profile_gemm_reduce_impl.hpp 15.1 KB
Newer Older
Chao Liu's avatar
Chao Liu committed
1
#pragma once
Chao Liu's avatar
Chao Liu committed
2
3
4
5
6
7
8
9
10
11
12
13
14

#include "ck/ck.hpp"
#include "ck/utility/reduction_operator.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_gemm_reduce.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"

#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/conv_util.hpp"
#include "ck/library/host_tensor/device_memory.hpp"
#include "ck/library/host_tensor/host_tensor.hpp"
#include "ck/library/host_tensor/host_tensor_generator.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_gemm.hpp"
Chao Liu's avatar
Chao Liu committed
15
16
17
18
19
20

namespace ck {
namespace tensor_operation {
namespace device {
namespace device_gemm_instance {

rocking5566's avatar
rocking5566 committed
21
22
23
using F32            = float;
using F16            = ck::half_t;
using DPtrsGlobal    = ck::Tuple<F32*, F32*>;
24
25
26
using Div            = ck::tensor_operation::element_wise::UnaryDivide;
using Identity       = ck::tensor_operation::element_wise::PassThrough;
using Square         = ck::tensor_operation::element_wise::UnarySquare;
rocking5566's avatar
rocking5566 committed
27
using DInElementOps  = ck::Tuple<Identity, Square>;
rocking5566's avatar
rocking5566 committed
28
using DOutElementOps = ck::Tuple<Div, Div>;
rocking5566's avatar
rocking5566 committed
29

Chao Liu's avatar
Chao Liu committed
30
31
32
33
using DeviceGemmReduceNoOpPtr = ck::tensor_operation::device::DeviceGemmReducePtr<
    ck::tensor_operation::element_wise::PassThrough,
    ck::tensor_operation::element_wise::PassThrough,
    ck::tensor_operation::element_wise::PassThrough,
rocking5566's avatar
rocking5566 committed
34
35
    DInElementOps,
    DOutElementOps>;
Chao Liu's avatar
Chao Liu committed
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

void add_device_gemm_reduce_xdl_cshuffle_f16_f16_f16_f32_f32_mk_kn_mn_instances(
    std::vector<DeviceGemmReduceNoOpPtr>&);

void add_device_gemm_reduce_xdl_cshuffle_f16_f16_f16_f32_f32_mk_nk_mn_instances(
    std::vector<DeviceGemmReduceNoOpPtr>&);

void add_device_gemm_reduce_xdl_cshuffle_f16_f16_f16_f32_f32_km_kn_mn_instances(
    std::vector<DeviceGemmReduceNoOpPtr>&);

void add_device_gemm_reduce_xdl_cshuffle_f16_f16_f16_f32_f32_km_nk_mn_instances(
    std::vector<DeviceGemmReduceNoOpPtr>&);

} // namespace device_gemm_instance
} // namespace device
} // namespace tensor_operation
} // namespace ck

namespace ck {
namespace profiler {

template <typename ADataType,
          typename BDataType,
          typename CDataType,
          typename DDataType,
          typename ALayout,
          typename BLayout,
          typename CLayout>
bool profile_gemm_reduce_impl(int do_verification,
                              int init_method,
                              bool do_log,
JD's avatar
JD committed
67
                              bool time_kernel,
Chao Liu's avatar
Chao Liu committed
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
                              int M,
                              int N,
                              int K,
                              int StrideA,
                              int StrideB,
                              int StrideC)
{
    bool pass = true;

    auto f_host_tensor_descriptor =
        [](std::size_t row, std::size_t col, std::size_t stride, auto layout) {
            if(is_same<decltype(layout), tensor_layout::gemm::RowMajor>::value)
            {
                return HostTensorDescriptor(std::vector<std::size_t>({row, col}),
                                            std::vector<std::size_t>({stride, 1}));
            }
            else
            {
                return HostTensorDescriptor(std::vector<std::size_t>({row, col}),
                                            std::vector<std::size_t>({1, stride}));
            }
        };

    Tensor<ADataType> a_m_k(f_host_tensor_descriptor(M, K, StrideA, ALayout{}));
    Tensor<BDataType> b_k_n(f_host_tensor_descriptor(K, N, StrideB, BLayout{}));

    Tensor<CDataType> c_m_n_host_result(f_host_tensor_descriptor(M, N, StrideC, CLayout{}));
    Tensor<DDataType> d0_m_host_result(
        HostTensorDescriptor(std::vector<std::size_t>({static_cast<std::size_t>(M)})));
    Tensor<DDataType> d1_m_host_result(
        HostTensorDescriptor(std::vector<std::size_t>({static_cast<std::size_t>(M)})));

