gemm_xdl.cpp 16.4 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include <stdlib.h>
#include <half.hpp>
#include "config.hpp"
#include "print.hpp"
#include "device.hpp"
#include "host_tensor.hpp"
#include "host_tensor_generator.hpp"
#include "host_gemm.hpp"
#include "device_tensor.hpp"
Chao Liu's avatar
Chao Liu committed
14
#include "device_gemm_xdl.hpp"
rocking5566's avatar
rocking5566 committed
15
#include "device_gemm_xdl_c_shuffle.hpp"
Chao Liu's avatar
Chao Liu committed
16
#include "element_wise_operation.hpp"
Chao Liu's avatar
Chao Liu committed
17
#include "reference_gemm.hpp"
Chao Liu's avatar
Chao Liu committed
18
#include "gemm_specialization.hpp"
Chao Liu's avatar
Chao Liu committed
19

Chao Liu's avatar
Chao Liu committed
20
21
22
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;

Chao Liu's avatar
Chao Liu committed
23
24
25
26
27
28
29
30
using F16 = ck::half_t;
using F32 = float;

using Row = ck::tensor_layout::gemm::RowMajor;
using Col = ck::tensor_layout::gemm::ColumnMajor;

using PassThrough = ck::tensor_operation::element_wise::PassThrough;

Chao Liu's avatar
Chao Liu committed
31
32
33
34
35
36
37
38
39
using ADataType   = ck::half_t;
using BDataType   = ck::half_t;
using CDataType   = ck::half_t;
using AccDataType = float;

using ALayout = ck::tensor_layout::gemm::RowMajor;
using BLayout = ck::tensor_layout::gemm::ColumnMajor;
using CLayout = ck::tensor_layout::gemm::RowMajor;

Chao Liu's avatar
Chao Liu committed
40
41
42
using AElementOp = ck::tensor_operation::element_wise::PassThrough;
using BElementOp = ck::tensor_operation::element_wise::PassThrough;
using CElementOp = ck::tensor_operation::element_wise::PassThrough;
Chao Liu's avatar
Chao Liu committed
43

44
static constexpr auto GemmDefault = ck::tensor_operation::device::GemmSpecialization_t::Default;
Chao Liu's avatar
Chao Liu committed
45

