gemm_xdl.cpp 8.95 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include <stdlib.h>
#include <half.hpp>
#include "config.hpp"
#include "print.hpp"
#include "device.hpp"
#include "host_tensor.hpp"
#include "host_tensor_generator.hpp"
#include "host_gemm.hpp"
#include "device_tensor.hpp"
#include "device_base.hpp"
rocking5566's avatar
rocking5566 committed
15
#include "device_gemm_xdl_c_shuffle.hpp"
Chao Liu's avatar
Chao Liu committed
16
#include "element_wise_operation.hpp"
Chao Liu's avatar
Chao Liu committed
17

Chao Liu's avatar
Chao Liu committed
18
19
20
21
22
23
24
25
26
27
28
29
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;

using ADataType   = ck::half_t;
using BDataType   = ck::half_t;
using CDataType   = ck::half_t;
using AccDataType = float;

using ALayout = ck::tensor_layout::gemm::RowMajor;
using BLayout = ck::tensor_layout::gemm::ColumnMajor;
using CLayout = ck::tensor_layout::gemm::RowMajor;

Chao Liu's avatar
Chao Liu committed
30
31
32
using AElementOp = ck::tensor_operation::element_wise::PassThrough;
using BElementOp = ck::tensor_operation::element_wise::PassThrough;
using CElementOp = ck::tensor_operation::element_wise::PassThrough;
Chao Liu's avatar
Chao Liu committed
33
34

// clang-format off
rocking5566's avatar
rocking5566 committed
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
using DeviceGemmInstance = ck::tensor_operation::device::DeviceGemmXdl_C_Shuffle<
    ADataType,              // ADataType
    BDataType,              // BDataType
    CDataType,              // CDataType
    AccDataType,            // AccDataType
    ALayout,                // ALayout
    BLayout,                // BLayout
    CLayout,                // CLayout
    AElementOp,             // AElementwiseOperation
    BElementOp,             // BElementwiseOperation
    CElementOp,             // CElementwiseOperation
    256,                    // BlockSize
    256,                    // MPerBlock
    128,                    // NPerBlock
    4,                      // K0PerBlock
    8,                      // K1
    32,                     // MPerXDL
    32,                     // NPerXDL
    4,                      // MXdlPerWave
    2,                      // NXdlPerWave
    S<4, 64, 1>,            // ABlockTransferThreadClusterLengths_K0_M_K1
    S<1, 0, 2>,             // ABlockTransferThreadClusterArrangeOrder
    S<1, 0, 2>,             // ABlockTransferSrcAccessOrder
    2,                      // ABlockTransferSrcVectorDim
    8,                      // ABlockTransferSrcScalarPerVector
    8,                      // ABlockTransferDstScalarPerVector_K1
    true,                   // ABlockLdsAddExtraM
    S<4, 64, 1>,            // BBlockTransferThreadClusterLengths_K0_N_K1
    S<1, 0, 2>,             // BBlockTransferThreadClusterArrangeOrder
    S<1, 0, 2>,             // BBlockTransferSrcAccessOrder
    2,                      // BBlockTransferSrcVectorDim
    8,                      // BBlockTransferSrcScalarPerVector
    8,                      // BBlockTransferDstScalarPerVector_K1
    true,                   // BBlockLdsAddExtraN
    1,                      // CShuffleMXdlPerWavePerShuffle
    1,                      // CShuffleNXdlPerWavePerShuffle
    S<1, 1, 32, 1, 1, 8>,   // CBlockTransferClusterLengths_MBlock_MXdlPerWave_MWaveMPerXdl_NBlock_NXdlPerWave_NWaveNPerXdl
    8>;                     // CBlockTransferScalarPerVector_NWaveNPerXdl
Chao Liu's avatar
Chao Liu committed
73
74
75
76
77
// clang-format on