    Tensor<CDataType> c_m_n_device_result(f_host_tensor_descriptor(M, N, StrideC, CLayout{}));
    Tensor<DDataType> d0_m_device_result(
        HostTensorDescriptor(std::vector<std::size_t>({static_cast<std::size_t>(M)})));
    Tensor<DDataType> d1_m_device_result(
        HostTensorDescriptor(std::vector<std::size_t>({static_cast<std::size_t>(M)})));

    std::cout << "a_m_k: " << a_m_k.mDesc << std::endl;
    std::cout << "b_k_n: " << b_k_n.mDesc << std::endl;
    std::cout << "c_m_n: " << c_m_n_host_result.mDesc << std::endl;
    std::cout << "d0_m: " << d0_m_host_result.mDesc << std::endl;
    std::cout << "d1_m: " << d1_m_host_result.mDesc << std::endl;

112
    std::size_t num_thread = 1;
Chao Liu's avatar
Chao Liu committed
113
114
115
116
117
118
119
120
121
122
123
124
125
126
    switch(init_method)
    {
    case 0: break;
    case 1:
        std::srand(0);
        a_m_k.GenerateTensorValue(GeneratorTensor_2<ADataType>{-5, 5}, num_thread);
        b_k_n.GenerateTensorValue(GeneratorTensor_2<BDataType>{-5, 5}, num_thread);
        break;
    default:
        std::srand(0);
        a_m_k.GenerateTensorValue(GeneratorTensor_3<ADataType>{0.0, 1.0}, num_thread);
        b_k_n.GenerateTensorValue(GeneratorTensor_3<BDataType>{-0.5, 0.5}, num_thread);
    }

127
128
129
130
131
132
133
134
135
136
    using AElementOp            = ck::tensor_operation::element_wise::PassThrough;
    using BElementOp            = ck::tensor_operation::element_wise::PassThrough;
    using CElementOp            = ck::tensor_operation::element_wise::PassThrough;
    using D0ReduceOp            = ck::reduce::Add;
    using D1ReduceOp            = ck::reduce::Add;
    using UnaryDivElementOp     = ck::tensor_operation::element_wise::UnaryDivide;
    using UnaryIdenticElementOp = ck::tensor_operation::element_wise::PassThrough;
    using UnarySquareElementOp  = ck::tensor_operation::element_wise::UnarySquare;
    using DxsInElementOps       = ck::Tuple<UnaryIdenticElementOp, UnarySquareElementOp>;
    using DxsOutElementOps      = ck::Tuple<UnaryDivElementOp, UnaryDivElementOp>;
rocking5566's avatar
rocking5566 committed
137

rocking5566's avatar
rocking5566 committed
138
139
140
141
142
143
144
    const auto a_element_op = AElementOp{};
    const auto b_element_op = BElementOp{};
    const auto c_element_op = CElementOp{};
    const auto d0_reduce_op = D0ReduceOp{};
    const auto d1_reduce_op = D1ReduceOp{};

    auto dxs_in_element_op  = DxsInElementOps{};
145
    auto dxs_out_element_op = DxsOutElementOps{N, N};
Chao Liu's avatar
Chao Liu committed
146
147
148

    if(do_verification)
    {
149
150
151
152
153
154
155
        using ReferenceGemmInstance = ck::tensor_operation::host::ReferenceGemm<ADataType,
                                                                                BDataType,
                                                                                CDataType,
                                                                                DDataType,
                                                                                AElementOp,
                                                                                BElementOp,
                                                                                CElementOp>;
Chao Liu's avatar
Chao Liu committed
156

157
158
        using ReduceAccDataType = DDataType;

Chao Liu's avatar
Chao Liu committed
159
160
161
162
163
164
165
166
167
168
        auto ref_gemm    = ReferenceGemmInstance{};
        auto ref_invoker = ref_gemm.MakeInvoker();

        auto ref_argument = ref_gemm.MakeArgument(
            a_m_k, b_k_n, c_m_n_host_result, a_element_op, b_element_op, c_element_op);

        ref_invoker.Run(ref_argument);

        for(int m = 0; m < M; ++m)
        {
169
170
            auto d0_acc = d0_reduce_op.GetIdentityValue<ReduceAccDataType>();
            auto d1_acc = d1_reduce_op.GetIdentityValue<ReduceAccDataType>();
Chao Liu's avatar
Chao Liu committed
171
172
173

            for(int n = 0; n < N; ++n)
            {
174
175
                ReduceAccDataType c_val =
                    ck::type_convert<ReduceAccDataType>(c_m_n_host_result(m, n));
176
177
                ReduceAccDataType d0_val;
                ReduceAccDataType d1_val;
178