Chao Liu's avatar
Chao Liu committed
46
// clang-format off
47
#if 0
Chao Liu's avatar
Chao Liu committed
48
49
50
51
52
53
54
using DeviceGemmInstance = ck::tensor_operation::device::DeviceGemmXdl
//######| AData| BData| CData| AccData| ALayout| BLayout| CLayout|           A|           B|           C|          GEMM| Block|  MPer|  NPer| K0Per| K1| MPer| NPer| MXdl| NXdl|  ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds|  BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CThreadTransfer| CThreadTransfer|      Num|
//######|  Type|  Type|  Type|    Type|        |        |        | Elementwise| Elementwise| Elementwise|Spacialization|  Size| Block| Block| Block|   |  XDL|  XDL|  Per|  Per|   ThreadCluster|  ThreadCluster| SrcAccessOrder|   SrcVectorDim|      SrcScalar|      DstScalar| AddExtraM|   ThreadCluster|  ThreadCluster| SrcAccessOrder|  SrcVectorDim|      SrcScalar|      DstScalar| AddExtraN| SrcDstVectorDim|       DstScalar| Prefetch|
//######|      |      |      |        |        |        |        |   Operation|   Operation|   Operation|              |      |      |      |      |   |     |     | Wave| Wave| Lengths_K0_M_K1|   ArrangeOrder|               |               |      PerVector|   PerVector_K1|          | Lengths_K0_N_K1|   ArrangeOrder|               |              |      PerVector|   PerVector_K1|          |                |       PerVector|         |
//######|      |      |      |        |        |        |        |            |            |            |              |      |      |      |      |   |     |     |     |     |                |               |               |               |               |               |          |                |               |               |              |               |               |          |                |                |         |
//    [256, 128, 4, 8], 1 stage, 2 occupancy
        <   F16,   F16,   F16,     F32,     Row,     Col,     Row, PassThrough, PassThrough, PassThrough,   GemmDefault,   256,   256,   128,     4,  8,   32,   32,    4,    2,     S<4, 64, 1>,     S<1, 0, 2>,     S<1, 0, 2>,              2,              8,              8,      true,     S<4, 64, 1>,     S<1, 0, 2>,     S<1, 0, 2>,             2,              8,              8,      true,               7,               1,        1>;
55
56
57
58
59
60
61
#elif 1
using DeviceGemmInstance = ck::tensor_operation::device::DeviceGemmXdl_C_Shuffle
//######|AData| BData| CData| AccData| ALayout| BLayout| CLayout|           A|           B|           C| Block|  MPer|  NPer|  KPer| AK1| BK1| MPer| NPer| MXdl| NXdl|  ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds|  BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds|    CShuffle|    CShuffle|     CBlockTransferClusterLengths|  CBlockTransfer|
//######| Type|  Type|  Type|    Type|        |        |        | Elementwise| Elementwise| Elementwise|  Size| Block| Block| Block|    |    |  XDL|  XDL|  Per|  Per|   ThreadCluster|  ThreadCluster| SrcAccessOrder|   SrcVectorDim|      SrcScalar|      DstScalar| AddExtraM|   ThreadCluster|  ThreadCluster| SrcAccessOrder|  SrcVectorDim|      SrcScalar|      DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MXdlPerWave_MWaveMPerXdl| ScalarPerVector|
//######|     |      |      |        |        |        |        |   Operation|   Operation|   Operation|      |      |      |      |    |    |     |     | Wave| Wave| Lengths_K0_M_K1|   ArrangeOrder|               |               |      PerVector|   PerVector_K1|          | Lengths_K0_N_K1|   ArrangeOrder|               |              |      PerVector|   PerVector_K1|          |  PerShuffle|  PerShuffle| _NBlock_NXdlPerWave_NWaveNPerXdl|   _NWaveNPerXdl|
//######|     |      |      |        |        |        |        |            |            |            |      |      |      |      |    |    |     |     |     |     |                |               |               |               |               |               |          |                |               |               |              |               |               |          |            |            |                                 |                |
        <  F16,   F16,   F16,     F32,     Row,     Col,     Row, PassThrough, PassThrough, PassThrough,   256,   256,   128,    32,   8,   8,   32,   32,    4,    2,     S<4, 64, 1>,     S<1, 0, 2>,     S<1, 0, 2>,              2,              8,              8,      true,     S<4, 64, 1>,     S<1, 0, 2>,     S<1, 0, 2>,             2,              8,              8,      true,           1,           1,             S<1, 1, 32, 1, 1, 8>,               8>;
Chao Liu's avatar
Chao Liu committed
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
#elif 0
using DeviceGemmInstance = ck::tensor_operation::device::DeviceGemmXdl
