profile_gemm_reduce_impl.hpp 13.4 KB
Newer Older
Chao Liu's avatar
Chao Liu committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
#pragma once
#include "config.hpp"
#include "device.hpp"
#include "host_tensor.hpp"
#include "host_tensor_generator.hpp"
#include "host_conv.hpp"
#include "tensor_layout.hpp"
#include "device_tensor.hpp"
#include "element_wise_operation.hpp"
#include "element_wise_reduce_operation.hpp"
#include "device_gemm_reduce.hpp"
#include "reference_gemm.hpp"

namespace ck {
namespace tensor_operation {
namespace device {
namespace device_gemm_instance {

using DeviceGemmReduceNoOpPtr = ck::tensor_operation::device::DeviceGemmReducePtr<
    ck::tensor_operation::element_wise::PassThrough,
    ck::tensor_operation::element_wise::PassThrough,
    ck::tensor_operation::element_wise::PassThrough,
    ck::tensor_operation::element_wise::ReduceSum,
    ck::tensor_operation::element_wise::ReduceSquareSum>;

void add_device_gemm_reduce_xdl_cshuffle_f16_f16_f16_f32_f32_mk_kn_mn_instances(
    std::vector<DeviceGemmReduceNoOpPtr>&);

void add_device_gemm_reduce_xdl_cshuffle_f16_f16_f16_f32_f32_mk_nk_mn_instances(
    std::vector<DeviceGemmReduceNoOpPtr>&);

void add_device_gemm_reduce_xdl_cshuffle_f16_f16_f16_f32_f32_km_kn_mn_instances(
    std::vector<DeviceGemmReduceNoOpPtr>&);

void add_device_gemm_reduce_xdl_cshuffle_f16_f16_f16_f32_f32_km_nk_mn_instances(
    std::vector<DeviceGemmReduceNoOpPtr>&);

} // namespace device_gemm_instance
} // namespace device
} // namespace tensor_operation
} // namespace ck

namespace ck {
namespace profiler {

template <typename ADataType,
          typename BDataType,
          typename CDataType,
          typename DDataType,
          typename ALayout,
          typename BLayout,
          typename CLayout>
bool profile_gemm_reduce_impl(int do_verification,
                              int init_method,
                              bool do_log,
                              int nrepeat,
                              int M,
                              int N,
                              int K,
                              int StrideA,
                              int StrideB,
                              int StrideC)
{
    bool pass = true;

    auto f_host_tensor_descriptor =
        [](std::size_t row, std::size_t col, std::size_t stride, auto layout) {
            if(is_same<decltype(layout), tensor_layout::gemm::RowMajor>::value)
            {
                return HostTensorDescriptor(std::vector<std::size_t>({row, col}),
                                            std::vector<std::size_t>({stride, 1}));
            }
            else
            {
                return HostTensorDescriptor(std::vector<std::size_t>({row, col}),
                                            std::vector<std::size_t>({1, stride}));
            }
        };

    Tensor<ADataType> a_m_k(f_host_tensor_descriptor(M, K, StrideA, ALayout{}));
    Tensor<BDataType> b_k_n(f_host_tensor_descriptor(K, N, StrideB, BLayout{}));

    Tensor<CDataType> c_m_n_host_result(f_host_tensor_descriptor(M, N, StrideC, CLayout{}));
    Tensor<DDataType> d0_m_host_result(
        HostTensorDescriptor(std::vector<std::size_t>({static_cast<std::size_t>(M)})));
    Tensor<DDataType> d1_m_host_result(
        HostTensorDescriptor(std::vector<std::size_t>({static_cast<std::size_t>(M)})));

    Tensor<CDataType> c_m_n_device_result(f_host_tensor_descriptor(M, N, StrideC, CLayout{}));
    Tensor<DDataType> d0_m_device_result(
        HostTensorDescriptor(std::vector<std::size_t>({static_cast<std::size_t>(M)})));
    Tensor<DDataType> d1_m_device_result(
        HostTensorDescriptor(std::vector<std::size_t>({static_cast<std::size_t>(M)})));

    std::cout << "a_m_k: " << a_m_k.mDesc << std::endl;
    std::cout << "b_k_n: " << b_k_n.mDesc << std::endl;
    std::cout << "c_m_n: " << c_m_n_host_result.mDesc << std::endl;
    std::cout << "d0_m: " << d0_m_host_result.mDesc << std::endl;
    std::cout << "d1_m: " << d1_m_host_result.mDesc << std::endl;

    std::size_t num_thread = std::thread::hardware_concurrency();
    switch(init_method)
    {
    case 0: break;
    case 1:
        std::srand(0);
        a_m_k.GenerateTensorValue(GeneratorTensor_2<ADataType>{-5, 5}, num_thread);
        b_k_n.GenerateTensorValue(GeneratorTensor_2<BDataType>{-5, 5}, num_thread);
        break;
    default:
        std::srand(0);
        a_m_k.GenerateTensorValue(GeneratorTensor_3<ADataType>{0.0, 1.0}, num_thread);
        b_k_n.GenerateTensorValue(GeneratorTensor_3<BDataType>{-0.5, 0.5}, num_thread);
    }

