profile_gemm_reduce_impl.hpp 15.7 KB
Newer Older
Chao Liu's avatar
Chao Liu committed
1
2
3
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.

Chao Liu's avatar
Chao Liu committed
4
#pragma once
Chao Liu's avatar
Chao Liu committed
5
6
7
8
9
10
11
12
13
14
15
16
17

#include "ck/ck.hpp"
#include "ck/utility/reduction_operator.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_gemm_reduce.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"

#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/conv_util.hpp"
#include "ck/library/host_tensor/device_memory.hpp"
#include "ck/library/host_tensor/host_tensor.hpp"
#include "ck/library/host_tensor/host_tensor_generator.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_gemm.hpp"
Chao Liu's avatar
Chao Liu committed
18
19
20
21
22
23

namespace ck {
namespace tensor_operation {
namespace device {
namespace device_gemm_instance {

24
25
26
27
28
29
30
31
32
33
34
using F32                 = float;
using F16                 = ck::half_t;
using ReducePtrsGlobal    = ck::Tuple<F32*, F32*>;
using Div                 = ck::tensor_operation::element_wise::UnaryDivide;
using Identity            = ck::tensor_operation::element_wise::PassThrough;
using Square              = ck::tensor_operation::element_wise::UnarySquare;
using ReduceInElementOps  = ck::Tuple<Identity, Square>;
using ReduceOutElementOps = ck::Tuple<Div, Div>;

using DeviceGemmReduceNoOpPtr =
    ck::tensor_operation::device::DeviceGemmReducePtr<0, ReducePtrsGlobal::Size()>;
Chao Liu's avatar
Chao Liu committed
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58

void add_device_gemm_reduce_xdl_cshuffle_f16_f16_f16_f32_f32_mk_kn_mn_instances(
    std::vector<DeviceGemmReduceNoOpPtr>&);

void add_device_gemm_reduce_xdl_cshuffle_f16_f16_f16_f32_f32_mk_nk_mn_instances(
    std::vector<DeviceGemmReduceNoOpPtr>&);

void add_device_gemm_reduce_xdl_cshuffle_f16_f16_f16_f32_f32_km_kn_mn_instances(
    std::vector<DeviceGemmReduceNoOpPtr>&);

void add_device_gemm_reduce_xdl_cshuffle_f16_f16_f16_f32_f32_km_nk_mn_instances(
    std::vector<DeviceGemmReduceNoOpPtr>&);

} // namespace device_gemm_instance
} // namespace device
} // namespace tensor_operation
} // namespace ck

namespace ck {
namespace profiler {

template <typename ADataType,
          typename BDataType,
          typename CDataType,
59
          typename ReduceDataType,
Chao Liu's avatar
Chao Liu committed
60
61
62
63
64
65
          typename ALayout,
          typename BLayout,
          typename CLayout>
bool profile_gemm_reduce_impl(int do_verification,
                              int init_method,
                              bool do_log,
JD's avatar
JD committed
66
                              bool time_kernel,
Chao Liu's avatar
Chao Liu committed
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
                              int M,
                              int N,
                              int K,
                              int StrideA,
                              int StrideB,
                              int StrideC)
{
    bool pass = true;

    auto f_host_tensor_descriptor =
        [](std::size_t row, std::size_t col, std::size_t stride, auto layout) {
            if(is_same<decltype(layout), tensor_layout::gemm::RowMajor>::value)
            {
                return HostTensorDescriptor(std::vector<std::size_t>({row, col}),
                                            std::vector<std::size_t>({stride, 1}));
            }
            else
            {
                return HostTensorDescriptor(std::vector<std::size_t>({row, col}),
                                            std::vector<std::size_t>({1, stride}));
            }
        };

    Tensor<ADataType> a_m_k(f_host_tensor_descriptor(M, K, StrideA, ALayout{}));
    Tensor<BDataType> b_k_n(f_host_tensor_descriptor(K, N, StrideB, BLayout{}));

    Tensor<CDataType> c_m_n_host_result(f_host_tensor_descriptor(M, N, StrideC, CLayout{}));
94
    Tensor<ReduceDataType> reduce0_m_host_result(
Chao Liu's avatar
Chao Liu committed
95
        HostTensorDescriptor(std::vector<std::size_t>({static_cast<std::size_t>(M)})));
96
    Tensor<ReduceDataType> reduce1_m_host_result(
Chao Liu's avatar
Chao Liu committed
97
98
99
        HostTensorDescriptor(std::vector<std::size_t>({static_cast<std::size_t>(M)})));