template <typename AType,
          typename BType,
          typename CType,
Chao Liu's avatar
Chao Liu committed
78
79
80
          typename AElementwiseOperation,
          typename BElementwiseOperation,
          typename CElementwiseOperation>
Chao Liu's avatar
Chao Liu committed
81
82
83
84
85
86
static void host_verify(const Tensor<AType>& a_m_k,
                        const Tensor<BType>& b_k_n,
                        Tensor<CType>& c_m_n,
                        const AElementwiseOperation& a_element_op,
                        const BElementwiseOperation& b_element_op,
                        const CElementwiseOperation& c_element_op)
87
{
Chao Liu's avatar
Chao Liu committed
88
89
    auto f_mk_kn_mn = [&](auto m, auto n) {
        const int K = a_m_k.mDesc.GetLengths()[1];
90

Chao Liu's avatar
Chao Liu committed
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
        double v = 0;

        for(int k = 0; k < K; ++k)
        {
            v += static_cast<const double>(a_element_op(a_m_k(m, k))) *
                 static_cast<const double>(b_element_op(b_k_n(k, n)));
        }

        c_m_n(m, n) = c_element_op(v);
    };

    make_ParallelTensorFunctor(f_mk_kn_mn,
                               c_m_n.mDesc.GetLengths()[0],
                               c_m_n.mDesc.GetLengths()[1])(std::thread::hardware_concurrency());
}
106
107
108

int main(int argc, char* argv[])
{
Chao Liu's avatar
Chao Liu committed
109
110
111
    bool do_verification = 0;
    int init_method      = 0;
    int nrepeat          = 5;
112
113
114
115
116
117
118
119
120
121

    // GEMM shape
    ck::index_t M = 3840;
    ck::index_t N = 4096;
    ck::index_t K = 4096;

    ck::index_t StrideA = 4096;
    ck::index_t StrideB = 4096;
    ck::index_t StrideC = 4096;

Chao Liu's avatar
Chao Liu committed
122
123
    if(argc == 4)
    {
124
125
126
        do_verification = std::stoi(argv[1]);
        init_method     = std::stoi(argv[2]);
        nrepeat         = std::stoi(argv[3]);
Chao Liu's avatar
Chao Liu committed
127
128
129
130
131
132
133
134
135
136
    }
    else if(argc == 10)
    {
        do_verification = std::stoi(argv[1]);
        init_method     = std::stoi(argv[2]);
        nrepeat         = std::stoi(argv[3]);

        M = std::stoi(argv[4]);
        N = std::stoi(argv[5]);
        K = std::stoi(argv[6]);
137

Chao Liu's avatar
Chao Liu committed
138
139
140
141
142
143
144
145
146
147
148
149
        StrideA = std::stoi(argv[7]);
        StrideB = std::stoi(argv[8]);
        StrideC = std::stoi(argv[9]);
    }
    else
    {
        printf("arg1: verification (0=no, 1=yes)\n");
        printf("arg2: initialization (0=no init, 1=integer value, 2=decimal value)\n");
        printf("arg3: run kernel # of times (>1)\n");
        printf("arg4 to 9: M (256x), N(128x), K(32x), StrideA, StrideB, StrideC\n");
        exit(0);
    }
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177

    auto f_host_tensor_descriptor =
        [](std::size_t row, std::size_t col, std::size_t stride, auto layout) {
            if(std::is_same<decltype(layout), ck::tensor_layout::gemm::RowMajor>::value)
            {
                return HostTensorDescriptor(std::vector<std::size_t>({row, col}),
                                            std::vector<std::size_t>({stride, 1}));
            }
            else
            {
                return HostTensorDescriptor(std::vector<std::size_t>({row, col}),
                                            std::vector<std::size_t>({1, stride}));
            }
        };