    using AElementOp = ck::tensor_operation::element_wise::PassThrough;
    using BElementOp = ck::tensor_operation::element_wise::PassThrough;
    using CElementOp = ck::tensor_operation::element_wise::PassThrough;
    using D0ReduceOp = ck::tensor_operation::element_wise::ReduceSum;
    using D1ReduceOp = ck::tensor_operation::element_wise::ReduceSquareSum;

    const auto a_element_op = AElementOp{};
    const auto b_element_op = BElementOp{};
    const auto c_element_op = CElementOp{};
    const auto d0_reduce_op = D0ReduceOp{};
    const auto d1_reduce_op = D1ReduceOp{};

    if(do_verification)
    {
        using ReferenceGemmInstance = ck::tensor_operation::host::
            ReferenceGemm<ADataType, BDataType, CDataType, AElementOp, BElementOp, CElementOp>;

        auto ref_gemm    = ReferenceGemmInstance{};
        auto ref_invoker = ref_gemm.MakeInvoker();

        auto ref_argument = ref_gemm.MakeArgument(
            a_m_k, b_k_n, c_m_n_host_result, a_element_op, b_element_op, c_element_op);

        ref_invoker.Run(ref_argument);

        for(int m = 0; m < M; ++m)
        {
            float d0_acc = d0_reduce_op.GetReduceZeroValue();
            float d1_acc = d1_reduce_op.GetReduceZeroValue();

            for(int n = 0; n < N; ++n)
            {
                d0_reduce_op.Reduce(d0_acc, c_m_n_host_result(m, n));
                d1_reduce_op.Reduce(d1_acc, c_m_n_host_result(m, n));
            }

            d0_m_host_result(m) = d0_acc;
            d1_m_host_result(m) = d1_acc;
        }
    }

    DeviceMem a_device_buf(sizeof(ADataType) * a_m_k.mDesc.GetElementSpace());
    DeviceMem b_device_buf(sizeof(BDataType) * b_k_n.mDesc.GetElementSpace());
    DeviceMem c_device_buf(sizeof(CDataType) * c_m_n_device_result.mDesc.GetElementSpace());
    DeviceMem d0_device_buf(sizeof(DDataType) * d0_m_device_result.mDesc.GetElementSpace());
    DeviceMem d1_device_buf(sizeof(DDataType) * d1_m_device_result.mDesc.GetElementSpace());

    a_device_buf.ToDevice(a_m_k.mData.data());
    b_device_buf.ToDevice(b_k_n.mData.data());

    // add device GEMM instances
    std::vector<ck::tensor_operation::device::device_gemm_instance::DeviceGemmReduceNoOpPtr>
        gemm_ptrs;

    if constexpr(is_same<ADataType, half_t>::value && is_same<BDataType, half_t>::value &&
                 is_same<CDataType, half_t>::value)
    {
        if constexpr(is_same<ALayout, tensor_layout::gemm::RowMajor>::value &&
                     is_same<BLayout, tensor_layout::gemm::RowMajor>::value &&
                     is_same<CLayout, tensor_layout::gemm::RowMajor>::value)
        {
            ck::tensor_operation::device::device_gemm_instance::
                add_device_gemm_reduce_xdl_cshuffle_f16_f16_f16_f32_f32_mk_kn_mn_instances(
                    gemm_ptrs);
        }
        else if constexpr(is_same<ALayout, tensor_layout::gemm::RowMajor>::value &&
                          is_same<BLayout, tensor_layout::gemm::ColumnMajor>::value &&
                          is_same<CLayout, tensor_layout::gemm::RowMajor>::value)
        {
            ck::tensor_operation::device::device_gemm_instance::
                add_device_gemm_reduce_xdl_cshuffle_f16_f16_f16_f32_f32_mk_nk_mn_instances(
                    gemm_ptrs);
        }
        else if constexpr(is_same<ALayout, tensor_layout::gemm::ColumnMajor>::value &&
                          is_same<BLayout, tensor_layout::gemm::RowMajor>::value &&
                          is_same<CLayout, tensor_layout::gemm::RowMajor>::value)
        {
            ck::tensor_operation::device::device_gemm_instance::
                add_device_gemm_reduce_xdl_cshuffle_f16_f16_f16_f32_f32_km_kn_mn_instances(
                    gemm_ptrs);
        }
        else if constexpr(is_same<ALayout, tensor_layout::gemm::ColumnMajor>::value &&
                          is_same<BLayout, tensor_layout::gemm::ColumnMajor>::value &&
                          is_same<CLayout, tensor_layout::gemm::RowMajor>::value)
        {
            ck::tensor_operation::device::device_gemm_instance::
                add_device_gemm_reduce_xdl_cshuffle_f16_f16_f16_f32_f32_km_nk_mn_instances(
                    gemm_ptrs);
        }
    }

    if(gemm_ptrs.size() <= 0)
    {
        throw std::runtime_error("wrong! no device GEMM instance found");
    }

    std::string best_gemm_name;
    float best_ave_time   = 0;
    float best_tflops     = 0;
    float best_gb_per_sec = 0;