    Tensor<CDataType> c_m_n_device_result(f_host_tensor_descriptor(M, N, StrideC, CLayout{}));
100
    Tensor<ReduceDataType> reduce0_m_device_result(
Chao Liu's avatar
Chao Liu committed
101
        HostTensorDescriptor(std::vector<std::size_t>({static_cast<std::size_t>(M)})));
102
    Tensor<ReduceDataType> reduce1_m_device_result(
Chao Liu's avatar
Chao Liu committed
103
104
105
106
107
        HostTensorDescriptor(std::vector<std::size_t>({static_cast<std::size_t>(M)})));

    std::cout << "a_m_k: " << a_m_k.mDesc << std::endl;
    std::cout << "b_k_n: " << b_k_n.mDesc << std::endl;
    std::cout << "c_m_n: " << c_m_n_host_result.mDesc << std::endl;
108
109
    std::cout << "reduce0_m: " << reduce0_m_host_result.mDesc << std::endl;
    std::cout << "reduce1_m: " << reduce1_m_host_result.mDesc << std::endl;
Chao Liu's avatar
Chao Liu committed
110

111
    std::size_t num_thread = 1;
Chao Liu's avatar
Chao Liu committed
112
113
114
115
116
117
118
119
120
121
122
123
124
125
    switch(init_method)
    {
    case 0: break;
    case 1:
        std::srand(0);
        a_m_k.GenerateTensorValue(GeneratorTensor_2<ADataType>{-5, 5}, num_thread);
        b_k_n.GenerateTensorValue(GeneratorTensor_2<BDataType>{-5, 5}, num_thread);
        break;
    default:
        std::srand(0);
        a_m_k.GenerateTensorValue(GeneratorTensor_3<ADataType>{0.0, 1.0}, num_thread);
        b_k_n.GenerateTensorValue(GeneratorTensor_3<BDataType>{-0.5, 0.5}, num_thread);
    }

126
127
128
    using AElementOp            = ck::tensor_operation::element_wise::PassThrough;
    using BElementOp            = ck::tensor_operation::element_wise::PassThrough;
    using CElementOp            = ck::tensor_operation::element_wise::PassThrough;
129
130
    using ReduceOp0             = ck::reduce::Add;
    using ReduceOp1             = ck::reduce::Add;
131
132
    using UnaryIdenticElementOp = ck::tensor_operation::element_wise::PassThrough;
    using UnarySquareElementOp  = ck::tensor_operation::element_wise::UnarySquare;
133
134
135
136
137
138
    using UnaryDivElementOp     = ck::tensor_operation::element_wise::UnaryDivide;

    auto a_element_op                     = AElementOp{};
    auto b_element_op                     = BElementOp{};
    auto c_element_op                     = CElementOp{};
    std::array<void*, 3> gemm_element_ops = {&a_element_op, &b_element_op, &c_element_op};
rocking5566's avatar
rocking5566 committed
139

140
141
    const auto reduce0_op = ReduceOp0{};
    const auto reduce1_op = ReduceOp1{};
rocking5566's avatar
rocking5566 committed
142

143
144
145
146
147
    auto passthrough                            = UnaryIdenticElementOp{};
    auto square                                 = UnarySquareElementOp{};
    auto div                                    = UnaryDivElementOp{N};
    std::array<void*, 2> reduce_in_element_ops  = {&passthrough, &square};
    std::array<void*, 2> reduce_out_element_ops = {&div, &div};
Chao Liu's avatar
Chao Liu committed
148
149
150

    if(do_verification)
    {
151
152
153
        using ReferenceGemmInstance = ck::tensor_operation::host::ReferenceGemm<ADataType,
                                                                                BDataType,
                                                                                CDataType,
154
                                                                                ReduceDataType,
155
156
157
                                                                                AElementOp,
                                                                                BElementOp,
                                                                                CElementOp>;
Chao Liu's avatar
Chao Liu committed
158

159
        using ReduceAccDataType = ReduceDataType;
160

Chao Liu's avatar
Chao Liu committed
161
162
163
164
165
166
167
168
169
170
        auto ref_gemm    = ReferenceGemmInstance{};
        auto ref_invoker = ref_gemm.MakeInvoker();

        auto ref_argument = ref_gemm.MakeArgument(
            a_m_k, b_k_n, c_m_n_host_result, a_element_op, b_element_op, c_element_op);

        ref_invoker.Run(ref_argument);

        for(int m = 0; m < M; ++m)
        {
171
172
            auto reduce0_acc = reduce0_op.GetIdentityValue<ReduceAccDataType>();
            auto reduce1_acc = reduce1_op.GetIdentityValue<ReduceAccDataType>();
Chao Liu's avatar
Chao Liu committed
173
174
175

            for(int n = 0; n < N; ++n)
            {
176
                ReduceAccDataType d0_val =
177
                    ck::type_convert<ReduceAccDataType>(c_m_n_host_result(m, n));
178
                ReduceAccDataType d1_val;
179

