gemm_xdl.cpp 10.7 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include <stdlib.h>
#include <half.hpp>
#include "config.hpp"
#include "print.hpp"
#include "device.hpp"
#include "host_tensor.hpp"
#include "host_tensor_generator.hpp"
#include "gemm_common.hpp"
#include "host_gemm.hpp"
#include "device_tensor.hpp"
#include "device_base.hpp"
#include "device_gemm_xdl.hpp"

template <typename ADataType,
          typename BDataType,
          typename CDataType,
          typename ALayout,
          typename BLayout,
          typename CLayout>
struct DeviceGemmInstance;

template <>
struct DeviceGemmInstance<ck::half_t,
                          ck::half_t,
                          ck::half_t,
                          ck::tensor_layout::gemm::RowMajor,
                          ck::tensor_layout::gemm::ColumnMajor,
                          ck::tensor_layout::gemm::RowMajor>
{
    using F16 = ck::half_t;
    using F32 = float;

    using Row = ck::tensor_layout::gemm::RowMajor;
    using Col = ck::tensor_layout::gemm::ColumnMajor;

    template <ck::index_t... Is>
    using S = ck::Sequence<Is...>;

    // Compilation parameters for NT problem
    // clang-format off
    using type =
        //########################################| AData| BData| CData| AccData| ALayout| BLayout| CLayout| Block|  MPer|  NPer| K0Per| K1| MPer| NPer| MXdl| NXdl|  ABlockTransfer|  ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer|  BBlockTransfer|  BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| CThreadTransfer| CThreadTransfer| ABlockLds| BBlockLds|
        //########################################|  Type|  Type|  Type|    Type|        |        |        |  Size| Block| Block| Block|   |  XDL|  XDL|  Per|  Per|     ThreadSlice|   ThreadCluster|  ThreadCluster| SrcAccessOrder|   SrcVectorDim|      SrcScalar|      DstScalar|     ThreadSlice|   ThreadCluster|  ThreadCluster| SrcAccessOrder|  SrcVectorDim|      SrcScalar|      DstScalar| SrcDstVectorDim|       DstScalar| AddExtraM| AddExtraN|
        //########################################|      |      |      |        |        |        |        |      |      |      |      |   |     |     | Wave| Wave| Lengths_K0_N_K1| Lengths_K0_M_K1|   ArrangeOrder|               |               |      PerVector|   PerVector_K1| Lengths_K0_N_K1| Lengths_K0_N_K1|   ArrangeOrder|               |              |      PerVector|   PerVector_K1|                |       PerVector|          |          |
        //########################################|      |      |      |        |        |        |        |      |      |      |      |   |     |     |     |     |                |                |               |               |               |               |               |                |                |               |               |              |               |               |                |                |          |          |
        ck::tensor_operation::device::DeviceGemmXdl<  F16,   F16,   F16,     F32,     Row,     Col,     Row,   256,   256,   128,     4,  8,   32,   32,    4,    2,      S<1, 4, 8>,     S<4, 64, 1>,     S<1, 0, 2>,     S<1, 0, 2>,              2,              8,              8,      S<1, 2, 8>,     S<4, 64, 1>,     S<1, 0, 2>,     S<1, 0, 2>,             2,              8,              8,               7,               1,      true,      true>;
    // clang-format on
};

template <>
struct DeviceGemmInstance<float,
                          float,
                          float,
                          ck::tensor_layout::gemm::RowMajor,
                          ck::tensor_layout::gemm::ColumnMajor,
                          ck::tensor_layout::gemm::RowMajor>
{
    using F16 = ck::half_t;
    using F32 = float;

    using Row = ck::tensor_layout::gemm::RowMajor;
    using Col = ck::tensor_layout::gemm::ColumnMajor;

    template <ck::index_t... Is>
    using S = ck::Sequence<Is...>;

    // Compilation parameters for NT problem
    // clang-format off
    using type =
    //########################################| AData| BData| CData| AccData| ALayout| BLayout| CLayout| Block|  MPer|  NPer| K0Per| K1| MPer| NPer| MXdl| NXdl|  ABlockTransfer|  ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer|  BBlockTransfer|  BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| CThreadTransfer| CThreadTransfer| ABlockLds| BBlockLds|
    //########################################|  Type|  Type|  Type|    Type|        |        |        |  Size| Block| Block| Block|   |  XDL|  XDL|  Per|  Per|     ThreadSlice|   ThreadCluster|  ThreadCluster| SrcAccessOrder|   SrcVectorDim|      SrcScalar|      DstScalar|     ThreadSlice|   ThreadCluster|  ThreadCluster| SrcAccessOrder|  SrcVectorDim|      SrcScalar|      DstScalar| SrcDstVectorDim|       DstScalar| AddExtraM| AddExtraN|
    //########################################|      |      |      |        |        |        |        |      |      |      |      |   |     |     | Wave| Wave| Lengths_K0_N_K1| Lengths_K0_M_K1|   ArrangeOrder|               |               |      PerVector|   PerVector_K1| Lengths_K0_N_K1| Lengths_K0_N_K1|   ArrangeOrder|               |              |      PerVector|   PerVector_K1|                |       PerVector|          |          |
    //########################################|      |      |      |        |        |        |        |      |      |      |      |   |     |     |     |     |                |                |               |               |               |               |               |                |                |               |               |              |               |               |                |                |          |          |
    ck::tensor_operation::device::DeviceGemmXdl<  F32,   F32,   F32,     F32,     Row,     Col,     Row,   256,   256,   128,     4,  4,   32,   32,    4,    2,      S<1, 4, 4>,     S<4, 64, 1>,     S<1, 0, 2>,     S<1, 0, 2>,              2,              4,              4,      S<1, 2, 4>,     S<4, 64, 1>,     S<1, 0, 2>,     S<1, 0, 2>,             2,              4,              4,               7,               1,      true,      true>;
    // clang-format on
};

