gemm_xdl.cpp 9.44 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include <stdlib.h>
#include <half.hpp>
#include "config.hpp"
#include "print.hpp"
#include "device.hpp"
#include "host_tensor.hpp"
#include "host_tensor_generator.hpp"
#include "host_gemm.hpp"
#include "device_tensor.hpp"
#include "device_base.hpp"
#include "device_gemm_xdl.hpp"

Chao Liu's avatar
Chao Liu committed
17
18
19
20
21
22
23
24
25
26
27
28
29
30
struct PassThrough
{
    template <typename T>
    __host__ __device__ constexpr T operator()(T v) const
    {
        return v;
    }
};

struct Relu
{
    template <typename T>
    __host__ __device__ constexpr T operator()(T v) const
    {
Chao Liu's avatar
Chao Liu committed
31
        return v > 0 ? v : 0;
Chao Liu's avatar
Chao Liu committed
32
33
34
    }
};

Chao Liu's avatar
Chao Liu committed
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;

using ADataType   = ck::half_t;
using BDataType   = ck::half_t;
using CDataType   = ck::half_t;
using AccDataType = float;

using ALayout = ck::tensor_layout::gemm::RowMajor;
using BLayout = ck::tensor_layout::gemm::ColumnMajor;
using CLayout = ck::tensor_layout::gemm::RowMajor;

using AOp = PassThrough;
using BOp = PassThrough;
using COp = Relu;

// Compilation parameters for NT problem
// clang-format off
using DeviceGemmInstance =
    //#########################################|     AData|     BData|     CData|     AccData| ALayout| BLayout| CLayout| AElementwise| BElementwise| CElementwise| Block|  MPer|  NPer| K0Per| K1| MPer| NPer| MXdl| NXdl|  ABlockTransfer|  ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer|  BBlockTransfer|  BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| CThreadTransfer| CThreadTransfer| ABlockLds| BBlockLds|
    //#########################################|      Type|      Type|      Type|        Type|        |        |        |    Operation|    Operation|    Operation|  Size| Block| Block| Block|   |  XDL|  XDL|  Per|  Per|     ThreadSlice|   ThreadCluster|  ThreadCluster| SrcAccessOrder|   SrcVectorDim|      SrcScalar|      DstScalar|     ThreadSlice|   ThreadCluster|  ThreadCluster| SrcAccessOrder|  SrcVectorDim|      SrcScalar|      DstScalar| SrcDstVectorDim|       DstScalar| AddExtraM| AddExtraN|
    //#########################################|          |          |          |            |        |        |        |             |             |             |      |      |      |      |   |     |     | Wave| Wave| Lengths_K0_N_K1| Lengths_K0_M_K1|   ArrangeOrder|               |               |      PerVector|   PerVector_K1| Lengths_K0_N_K1| Lengths_K0_N_K1|   ArrangeOrder|               |              |      PerVector|   PerVector_K1|                |       PerVector|          |          |
    //#########################################|          |          |          |            |        |        |        |             |             |             |      |      |      |      |   |     |     |     |     |                |                |               |               |               |               |               |                |                |               |               |              |               |               |                |                |          |          |
    ck::tensor_operation::device::DeviceGemmXdl< ADataType, BDataType, CDataType, AccDataType, ALayout, BLayout, CLayout,          AOp,          BOp,          COp,   256,   256,   128,     4,  8,   32,   32,    4,    2,      S<1, 4, 8>,     S<4, 64, 1>,     S<1, 0, 2>,     S<1, 0, 2>,              2,              8,              8,      S<1, 2, 8>,     S<4, 64, 1>,     S<1, 0, 2>,     S<1, 0, 2>,             2,              8,              8,               7,               1,      true,      true>;
// clang-format on

template <typename AType,
          typename BType,
          typename CType,
Chao Liu's avatar
Chao Liu committed
64
65
66
          typename AElementwiseOperation,
          typename BElementwiseOperation,
          typename CElementwiseOperation>
Chao Liu's avatar
Chao Liu committed
67
68
69
70
71
72
static void host_verify(const Tensor<AType>& a_m_k,
                        const Tensor<BType>& b_k_n,
                        Tensor<CType>& c_m_n,
                        const AElementwiseOperation& a_element_op,
                        const BElementwiseOperation& b_element_op,
                        const CElementwiseOperation& c_element_op)
73
{
Chao Liu's avatar
Chao Liu committed
74
75
    auto f_mk_kn_mn = [&](auto m, auto n) {
        const int K = a_m_k.mDesc.GetLengths()[1];
76

Chao Liu's avatar
Chao Liu committed
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
        double v = 0;

        for(int k = 0; k < K; ++k)
        {
            v += static_cast<const double>(a_element_op(a_m_k(m, k))) *
                 static_cast<const double>(b_element_op(b_k_n(k, n)));
        }

        c_m_n(m, n) = c_element_op(v);
    };

    make_ParallelTensorFunctor(f_mk_kn_mn,
                               c_m_n.mDesc.GetLengths()[0],
                               c_m_n.mDesc.GetLengths()[1])(std::thread::hardware_concurrency());
}
92
93
94

int main(int argc, char* argv[])
{
Chao Liu's avatar
Chao Liu committed
95
96
97
    bool do_verification = 0;
    int init_method      = 0;
    int nrepeat          = 5;
98
99
100
101
102
103
104
105
106
107

    // GEMM shape
    ck::index_t M = 3840;
    ck::index_t N = 4096;
    ck::index_t K = 4096;

    ck::index_t StrideA = 4096;
    ck::index_t StrideB = 4096;
    ck::index_t StrideC = 4096;