rocking5566's avatar
rocking5566 committed
179
180
                dxs_in_element_op(ck::Number<0>{})(d0_val, c_val);
                dxs_in_element_op(ck::Number<1>{})(d1_val, c_val);
181
182
                d0_reduce_op(d0_acc, d0_val);
                d1_reduce_op(d1_acc, d1_val);
Chao Liu's avatar
Chao Liu committed
183
184
            }

rocking5566's avatar
rocking5566 committed
185
186
            dxs_out_element_op(ck::Number<0>{})(d0_acc, d0_acc);
            dxs_out_element_op(ck::Number<1>{})(d1_acc, d1_acc);
187
188
            d0_m_host_result(m) = ck::type_convert<DDataType>(d0_acc);
            d1_m_host_result(m) = ck::type_convert<DDataType>(d1_acc);
Chao Liu's avatar
Chao Liu committed
189
190
191
192
193
194
195
196
197
        }
    }

    DeviceMem a_device_buf(sizeof(ADataType) * a_m_k.mDesc.GetElementSpace());
    DeviceMem b_device_buf(sizeof(BDataType) * b_k_n.mDesc.GetElementSpace());
    DeviceMem c_device_buf(sizeof(CDataType) * c_m_n_device_result.mDesc.GetElementSpace());
    DeviceMem d0_device_buf(sizeof(DDataType) * d0_m_device_result.mDesc.GetElementSpace());
    DeviceMem d1_device_buf(sizeof(DDataType) * d1_m_device_result.mDesc.GetElementSpace());

rocking5566's avatar
rocking5566 committed
198
199
200
    auto dxs_global = ck::make_tuple(static_cast<DDataType*>(d0_device_buf.GetDeviceBuffer()),
                                     static_cast<DDataType*>(d1_device_buf.GetDeviceBuffer()));

Chao Liu's avatar
Chao Liu committed
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
    a_device_buf.ToDevice(a_m_k.mData.data());
    b_device_buf.ToDevice(b_k_n.mData.data());

    // add device GEMM instances
    std::vector<ck::tensor_operation::device::device_gemm_instance::DeviceGemmReduceNoOpPtr>
        gemm_ptrs;

    if constexpr(is_same<ADataType, half_t>::value && is_same<BDataType, half_t>::value &&
                 is_same<CDataType, half_t>::value)
    {
        if constexpr(is_same<ALayout, tensor_layout::gemm::RowMajor>::value &&
                     is_same<BLayout, tensor_layout::gemm::RowMajor>::value &&
                     is_same<CLayout, tensor_layout::gemm::RowMajor>::value)
        {
            ck::tensor_operation::device::device_gemm_instance::
                add_device_gemm_reduce_xdl_cshuffle_f16_f16_f16_f32_f32_mk_kn_mn_instances(
                    gemm_ptrs);
        }
        else if constexpr(is_same<ALayout, tensor_layout::gemm::RowMajor>::value &&
                          is_same<BLayout, tensor_layout::gemm::ColumnMajor>::value &&
                          is_same<CLayout, tensor_layout::gemm::RowMajor>::value)
        {
            ck::tensor_operation::device::device_gemm_instance::
                add_device_gemm_reduce_xdl_cshuffle_f16_f16_f16_f32_f32_mk_nk_mn_instances(
                    gemm_ptrs);
        }
        else if constexpr(is_same<ALayout, tensor_layout::gemm::ColumnMajor>::value &&
                          is_same<BLayout, tensor_layout::gemm::RowMajor>::value &&
                          is_same<CLayout, tensor_layout::gemm::RowMajor>::value)
        {
            ck::tensor_operation::device::device_gemm_instance::
                add_device_gemm_reduce_xdl_cshuffle_f16_f16_f16_f32_f32_km_kn_mn_instances(
                    gemm_ptrs);
        }
        else if constexpr(is_same<ALayout, tensor_layout::gemm::ColumnMajor>::value &&
                          is_same<BLayout, tensor_layout::gemm::ColumnMajor>::value &&
                          is_same<CLayout, tensor_layout::gemm::RowMajor>::value)
        {
            ck::tensor_operation::device::device_gemm_instance::
                add_device_gemm_reduce_xdl_cshuffle_f16_f16_f16_f32_f32_km_nk_mn_instances(
                    gemm_ptrs);
        }
    }

    if(gemm_ptrs.size() <= 0)
    {
        throw std::runtime_error("wrong! no device GEMM instance found");
    }

    std::string best_gemm_name;
    float best_ave_time   = 0;
    float best_tflops     = 0;
    float best_gb_per_sec = 0;

