utility.py 15.9 KB
Newer Older
LDOUBLEV's avatar
LDOUBLEV committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import argparse
WenmuZhou's avatar
WenmuZhou committed
16
import os
WenmuZhou's avatar
WenmuZhou committed
17
import sys
LDOUBLEV's avatar
LDOUBLEV committed
18
19
import cv2
import numpy as np
LDOUBLEV's avatar
LDOUBLEV committed
20
21
import json
from PIL import Image, ImageDraw, ImageFont
22
import math
WenmuZhou's avatar
WenmuZhou committed
23
from paddle import inference
LDOUBLEV's avatar
LDOUBLEV committed
24
25
26
27
28
29
30


def parse_args():
    def str2bool(v):
        return v.lower() in ("true", "t", "1")

    parser = argparse.ArgumentParser()
WenmuZhou's avatar
WenmuZhou committed
31
    # params for prediction engine
LDOUBLEV's avatar
LDOUBLEV committed
32
33
34
    parser.add_argument("--use_gpu", type=str2bool, default=True)
    parser.add_argument("--ir_optim", type=str2bool, default=True)
    parser.add_argument("--use_tensorrt", type=str2bool, default=False)
LDOUBLEV's avatar
LDOUBLEV committed
35
    parser.add_argument("--use_fp16", type=str2bool, default=False)
36
    parser.add_argument("--gpu_mem", type=int, default=500)
LDOUBLEV's avatar
LDOUBLEV committed
37

WenmuZhou's avatar
WenmuZhou committed
38
    # params for text detector
LDOUBLEV's avatar
LDOUBLEV committed
39
40
41
    parser.add_argument("--image_dir", type=str)
    parser.add_argument("--det_algorithm", type=str, default='DB')
    parser.add_argument("--det_model_dir", type=str)
WenmuZhou's avatar
WenmuZhou committed
42
43
    parser.add_argument("--det_limit_side_len", type=float, default=960)
    parser.add_argument("--det_limit_type", type=str, default='max')
LDOUBLEV's avatar
LDOUBLEV committed
44

WenmuZhou's avatar
WenmuZhou committed
45
    # DB parmas
LDOUBLEV's avatar
LDOUBLEV committed
46
47
    parser.add_argument("--det_db_thresh", type=float, default=0.3)
    parser.add_argument("--det_db_box_thresh", type=float, default=0.5)
WenmuZhou's avatar
WenmuZhou committed
48
    parser.add_argument("--det_db_unclip_ratio", type=float, default=1.6)
LDOUBLEV's avatar
LDOUBLEV committed
49
    parser.add_argument("--max_batch_size", type=int, default=10)
LDOUBLEV's avatar
LDOUBLEV committed
50
    parser.add_argument("--use_dilation", type=bool, default=False)
littletomatodonkey's avatar
littletomatodonkey committed
51
    parser.add_argument("--det_db_score_mode", type=str, default="fast")
WenmuZhou's avatar
WenmuZhou committed
52
    # EAST parmas
LDOUBLEV's avatar
LDOUBLEV committed
53
54
55
56
    parser.add_argument("--det_east_score_thresh", type=float, default=0.8)
    parser.add_argument("--det_east_cover_thresh", type=float, default=0.1)
    parser.add_argument("--det_east_nms_thresh", type=float, default=0.2)

WenmuZhou's avatar
WenmuZhou committed
57
    # SAST parmas
licx's avatar
licx committed
58
59
    parser.add_argument("--det_sast_score_thresh", type=float, default=0.5)
    parser.add_argument("--det_sast_nms_thresh", type=float, default=0.2)
60
    parser.add_argument("--det_sast_polygon", type=bool, default=False)
licx's avatar
licx committed
61

WenmuZhou's avatar
WenmuZhou committed
62
    # params for text recognizer
LDOUBLEV's avatar
LDOUBLEV committed
63
64
    parser.add_argument("--rec_algorithm", type=str, default='CRNN')
    parser.add_argument("--rec_model_dir", type=str)
tink2123's avatar
fix bug  
tink2123 committed
65
66
    parser.add_argument("--rec_image_shape", type=str, default="3, 32, 320")
    parser.add_argument("--rec_char_type", type=str, default='ch')
67
    parser.add_argument("--rec_batch_num", type=int, default=6)
tink2123's avatar
fix bug  
tink2123 committed
68
    parser.add_argument("--max_text_length", type=int, default=25)
LDOUBLEV's avatar
LDOUBLEV committed
69
70
71
72
    parser.add_argument(
        "--rec_char_dict_path",
        type=str,
        default="./ppocr/utils/ppocr_keys_v1.txt")
WenmuZhou's avatar
WenmuZhou committed
73
74
    parser.add_argument("--use_space_char", type=str2bool, default=True)
    parser.add_argument(
tink2123's avatar
tink2123 committed
75
        "--vis_font_path", type=str, default="./doc/fonts/simfang.ttf")
WenmuZhou's avatar
WenmuZhou committed
76
    parser.add_argument("--drop_score", type=float, default=0.5)
WenmuZhou's avatar
WenmuZhou committed
77