    Tensor<ADataType> a_m_k(f_host_tensor_descriptor(M, K, StrideA, ALayout{}));
    Tensor<BDataType> b_k_n(f_host_tensor_descriptor(K, N, StrideB, BLayout{}));
    Tensor<BDataType> c_m_n_host_result(f_host_tensor_descriptor(M, N, StrideC, CLayout{}));
    Tensor<BDataType> c_m_n_device_result(f_host_tensor_descriptor(M, N, StrideC, CLayout{}));

    std::cout << "a_m_k: " << a_m_k.mDesc << std::endl;
    std::cout << "b_k_n: " << b_k_n.mDesc << std::endl;
    std::cout << "c_m_n: " << c_m_n_host_result.mDesc << std::endl;

    switch(init_method)
    {
    case 0: break;
    case 1:
178
179
        a_m_k.GenerateTensorValue(GeneratorTensor_2<ADataType>{-5, 5});
        b_k_n.GenerateTensorValue(GeneratorTensor_2<BDataType>{-5, 5});
180
181
        break;
    default:
182
183
        a_m_k.GenerateTensorValue(GeneratorTensor_3<ADataType>{0.0, 1.0});
        b_k_n.GenerateTensorValue(GeneratorTensor_3<BDataType>{-0.5, 0.5});
184
185
186
187
188
189
190
191
192
193
194
    }

    DeviceMem a_m_k_device_buf(sizeof(ADataType) * a_m_k.mDesc.GetElementSpace());
    DeviceMem b_k_n_device_buf(sizeof(BDataType) * b_k_n.mDesc.GetElementSpace());
    DeviceMem c_m_n_device_buf(sizeof(CDataType) * c_m_n_device_result.mDesc.GetElementSpace());

    a_m_k_device_buf.ToDevice(a_m_k.mData.data());
    b_k_n_device_buf.ToDevice(b_k_n.mData.data());
    c_m_n_device_buf.ToDevice(c_m_n_device_result.mData.data());

    // do GEMM
Chao Liu's avatar
Chao Liu committed
195
    auto gemm     = DeviceGemmInstance{};
196
197
198
199
200
201
202
203
204
    auto invoker  = gemm.MakeInvoker();
    auto argument = gemm.MakeArgument(static_cast<ADataType*>(a_m_k_device_buf.GetDeviceBuffer()),
                                      static_cast<BDataType*>(b_k_n_device_buf.GetDeviceBuffer()),
                                      static_cast<CDataType*>(c_m_n_device_buf.GetDeviceBuffer()),
                                      M,
                                      N,
                                      K,
                                      StrideA,
                                      StrideB,
Chao Liu's avatar
Chao Liu committed
205
                                      StrideC,
Chao Liu's avatar
Chao Liu committed
206
207
208
                                      AElementOp{},
                                      BElementOp{},
                                      CElementOp{});
209
210
211
212
213
214
215
216
217
218
219
220

    if(!gemm.IsSupportedArgument(argument))
    {
        throw std::runtime_error(
            "wrong! device_gemm with the specified compilation parameters does "
            "not support this GEMM problem");
    }

    float ave_time = invoker.Run(argument, nrepeat);

    std::size_t flop = std::size_t(2) * M * N * K;
    std::size_t num_btype =
Chao Liu's avatar
Chao Liu committed
221
        sizeof(ADataType) * M * K + sizeof(BDataType) * K * N + sizeof(CDataType) * M * N;
222
223
224
225
226
227
228
229
230
231
232
233

    float tflops = static_cast<float>(flop) / 1.E9 / ave_time;

    float gb_per_sec = num_btype / 1.E6 / ave_time;

    std::cout << "Perf: " << ave_time << " ms, " << tflops << " TFlops, " << gb_per_sec << " GB/s"
              << std::endl;

    c_m_n_device_buf.FromDevice(c_m_n_device_result.mData.data());

    if(do_verification)
    {
Chao Liu's avatar
Chao Liu committed
234
        host_verify(a_m_k, b_k_n, c_m_n_host_result, AElementOp{}, BElementOp{}, CElementOp{});
235
236
237
238

        check_error(c_m_n_host_result, c_m_n_device_result);
    }
}