Chao Liu's avatar
Chao Liu committed
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
    if(argc == 4)
    {
        M = std::stoi(argv[4]);
        N = std::stoi(argv[5]);
        K = std::stoi(argv[6]);
    }
    else if(argc == 10)
    {
        do_verification = std::stoi(argv[1]);
        init_method     = std::stoi(argv[2]);
        nrepeat         = std::stoi(argv[3]);

        M = std::stoi(argv[4]);
        N = std::stoi(argv[5]);
        K = std::stoi(argv[6]);
123

Chao Liu's avatar
Chao Liu committed
124
125
126
127
128
129
130
131
132
133
134
135
        StrideA = std::stoi(argv[7]);
        StrideB = std::stoi(argv[8]);
        StrideC = std::stoi(argv[9]);
    }
    else
    {
        printf("arg1: verification (0=no, 1=yes)\n");
        printf("arg2: initialization (0=no init, 1=integer value, 2=decimal value)\n");
        printf("arg3: run kernel # of times (>1)\n");
        printf("arg4 to 9: M (256x), N(128x), K(32x), StrideA, StrideB, StrideC\n");
        exit(0);
    }
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163

    auto f_host_tensor_descriptor =
        [](std::size_t row, std::size_t col, std::size_t stride, auto layout) {
            if(std::is_same<decltype(layout), ck::tensor_layout::gemm::RowMajor>::value)
            {
                return HostTensorDescriptor(std::vector<std::size_t>({row, col}),
                                            std::vector<std::size_t>({stride, 1}));
            }
            else
            {
                return HostTensorDescriptor(std::vector<std::size_t>({row, col}),
                                            std::vector<std::size_t>({1, stride}));
            }
        };

    Tensor<ADataType> a_m_k(f_host_tensor_descriptor(M, K, StrideA, ALayout{}));
    Tensor<BDataType> b_k_n(f_host_tensor_descriptor(K, N, StrideB, BLayout{}));
    Tensor<BDataType> c_m_n_host_result(f_host_tensor_descriptor(M, N, StrideC, CLayout{}));
    Tensor<BDataType> c_m_n_device_result(f_host_tensor_descriptor(M, N, StrideC, CLayout{}));

    std::cout << "a_m_k: " << a_m_k.mDesc << std::endl;
    std::cout << "b_k_n: " << b_k_n.mDesc << std::endl;
    std::cout << "c_m_n: " << c_m_n_host_result.mDesc << std::endl;

    switch(init_method)
    {
    case 0: break;
    case 1:
164
165
        a_m_k.GenerateTensorValue(GeneratorTensor_2<ADataType>{-5, 5});
        b_k_n.GenerateTensorValue(GeneratorTensor_2<BDataType>{-5, 5});
166
167
        break;
    default:
168
169
        a_m_k.GenerateTensorValue(GeneratorTensor_3<ADataType>{0.0, 1.0});
        b_k_n.GenerateTensorValue(GeneratorTensor_3<BDataType>{-0.5, 0.5});
170
171
172
173
174
175
176
177
178
179
180
    }

    DeviceMem a_m_k_device_buf(sizeof(ADataType) * a_m_k.mDesc.GetElementSpace());
    DeviceMem b_k_n_device_buf(sizeof(BDataType) * b_k_n.mDesc.GetElementSpace());
    DeviceMem c_m_n_device_buf(sizeof(CDataType) * c_m_n_device_result.mDesc.GetElementSpace());

    a_m_k_device_buf.ToDevice(a_m_k.mData.data());
    b_k_n_device_buf.ToDevice(b_k_n.mData.data());
    c_m_n_device_buf.ToDevice(c_m_n_device_result.mData.data());

    // do GEMM
Chao Liu's avatar
Chao Liu committed
181
    auto gemm     = DeviceGemmInstance{};
182
183
184
185
186
187
188
189
190
    auto invoker  = gemm.MakeInvoker();
    auto argument = gemm.MakeArgument(static_cast<ADataType*>(a_m_k_device_buf.GetDeviceBuffer()),
                                      static_cast<BDataType*>(b_k_n_device_buf.GetDeviceBuffer()),
                                      static_cast<CDataType*>(c_m_n_device_buf.GetDeviceBuffer()),
                                      M,
                                      N,
                                      K,
                                      StrideA,
                                      StrideB,
Chao Liu's avatar
Chao Liu committed
191
                                      StrideC,
Chao Liu's avatar
Chao Liu committed
192
193
194
                                      AOp{},
                                      BOp{},
                                      COp{});
195
196
197
198
199
200
201
202
203
204
205
206

    if(!gemm.IsSupportedArgument(argument))
    {
        throw std::runtime_error(
            "wrong! device_gemm with the specified compilation parameters does "
            "not support this GEMM problem");
    }

    float ave_time = invoker.Run(argument, nrepeat);

    std::size_t flop = std::size_t(2) * M * N * K;
    std::size_t num_btype =
Chao Liu's avatar
Chao Liu committed
207
        sizeof(ADataType) * M * K + sizeof(BDataType) * K * N + sizeof(CDataType) * M * N;
208
209
210
211
212
213
214
215
216
217
218
219

    float tflops = static_cast<float>(flop) / 1.E9 / ave_time;

    float gb_per_sec = num_btype / 1.E6 / ave_time;

    std::cout << "Perf: " << ave_time << " ms, " << tflops << " TFlops, " << gb_per_sec << " GB/s"
              << std::endl;

    c_m_n_device_buf.FromDevice(c_m_n_device_result.mData.data());

    if(do_verification)
    {
Chao Liu's avatar
Chao Liu committed
220
        host_verify(a_m_k, b_k_n, c_m_n_host_result, AOp{}, BOp{}, COp{});
221
222
223
224

        check_error(c_m_n_host_result, c_m_n_device_result);
    }
}