Jethong's avatar
Jethong committed
78
79
80
81
82
83
84
85
86
    # params for e2e
    parser.add_argument("--e2e_algorithm", type=str, default='PGNet')
    parser.add_argument("--e2e_model_dir", type=str)
    parser.add_argument("--e2e_limit_side_len", type=float, default=768)
    parser.add_argument("--e2e_limit_type", type=str, default='max')

    # PGNet parmas
    parser.add_argument("--e2e_pgnet_score_thresh", type=float, default=0.5)
    parser.add_argument(
Jethong's avatar
Jethong committed
87
        "--e2e_char_dict_path", type=str, default="./ppocr/utils/ic15_dict.txt")
Jethong's avatar
Jethong committed
88
    parser.add_argument("--e2e_pgnet_valid_set", type=str, default='totaltext')
Jethong's avatar
Jethong committed
89
    parser.add_argument("--e2e_pgnet_polygon", type=bool, default=True)
Jethong's avatar
Jethong committed
90
    parser.add_argument("--e2e_pgnet_mode", type=str, default='fast')
Jethong's avatar
Jethong committed
91

WenmuZhou's avatar
WenmuZhou committed
92
93
94
95
96
    # params for text classifier
    parser.add_argument("--use_angle_cls", type=str2bool, default=False)
    parser.add_argument("--cls_model_dir", type=str)
    parser.add_argument("--cls_image_shape", type=str, default="3, 48, 192")
    parser.add_argument("--label_list", type=list, default=['0', '180'])
97
    parser.add_argument("--cls_batch_num", type=int, default=6)
WenmuZhou's avatar
WenmuZhou committed
98
99
100
101
102
    parser.add_argument("--cls_thresh", type=float, default=0.9)

    parser.add_argument("--enable_mkldnn", type=str2bool, default=False)
    parser.add_argument("--use_pdserving", type=str2bool, default=False)

littletomatodonkey's avatar
littletomatodonkey committed
103
    parser.add_argument("--use_mp", type=str2bool, default=False)
104
105
106
    parser.add_argument("--total_process_num", type=int, default=1)
    parser.add_argument("--process_id", type=int, default=0)

LDOUBLEV's avatar
LDOUBLEV committed
107
108
109
    return parser.parse_args()


WenmuZhou's avatar
WenmuZhou committed
110
111
112
113
114
def create_predictor(args, mode, logger):
    if mode == "det":
        model_dir = args.det_model_dir
    elif mode == 'cls':
        model_dir = args.cls_model_dir
Jethong's avatar
Jethong committed
115
    elif mode == 'rec':
WenmuZhou's avatar
WenmuZhou committed
116
        model_dir = args.rec_model_dir
Jethong's avatar
Jethong committed
117
118
    else:
        model_dir = args.e2e_model_dir
WenmuZhou's avatar
WenmuZhou committed
119
120
121
122

    if model_dir is None:
        logger.info("not find {} model file path {}".format(mode, model_dir))
        sys.exit(0)
WenmuZhou's avatar
WenmuZhou committed
123
124
    model_file_path = model_dir + "/inference.pdmodel"
    params_file_path = model_dir + "/inference.pdiparams"
WenmuZhou's avatar
WenmuZhou committed
125
126
127
128
129
130
131
    if not os.path.exists(model_file_path):
        logger.info("not find model file path {}".format(model_file_path))
        sys.exit(0)
    if not os.path.exists(params_file_path):
        logger.info("not find params file path {}".format(params_file_path))
        sys.exit(0)

WenmuZhou's avatar
WenmuZhou committed
132
    config = inference.Config(model_file_path, params_file_path)
WenmuZhou's avatar
WenmuZhou committed
133
134
135

    if args.use_gpu:
        config.enable_use_gpu(args.gpu_mem, 0)
LDOUBLEV's avatar
LDOUBLEV committed
136
137
        if args.use_tensorrt:
            config.enable_tensorrt_engine(
WenmuZhou's avatar
WenmuZhou committed
138
139
                precision_mode=inference.PrecisionType.Half
                if args.use_fp16 else inference.PrecisionType.Float32,
LDOUBLEV's avatar
LDOUBLEV committed
140
                max_batch_size=args.max_batch_size)
WenmuZhou's avatar
WenmuZhou committed
141
142
143
144
145
146
147
    else:
        config.disable_gpu()
        config.set_cpu_math_library_num_threads(6)
        if args.enable_mkldnn:
            # cache 10 different shapes for mkldnn to avoid memory leak
            config.set_mkldnn_cache_capacity(10)
            config.enable_mkldnn()
LDOUBLEV's avatar
LDOUBLEV committed
148
            #  TODO LDOUBLEV: fix mkldnn bug when bach_size  > 1
LDOUBLEV's avatar
LDOUBLEV committed
149
            #config.set_mkldnn_op({'conv2d', 'depthwise_conv2d', 'pool2d', 'batch_norm'})
150
            args.rec_batch_num = 1
WenmuZhou's avatar
WenmuZhou committed
151