//######| AData| BData| CData| AccData| ALayout| BLayout| CLayout|           A|           B|           C|          GEMM| Block|  MPer|  NPer| K0Per| K1| MPer| NPer| MXdl| NXdl|  ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds|  BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CThreadTransfer| CThreadTransfer|      Num|
//######|  Type|  Type|  Type|    Type|        |        |        | Elementwise| Elementwise| Elementwise|Spacialization|  Size| Block| Block| Block|   |  XDL|  XDL|  Per|  Per|   ThreadCluster|  ThreadCluster| SrcAccessOrder|   SrcVectorDim|      SrcScalar|      DstScalar| AddExtraM|   ThreadCluster|  ThreadCluster| SrcAccessOrder|  SrcVectorDim|      SrcScalar|      DstScalar| AddExtraN| SrcDstVectorDim|       DstScalar| Prefetch|
//######|      |      |      |        |        |        |        |   Operation|   Operation|   Operation|              |      |      |      |      |   |     |     | Wave| Wave| Lengths_K0_M_K1|   ArrangeOrder|               |               |      PerVector|   PerVector_K1|          | Lengths_K0_N_K1|   ArrangeOrder|               |              |      PerVector|   PerVector_K1|          |                |       PerVector|         |
//######|      |      |      |        |        |        |        |            |            |            |              |      |      |      |      |   |     |     |     |     |                |               |               |               |               |               |          |                |               |               |              |               |               |          |                |                |         |
//    [128, 144, 8, 8], 1 stage, 1 occupancy, bounded by LDS size
//     99 TFlops, 120 blocks (1024x2160x3840)
//     99 TFlops, 960 blocks (4096x4320x3840)
        <   F16,   F16,   F16,     F32,     Row,     Col,     Row, PassThrough, PassThrough, PassThrough,   GemmDefault,   256,   128,   144,     8,  8,   16,   16,    2,    9,     S<8, 32, 1>,     S<1, 0, 2>,     S<1, 0, 2>,              2,              8,              8,      true,     S<8,  8, 4>,     S<1, 0, 2>,     S<1, 0, 2>,             2,              2,              2,      true,               7,               1,        1>;
//    [128, 144, 4, 8], 1 stage, 2 occupancy,
//     92 TFlops, 120 blocks (1024x2160x3840)
//    120 TFlops, 240 blocks (1024x4320x3840)
//    128 TFlops, 960 blocks (4096x4320x3840)
//      <   F16,   F16,   F16,     F32,     Row,     Col,     Row, PassThrough, PassThrough, PassThrough,   GemmDefault,   256,   128,   144,     4,  8,   16,   16,    2,    9,     S<4, 64, 1>,     S<1, 0, 2>,     S<1, 0, 2>,              2,              8,              8,      true,     S<4, 16, 4>,     S<1, 0, 2>,     S<1, 0, 2>,             2,              2,              2,      true,               7,               1,        1>;
//    [ 64, 144, 8, 8], 1 stage, 2 occupancy/
//     96 TFlops, 240 blocks (1024x2160x3840)
//     96 TFlops, 480 blocks (1024x4320x3840)
//     99 TFlops,1920 blocks (4096x4320x3840)
//      <   F16,   F16,   F16,     F32,     Row,     Col,     Row, PassThrough, PassThrough, PassThrough,   GemmDefault,   256,    64,   144,     8,  8,   16,   16,    1,    9,     S<8, 32, 1>,     S<1, 0, 2>,     S<1, 0, 2>,              2,              8,              8,      true,     S<8,  8, 4>,     S<1, 0, 2>,     S<1, 0, 2>,             2,              2,              2,      true,               7,               1,        1>;
//    [ 64, 144, 8, 8], 2 stage, 2 occupancy
//     93 TFlops
//      <   F16,   F16,   F16,     F32,     Row,     Col,     Row, PassThrough, PassThrough, PassThrough,   GemmDefault,   256,    64,   144,     8,  8,   16,   16,    1,    9,     S<8, 32, 1>,     S<1, 0, 2>,     S<1, 0, 2>,              2,              8,              8,      true,     S<8,  8, 4>,     S<1, 0, 2>,     S<1, 0, 2>,             2,              2,              2,      true,               7,               1,        2>;
//    [ 64, 144, 4, 8], 1 stage, 2 occupancy
//     87 TFlops
//      <   F16,   F16,   F16,     F32,     Row,     Col,     Row, PassThrough, PassThrough, PassThrough,   GemmDefault,   256,    64,   144,     4,  8,   16,   16,    1,    9,     S<4, 64, 1>,     S<1, 0, 2>,     S<1, 0, 2>,              2,              8,              8,      true,     S<4, 16, 4>,     S<1, 0, 2>,     S<1, 0, 2>,             2,              2,              2,      true,               7,               1,        1>;
//    [ 64, 144, 4, 8], 2 stage, 2 occupancy
//     85 TFlops
//      <   F16,   F16,   F16,     F32,     Row,     Col,     Row, PassThrough, PassThrough, PassThrough,   GemmDefault,   256,    64,   144,     4,  8,   16,   16,    1,    9,     S<4, 64, 1>,     S<1, 0, 2>,     S<1, 0, 2>,              2,              8,              8,      true,     S<4, 16, 4>,     S<1, 0, 2>,     S<1, 0, 2>,             2,              2,              2,      true,               7,               1,        2>;
#endif
Chao Liu's avatar
Chao Liu committed
92
93
// clang-format on