180
181
182
                square(d1_val, d0_val);
                reduce0_op(reduce0_acc, d0_val);
                reduce1_op(reduce1_acc, d1_val);
Chao Liu's avatar
Chao Liu committed
183
184
            }

185
186
187
188
            div(reduce0_acc, reduce0_acc);
            div(reduce1_acc, reduce1_acc);
            reduce0_m_host_result(m) = ck::type_convert<ReduceDataType>(reduce0_acc);
            reduce1_m_host_result(m) = ck::type_convert<ReduceDataType>(reduce1_acc);
Chao Liu's avatar
Chao Liu committed
189
190
191
192
193
194
        }
    }

    DeviceMem a_device_buf(sizeof(ADataType) * a_m_k.mDesc.GetElementSpace());
    DeviceMem b_device_buf(sizeof(BDataType) * b_k_n.mDesc.GetElementSpace());
    DeviceMem c_device_buf(sizeof(CDataType) * c_m_n_device_result.mDesc.GetElementSpace());
195
196
197
198
    DeviceMem reduce0_device_buf(sizeof(ReduceDataType) *
                                 reduce0_m_device_result.mDesc.GetElementSpace());
    DeviceMem reduce1_device_buf(sizeof(ReduceDataType) *
                                 reduce1_m_device_result.mDesc.GetElementSpace());
Chao Liu's avatar
Chao Liu committed
199

200
201
    std::array<void*, 2> p_reduces = {reduce0_device_buf.GetDeviceBuffer(),
                                      reduce1_device_buf.GetDeviceBuffer()};
rocking5566's avatar
rocking5566 committed
202

Chao Liu's avatar
Chao Liu committed
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
    a_device_buf.ToDevice(a_m_k.mData.data());
    b_device_buf.ToDevice(b_k_n.mData.data());

    // add device GEMM instances
    std::vector<ck::tensor_operation::device::device_gemm_instance::DeviceGemmReduceNoOpPtr>
        gemm_ptrs;

    if constexpr(is_same<ADataType, half_t>::value && is_same<BDataType, half_t>::value &&
                 is_same<CDataType, half_t>::value)
    {
        if constexpr(is_same<ALayout, tensor_layout::gemm::RowMajor>::value &&
                     is_same<BLayout, tensor_layout::gemm::RowMajor>::value &&
                     is_same<CLayout, tensor_layout::gemm::RowMajor>::value)
        {
            ck::tensor_operation::device::device_gemm_instance::
                add_device_gemm_reduce_xdl_cshuffle_f16_f16_f16_f32_f32_mk_kn_mn_instances(
                    gemm_ptrs);
        }
        else if constexpr(is_same<ALayout, tensor_layout::gemm::RowMajor>::value &&
                          is_same<BLayout, tensor_layout::gemm::ColumnMajor>::value &&
                          is_same<CLayout, tensor_layout::gemm::RowMajor>::value)
        {
            ck::tensor_operation::device::device_gemm_instance::
                add_device_gemm_reduce_xdl_cshuffle_f16_f16_f16_f32_f32_mk_nk_mn_instances(
                    gemm_ptrs);
        }
        else if constexpr(is_same<ALayout, tensor_layout::gemm::ColumnMajor>::value &&
                          is_same<BLayout, tensor_layout::gemm::RowMajor>::value &&
                          is_same<CLayout, tensor_layout::gemm::RowMajor>::value)
        {
            ck::tensor_operation::device::device_gemm_instance::
                add_device_gemm_reduce_xdl_cshuffle_f16_f16_f16_f32_f32_km_kn_mn_instances(
                    gemm_ptrs);
        }
        else if constexpr(is_same<ALayout, tensor_layout::gemm::ColumnMajor>::value &&
                          is_same<BLayout, tensor_layout::gemm::ColumnMajor>::value &&
                          is_same<CLayout, tensor_layout::gemm::RowMajor>::value)
        {
            ck::tensor_operation::device::device_gemm_instance::
                add_device_gemm_reduce_xdl_cshuffle_f16_f16_f16_f32_f32_km_nk_mn_instances(
                    gemm_ptrs);
        }
    }

    if(gemm_ptrs.size() <= 0)
    {
        throw std::runtime_error("wrong! no device GEMM instance found");
    }

    std::string best_gemm_name;
    float best_ave_time   = 0;
    float best_tflops     = 0;
    float best_gb_per_sec = 0;

