "does not support this GEMM problem" << std::endl;
        }
    }

    std::cout << "Best Perf: " << best_ave_time << " ms, " << best_tflops << " TFlops, "
              << best_gb_per_sec << " GB/s, " << best_gemm_name << std::endl;

    return pass;
}

} // namespace profiler
} // namespace ck