Chao Liu's avatar
Chao Liu committed
94
95
using ReferenceGemmInstance = ck::tensor_operation::host::
    ReferenceGemm<ADataType, BDataType, CDataType, AElementOp, BElementOp, CElementOp>;
96
97
98

int main(int argc, char* argv[])
{
Chao Liu's avatar
Chao Liu committed
99
100
101
    bool do_verification = 0;
    int init_method      = 0;
    int nrepeat          = 5;
102
103
104
105
106
107
108
109
110
111

    // GEMM shape
    ck::index_t M = 3840;
    ck::index_t N = 4096;
    ck::index_t K = 4096;

    ck::index_t StrideA = 4096;
    ck::index_t StrideB = 4096;
    ck::index_t StrideC = 4096;

Chao Liu's avatar
Chao Liu committed
112
113
    if(argc == 4)
    {
114
115
116
        do_verification = std::stoi(argv[1]);
        init_method     = std::stoi(argv[2]);
        nrepeat         = std::stoi(argv[3]);
Chao Liu's avatar
Chao Liu committed
117
118
119
120
121
122
123
124
125
126
    }
    else if(argc == 10)
    {
        do_verification = std::stoi(argv[1]);
        init_method     = std::stoi(argv[2]);
        nrepeat         = std::stoi(argv[3]);

        M = std::stoi(argv[4]);
        N = std::stoi(argv[5]);
        K = std::stoi(argv[6]);
127

Chao Liu's avatar
Chao Liu committed
128
129
130
131
132
133
134
135
136
137
138
139
        StrideA = std::stoi(argv[7]);
        StrideB = std::stoi(argv[8]);
        StrideC = std::stoi(argv[9]);
    }
    else
    {
        printf("arg1: verification (0=no, 1=yes)\n");
        printf("arg2: initialization (0=no init, 1=integer value, 2=decimal value)\n");
        printf("arg3: run kernel # of times (>1)\n");
        printf("arg4 to 9: M (256x), N(128x), K(32x), StrideA, StrideB, StrideC\n");
        exit(0);
    }
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156

    auto f_host_tensor_descriptor =
        [](std::size_t row, std::size_t col, std::size_t stride, auto layout) {
            if(std::is_same<decltype(layout), ck::tensor_layout::gemm::RowMajor>::value)
            {
                return HostTensorDescriptor(std::vector<std::size_t>({row, col}),
                                            std::vector<std::size_t>({stride, 1}));
            }
            else
            {
                return HostTensorDescriptor(std::vector<std::size_t>({row, col}),
                                            std::vector<std::size_t>({1, stride}));
            }
        };

    Tensor<ADataType> a_m_k(f_host_tensor_descriptor(M, K, StrideA, ALayout{}));
    Tensor<BDataType> b_k_n(f_host_tensor_descriptor(K, N, StrideB, BLayout{}));
157
158
    Tensor<CDataType> c_m_n_host_result(f_host_tensor_descriptor(M, N, StrideC, CLayout{}));
    Tensor<CDataType> c_m_n_device_result(f_host_tensor_descriptor(M, N, StrideC, CLayout{}));
159
160
161
162
163
164
165
166
167

    std::cout << "a_m_k: " << a_m_k.mDesc << std::endl;
    std::cout << "b_k_n: " << b_k_n.mDesc << std::endl;
    std::cout << "c_m_n: " << c_m_n_host_result.mDesc << std::endl;