    // profile device GEMM instances
    for(auto& gemm_ptr : gemm_ptrs)
    {
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
        auto argument_ptr = gemm_ptr->MakeArgumentPointer(a_device_buf.GetDeviceBuffer(),
                                                          b_device_buf.GetDeviceBuffer(),
                                                          nullptr,
                                                          {},
                                                          c_device_buf.GetDeviceBuffer(),
                                                          p_reduces,
                                                          M,
                                                          N,
                                                          K,
                                                          StrideA,
                                                          StrideB,
                                                          StrideC,
                                                          {},
                                                          gemm_element_ops,
                                                          {},
                                                          reduce_in_element_ops,
                                                          reduce_out_element_ops);
Chao Liu's avatar
Chao Liu committed
277
278
279
280
281

        auto invoker_ptr = gemm_ptr->MakeInvokerPointer();

        if(gemm_ptr->IsSupportedArgument(argument_ptr.get()))
        {
JD's avatar
JD committed
282
            // init DO, D1 to 0
283
284
            reduce0_device_buf.SetZero();
            reduce1_device_buf.SetZero();
Chao Liu's avatar
Chao Liu committed
285

JD's avatar
JD committed
286
287
            float ave_time =
                invoker_ptr->Run(argument_ptr.get(), StreamConfig{nullptr, time_kernel});
Chao Liu's avatar
Chao Liu committed
288
289
290
291
292

            std::string gemm_name = gemm_ptr->GetTypeString();

            std::size_t flop = std::size_t(2) * M * N * K;

JD's avatar
JD committed
293
            std::size_t num_btype = sizeof(ADataType) * M * K + sizeof(BDataType) * K * N +
Chao Liu's avatar
Chao Liu committed
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
                                    sizeof(CDataType) * M * N + sizeof(CDataType) * N;

            float tflops = static_cast<float>(flop) / 1.E9 / ave_time;

            float gb_per_sec = num_btype / 1.E6 / ave_time;

            std::cout << "Perf: " << ave_time << " ms, " << tflops << " TFlops, " << gb_per_sec
                      << " GB/s, " << gemm_name << std::endl;

            if(tflops > best_tflops)
            {
                best_gemm_name  = gemm_name;
                best_tflops     = tflops;
                best_ave_time   = ave_time;
                best_gb_per_sec = gb_per_sec;
            }

            if(do_verification)
            {
                c_device_buf.FromDevice(c_m_n_device_result.mData.data());
314
315
                reduce0_device_buf.FromDevice(reduce0_m_device_result.mData.data());
                reduce1_device_buf.FromDevice(reduce1_m_device_result.mData.data());
Chao Liu's avatar
Chao Liu committed
316

317
                ck::utils::check_err(c_m_n_device_result.mData, c_m_n_host_result.mData);
318
319
                ck::utils::check_err(reduce0_m_device_result.mData, reduce0_m_host_result.mData);
                ck::utils::check_err(reduce1_m_device_result.mData, reduce1_m_host_result.mData);
Chao Liu's avatar
Chao Liu committed
320
321
322
323
324
325
326
327
328

                if(do_log)
                {
                    LogRangeAsType<float>(std::cout << "a : ", a_m_k.mData, ",") << std::endl;
                    LogRangeAsType<float>(std::cout << "b: ", b_k_n.mData, ",") << std::endl;
                    LogRangeAsType<float>(std::cout << "c_host: ", c_m_n_host_result.mData, ",")
                        << std::endl;
                    LogRangeAsType<float>(std::cout << "c_device: ", c_m_n_device_result.mData, ",")
                        << std::endl;
329
330
                    LogRangeAsType<float>(
                        std::cout << "d0_host: ", reduce0_m_host_result.mData, ",")
Chao Liu's avatar
Chao Liu committed
331
                        << std::endl;
332
333
                    LogRangeAsType<float>(
                        std::cout << "d0_device: ", reduce0_m_device_result.mData, ",")
Chao Liu's avatar
Chao Liu committed
334
                        << std::endl;
335
336
                    LogRangeAsType<float>(
                        std::cout << "d1_host: ", reduce1_m_host_result.mData, ",")
Chao Liu's avatar
Chao Liu committed
337
                        << std::endl;
338
339
                    LogRangeAsType<float>(
                        std::cout << "d1_device: ", reduce1_m_device_result.mData, ",")
Chao Liu's avatar
Chao Liu committed
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
                        << std::endl;
                }
            }
        }
        else
        {
            std::cout << "does not support this GEMM problem" << std::endl;
        }
    }

    std::cout << "Best Perf: " << best_ave_time << " ms, " << best_tflops << " TFlops, "
              << best_gb_per_sec << " GB/s, " << best_gemm_name << std::endl;

    return pass;
}

} // namespace profiler
} // namespace ck