int main(int argc, char* argv[])
{
    if(argc != 4)
    {
        printf("arg1: verification (0=no, 1=yes)\n");
        printf("arg2: initialization (0=no init, 1=integer value, 2=decimal value)\n");
        printf("arg3: run kernel # of times (>1)\n");
        exit(0);
    }

    const bool do_verification = std::stoi(argv[1]);
    const int init_method      = std::stoi(argv[2]);
    const int nrepeat          = std::stoi(argv[3]);

    // GEMM shape
    ck::index_t M = 3840;
    ck::index_t N = 4096;
    ck::index_t K = 4096;

    ck::index_t StrideA = 4096;
    ck::index_t StrideB = 4096;
    ck::index_t StrideC = 4096;

    // matrix data type
    using ADataType = ck::half_t;
    using BDataType = ck::half_t;
    using CDataType = ck::half_t;

    // matrix layout
    using ALayout = ck::tensor_layout::gemm::RowMajor;
    using BLayout = ck::tensor_layout::gemm::ColumnMajor;
    using CLayout = ck::tensor_layout::gemm::RowMajor;

    auto f_host_tensor_descriptor =
        [](std::size_t row, std::size_t col, std::size_t stride, auto layout) {
            if(std::is_same<decltype(layout), ck::tensor_layout::gemm::RowMajor>::value)
            {
                return HostTensorDescriptor(std::vector<std::size_t>({row, col}),
                                            std::vector<std::size_t>({stride, 1}));
            }
            else
            {
                return HostTensorDescriptor(std::vector<std::size_t>({row, col}),
                                            std::vector<std::size_t>({1, stride}));
            }
        };

    Tensor<ADataType> a_m_k(f_host_tensor_descriptor(M, K, StrideA, ALayout{}));
    Tensor<BDataType> b_k_n(f_host_tensor_descriptor(K, N, StrideB, BLayout{}));
    Tensor<BDataType> c_m_n_host_result(f_host_tensor_descriptor(M, N, StrideC, CLayout{}));
    Tensor<BDataType> c_m_n_device_result(f_host_tensor_descriptor(M, N, StrideC, CLayout{}));

    std::cout << "a_m_k: " << a_m_k.mDesc << std::endl;
    std::cout << "b_k_n: " << b_k_n.mDesc << std::endl;
    std::cout << "c_m_n: " << c_m_n_host_result.mDesc << std::endl;

    switch(init_method)
    {
    case 0: break;
    case 1:
        a_m_k.GenerateTensorValue(GeneratorTensor_2{-5, 5});
        b_k_n.GenerateTensorValue(GeneratorTensor_2{-5, 5});
        break;
    default:
        a_m_k.GenerateTensorValue(GeneratorTensor_3<float>{0.0, 1.0});
        b_k_n.GenerateTensorValue(GeneratorTensor_3<float>{-0.5, 0.5});
    }

    DeviceMem a_m_k_device_buf(sizeof(ADataType) * a_m_k.mDesc.GetElementSpace());
    DeviceMem b_k_n_device_buf(sizeof(BDataType) * b_k_n.mDesc.GetElementSpace());
    DeviceMem c_m_n_device_buf(sizeof(CDataType) * c_m_n_device_result.mDesc.GetElementSpace());

    a_m_k_device_buf.ToDevice(a_m_k.mData.data());
    b_k_n_device_buf.ToDevice(b_k_n.mData.data());
    c_m_n_device_buf.ToDevice(c_m_n_device_result.mData.data());

    // do GEMM
    auto gemm =
        typename DeviceGemmInstance<ADataType, BDataType, CDataType, ALayout, BLayout, CLayout>::
            type{};

    auto invoker  = gemm.MakeInvoker();
    auto argument = gemm.MakeArgument(static_cast<ADataType*>(a_m_k_device_buf.GetDeviceBuffer()),
                                      static_cast<BDataType*>(b_k_n_device_buf.GetDeviceBuffer()),
                                      static_cast<CDataType*>(c_m_n_device_buf.GetDeviceBuffer()),
                                      M,
                                      N,
                                      K,
                                      StrideA,
                                      StrideB,
                                      StrideC);

    if(!gemm.IsSupportedArgument(argument))
    {
        throw std::runtime_error(
            "wrong! device_gemm with the specified compilation parameters does "
            "not support this GEMM problem");
    }

    float ave_time = invoker.Run(argument, nrepeat);

    std::size_t flop = std::size_t(2) * M * N * K;
    std::size_t num_btype =
        sizeof(ADataType) * M * K + sizeof(BDataType) * K * M + sizeof(CDataType) * M * N;

    float tflops = static_cast<float>(flop) / 1.E9 / ave_time;

    float gb_per_sec = num_btype / 1.E6 / ave_time;

    std::cout << "Perf: " << ave_time << " ms, " << tflops << " TFlops, " << gb_per_sec << " GB/s"
              << std::endl;

    c_m_n_device_buf.FromDevice(c_m_n_device_result.mData.data());

    if(do_verification)
    {
        host_gemm_mk_kn_mn(a_m_k, b_k_n, c_m_n_host_result);

        check_error(c_m_n_host_result, c_m_n_device_result);
    }
}