    switch(init_method)
    {
    case 0: break;
    case 1:
168
169
        a_m_k.GenerateTensorValue(GeneratorTensor_2<ADataType>{-5, 5});
        b_k_n.GenerateTensorValue(GeneratorTensor_2<BDataType>{-5, 5});
170
        break;
171
    case 2:
172
173
        a_m_k.GenerateTensorValue(GeneratorTensor_3<ADataType>{0.0, 1.0});
        b_k_n.GenerateTensorValue(GeneratorTensor_3<BDataType>{-0.5, 0.5});
174
175
176
177
        break;
    default:
        a_m_k.GenerateTensorValue(GeneratorTensor_Sequential<0>{});
        b_k_n.GenerateTensorValue(GeneratorTensor_Sequential<1>{});
178
179
180
181
182
183
184
185
186
    }

    DeviceMem a_m_k_device_buf(sizeof(ADataType) * a_m_k.mDesc.GetElementSpace());
    DeviceMem b_k_n_device_buf(sizeof(BDataType) * b_k_n.mDesc.GetElementSpace());
    DeviceMem c_m_n_device_buf(sizeof(CDataType) * c_m_n_device_result.mDesc.GetElementSpace());

    a_m_k_device_buf.ToDevice(a_m_k.mData.data());
    b_k_n_device_buf.ToDevice(b_k_n.mData.data());

Chao Liu's avatar
Chao Liu committed
187
188
189
190
    auto a_element_op = AElementOp{};
    auto b_element_op = BElementOp{};
    auto c_element_op = CElementOp{};

191
    // do GEMM
Chao Liu's avatar
Chao Liu committed
192
    auto gemm     = DeviceGemmInstance{};
193
194
195
196
197
198
199
200
201
    auto invoker  = gemm.MakeInvoker();
    auto argument = gemm.MakeArgument(static_cast<ADataType*>(a_m_k_device_buf.GetDeviceBuffer()),
                                      static_cast<BDataType*>(b_k_n_device_buf.GetDeviceBuffer()),
                                      static_cast<CDataType*>(c_m_n_device_buf.GetDeviceBuffer()),
                                      M,
                                      N,
                                      K,
                                      StrideA,
                                      StrideB,
Chao Liu's avatar
Chao Liu committed
202
                                      StrideC,
Chao Liu's avatar
Chao Liu committed
203
204
205
                                      a_element_op,
                                      b_element_op,
                                      c_element_op);
206
207
208
209
210
211
212
213
214
215
216
217

    if(!gemm.IsSupportedArgument(argument))
    {
        throw std::runtime_error(
            "wrong! device_gemm with the specified compilation parameters does "
            "not support this GEMM problem");
    }

    float ave_time = invoker.Run(argument, nrepeat);

    std::size_t flop = std::size_t(2) * M * N * K;
    std::size_t num_btype =
Chao Liu's avatar
Chao Liu committed
218
        sizeof(ADataType) * M * K + sizeof(BDataType) * K * N + sizeof(CDataType) * M * N;
219
220
221
222
223

    float tflops = static_cast<float>(flop) / 1.E9 / ave_time;

    float gb_per_sec = num_btype / 1.E6 / ave_time;

Chao Liu's avatar
Chao Liu committed
224
225
    std::cout << "Perf: " << ave_time << " ms, " << tflops << " TFlops, " << gb_per_sec << " GB/s, "
              << gemm.GetTypeString() << std::endl;
226
227
228
229
230

    c_m_n_device_buf.FromDevice(c_m_n_device_result.mData.data());

    if(do_verification)
    {
Chao Liu's avatar
Chao Liu committed
231
232
233
234
235
236
237
        auto ref_gemm    = ReferenceGemmInstance{};
        auto ref_invoker = ref_gemm.MakeInvoker();

        auto ref_argument = ref_gemm.MakeArgument(
            a_m_k, b_k_n, c_m_n_host_result, a_element_op, b_element_op, c_element_op);

        ref_invoker.Run(ref_argument);
238
239
240

        check_error(c_m_n_host_result, c_m_n_device_result);
    }
Jianfeng Yan's avatar
Jianfeng Yan committed
241
242

    return 0;
243
}