    // profile device GEMM instances
    for(auto& gemm_ptr : gemm_ptrs)
    {
        auto argument_ptr =
            gemm_ptr->MakeArgumentPointer(static_cast<ADataType*>(a_device_buf.GetDeviceBuffer()),
                                          static_cast<BDataType*>(b_device_buf.GetDeviceBuffer()),
                                          static_cast<CDataType*>(c_device_buf.GetDeviceBuffer()),
                                          static_cast<DDataType*>(d0_device_buf.GetDeviceBuffer()),
                                          static_cast<DDataType*>(d1_device_buf.GetDeviceBuffer()),
                                          M,
                                          N,
                                          K,
                                          StrideA,
                                          StrideB,
                                          StrideC,
                                          a_element_op,
                                          b_element_op,
                                          c_element_op,
                                          d0_reduce_op,
                                          d1_reduce_op);

        auto invoker_ptr = gemm_ptr->MakeInvokerPointer();

        if(gemm_ptr->IsSupportedArgument(argument_ptr.get()))
        {
            // warm up
            invoker_ptr->Run(argument_ptr.get());

            // timing
            float total_time = 0;

            for(int i = 0; i < nrepeat; ++i)
            {
                // init DO, D1 to 0
                d0_device_buf.SetZero();
                d1_device_buf.SetZero();

                KernelTimer timer;

                timer.Start();

                invoker_ptr->Run(argument_ptr.get());

                timer.End();

                total_time += timer.GetElapsedTime();
            }

            float ave_time = total_time / nrepeat;

            std::string gemm_name = gemm_ptr->GetTypeString();

            std::size_t flop = std::size_t(2) * M * N * K;

            std::size_t num_btype = sizeof(ADataType) * M * K + sizeof(BDataType) * K * M +
                                    sizeof(CDataType) * M * N + sizeof(CDataType) * N;

            float tflops = static_cast<float>(flop) / 1.E9 / ave_time;

            float gb_per_sec = num_btype / 1.E6 / ave_time;

            std::cout << "Perf: " << ave_time << " ms, " << tflops << " TFlops, " << gb_per_sec
                      << " GB/s, " << gemm_name << std::endl;

            if(tflops > best_tflops)
            {
                best_gemm_name  = gemm_name;
                best_tflops     = tflops;
                best_ave_time   = ave_time;
                best_gb_per_sec = gb_per_sec;
            }

            if(do_verification)
            {
                c_device_buf.FromDevice(c_m_n_device_result.mData.data());
                d0_device_buf.FromDevice(d0_m_device_result.mData.data());
                d1_device_buf.FromDevice(d1_m_device_result.mData.data());

                float c_error  = check_error(c_m_n_host_result, c_m_n_device_result);
                float d0_error = check_error(d0_m_host_result, d0_m_device_result);
                float d1_error = check_error(d1_m_host_result, d1_m_device_result);

                pass = pass && (c_error < 1E-6);
                pass = pass && (d0_error < 1E-6);
                pass = pass && (d1_error < 1E-6);

                if(do_log)
                {
                    LogRangeAsType<float>(std::cout << "a : ", a_m_k.mData, ",") << std::endl;
                    LogRangeAsType<float>(std::cout << "b: ", b_k_n.mData, ",") << std::endl;
                    LogRangeAsType<float>(std::cout << "c_host: ", c_m_n_host_result.mData, ",")
                        << std::endl;
                    LogRangeAsType<float>(std::cout << "c_device: ", c_m_n_device_result.mData, ",")
                        << std::endl;
                    LogRangeAsType<float>(std::cout << "d0_host: ", d0_m_host_result.mData, ",")
                        << std::endl;
                    LogRangeAsType<float>(std::cout << "d0_device: ", d0_m_device_result.mData, ",")
                        << std::endl;
                    LogRangeAsType<float>(std::cout << "d1_host: ", d1_m_host_result.mData, ",")
                        << std::endl;
                    LogRangeAsType<float>(std::cout << "d1_device: ", d1_m_device_result.mData, ",")
                        << std::endl;
                }
            }
        }
        else
        {
            std::cout << "does not support this GEMM problem" << std::endl;
        }
    }

    std::cout << "Best Perf: " << best_ave_time << " ms, " << best_tflops << " TFlops, "
              << best_gb_per_sec << " GB/s, " << best_gemm_name << std::endl;

    return pass;
}

} // namespace profiler
} // namespace ck