    // profile device GEMM instances
    for(auto& gemm_ptr : gemm_ptrs)
    {
        auto argument_ptr =
            gemm_ptr->MakeArgumentPointer(static_cast<ADataType*>(a_device_buf.GetDeviceBuffer()),
                                          static_cast<BDataType*>(b_device_buf.GetDeviceBuffer()),
                                          static_cast<CDataType*>(c_device_buf.GetDeviceBuffer()),
262
                                          &dxs_global,
Chao Liu's avatar
Chao Liu committed
263
264
265
266
267
268
269
270
271
                                          M,
                                          N,
                                          K,
                                          StrideA,
                                          StrideB,
                                          StrideC,
                                          a_element_op,
                                          b_element_op,
                                          c_element_op,
rocking5566's avatar
rocking5566 committed
272
273
                                          dxs_in_element_op,
                                          dxs_out_element_op);
Chao Liu's avatar
Chao Liu committed
274
275
276
277
278

        auto invoker_ptr = gemm_ptr->MakeInvokerPointer();

        if(gemm_ptr->IsSupportedArgument(argument_ptr.get()))
        {
JD's avatar
JD committed
279
280
281
            // init DO, D1 to 0
            d0_device_buf.SetZero();
            d1_device_buf.SetZero();
Chao Liu's avatar
Chao Liu committed
282

JD's avatar
JD committed
283
284
            float ave_time =
                invoker_ptr->Run(argument_ptr.get(), StreamConfig{nullptr, time_kernel});
Chao Liu's avatar
Chao Liu committed
285
286
287
288
289

            std::string gemm_name = gemm_ptr->GetTypeString();

            std::size_t flop = std::size_t(2) * M * N * K;

JD's avatar
JD committed
290
            std::size_t num_btype = sizeof(ADataType) * M * K + sizeof(BDataType) * K * N +
Chao Liu's avatar
Chao Liu committed
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
                                    sizeof(CDataType) * M * N + sizeof(CDataType) * N;

            float tflops = static_cast<float>(flop) / 1.E9 / ave_time;

            float gb_per_sec = num_btype / 1.E6 / ave_time;

            std::cout << "Perf: " << ave_time << " ms, " << tflops << " TFlops, " << gb_per_sec
                      << " GB/s, " << gemm_name << std::endl;

            if(tflops > best_tflops)
            {
                best_gemm_name  = gemm_name;
                best_tflops     = tflops;
                best_ave_time   = ave_time;
                best_gb_per_sec = gb_per_sec;
            }

            if(do_verification)
            {
                c_device_buf.FromDevice(c_m_n_device_result.mData.data());
                d0_device_buf.FromDevice(d0_m_device_result.mData.data());
                d1_device_buf.FromDevice(d1_m_device_result.mData.data());

314
315
316
                ck::utils::check_err(c_m_n_device_result.mData, c_m_n_host_result.mData);
                ck::utils::check_err(d0_m_device_result.mData, d0_m_host_result.mData);
                ck::utils::check_err(d1_m_device_result.mData, d1_m_host_result.mData);
Chao Liu's avatar
Chao Liu committed
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350

                if(do_log)
                {
                    LogRangeAsType<float>(std::cout << "a : ", a_m_k.mData, ",") << std::endl;
                    LogRangeAsType<float>(std::cout << "b: ", b_k_n.mData, ",") << std::endl;
                    LogRangeAsType<float>(std::cout << "c_host: ", c_m_n_host_result.mData, ",")
                        << std::endl;
                    LogRangeAsType<float>(std::cout << "c_device: ", c_m_n_device_result.mData, ",")
                        << std::endl;
                    LogRangeAsType<float>(std::cout << "d0_host: ", d0_m_host_result.mData, ",")
                        << std::endl;
                    LogRangeAsType<float>(std::cout << "d0_device: ", d0_m_device_result.mData, ",")
                        << std::endl;
                    LogRangeAsType<float>(std::cout << "d1_host: ", d1_m_host_result.mData, ",")
                        << std::endl;
                    LogRangeAsType<float>(std::cout << "d1_device: ", d1_m_device_result.mData, ",")
                        << std::endl;
                }
            }
        }
        else
        {
            std::cout << "does not support this GEMM problem" << std::endl;
        }
    }

    std::cout << "Best Perf: " << best_ave_time << " ms, " << best_tflops << " TFlops, "
              << best_gb_per_sec << " GB/s, " << best_gemm_name << std::endl;

    return pass;
}

} // namespace profiler
} // namespace ck