LDOUBLEV's avatar
LDOUBLEV committed
152
153
    # enable memory optim
    config.enable_memory_optim()
WenmuZhou's avatar
WenmuZhou committed
154
155
    config.disable_glog_info()

WenmuZhou's avatar
WenmuZhou committed
156
157
    config.delete_pass("conv_transpose_eltwiseadd_bn_fuse_pass")
    config.switch_use_feed_fetch_ops(False)
WenmuZhou's avatar
WenmuZhou committed
158

WenmuZhou's avatar
WenmuZhou committed
159
160
    # create predictor
    predictor = inference.create_predictor(config)
WenmuZhou's avatar
WenmuZhou committed
161
162
    input_names = predictor.get_input_names()
    for name in input_names:
WenmuZhou's avatar
WenmuZhou committed
163
        input_tensor = predictor.get_input_handle(name)
WenmuZhou's avatar
WenmuZhou committed
164
165
166
    output_names = predictor.get_output_names()
    output_tensors = []
    for output_name in output_names:
WenmuZhou's avatar
WenmuZhou committed
167
        output_tensor = predictor.get_output_handle(output_name)
WenmuZhou's avatar
WenmuZhou committed
168
169
170
171
        output_tensors.append(output_tensor)
    return predictor, input_tensor, output_tensors


Jethong's avatar
Jethong committed
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
def draw_e2e_res(dt_boxes, strs, img_path):
    src_im = cv2.imread(img_path)
    for box, str in zip(dt_boxes, strs):
        box = box.astype(np.int32).reshape((-1, 1, 2))
        cv2.polylines(src_im, [box], True, color=(255, 255, 0), thickness=2)
        cv2.putText(
            src_im,
            str,
            org=(int(box[0, 0, 0]), int(box[0, 0, 1])),
            fontFace=cv2.FONT_HERSHEY_COMPLEX,
            fontScale=0.7,
            color=(0, 255, 0),
            thickness=1)
    return src_im


LDOUBLEV's avatar
LDOUBLEV committed
188
def draw_text_det_res(dt_boxes, img_path):
LDOUBLEV's avatar
LDOUBLEV committed
189
190
191
192
    src_im = cv2.imread(img_path)
    for box in dt_boxes:
        box = np.array(box).astype(np.int32).reshape(-1, 2)
        cv2.polylines(src_im, [box], True, color=(255, 255, 0), thickness=2)
LDOUBLEV's avatar
LDOUBLEV committed
193
    return src_im
LDOUBLEV's avatar
LDOUBLEV committed
194
195


LDOUBLEV's avatar
LDOUBLEV committed
196
197
def resize_img(img, input_size=600):
    """
LDOUBLEV's avatar
LDOUBLEV committed
198
    resize img and limit the longest side of the image to input_size
LDOUBLEV's avatar
LDOUBLEV committed
199
200
201
202
203
    """
    img = np.array(img)
    im_shape = img.shape
    im_size_max = np.max(im_shape[0:2])
    im_scale = float(input_size) / float(im_size_max)
WenmuZhou's avatar
WenmuZhou committed
204
205
    img = cv2.resize(img, None, None, fx=im_scale, fy=im_scale)
    return img
LDOUBLEV's avatar
LDOUBLEV committed
206
207


WenmuZhou's avatar
WenmuZhou committed
208
209
210
211
212
213
def draw_ocr(image,
             boxes,
             txts=None,
             scores=None,
             drop_score=0.5,
             font_path="./doc/simfang.ttf"):
214
215
216
    """
    Visualize the results of OCR detection and recognition
    args:
LDOUBLEV's avatar
LDOUBLEV committed
217
        image(Image|array): RGB image
218
219
220
221
        boxes(list): boxes with shape(N, 4, 2)
        txts(list): the texts
        scores(list): txxs corresponding scores
        drop_score(float): only scores greater than drop_threshold will be visualized
WenmuZhou's avatar
WenmuZhou committed
222
        font_path: the path of font which is used to draw text
223
224
225
    return(array):
        the visualized img
    """
LDOUBLEV's avatar
LDOUBLEV committed
226
227
    if scores is None:
        scores = [1] * len(boxes)
WenmuZhou's avatar
WenmuZhou committed
228
229
230
231
    box_num = len(boxes)
    for i in range(box_num):
        if scores is not None and (scores[i] < drop_score or
                                   math.isnan(scores[i])):
LDOUBLEV's avatar
LDOUBLEV committed
232
            continue
WenmuZhou's avatar
WenmuZhou committed
233
        box = np.reshape(np.array(boxes[i]), [-1, 1, 2]).astype(np.int64)
LDOUBLEV's avatar
LDOUBLEV committed
234
        image = cv2.polylines(np.array(image), [box], True, (255, 0, 0), 2)
WenmuZhou's avatar
WenmuZhou committed
235
    if txts is not None:
LDOUBLEV's avatar
LDOUBLEV committed
236
        img = np.array(resize_img(image, input_size=600))
237
        txt_img = text_visual(
WenmuZhou's avatar
WenmuZhou committed
238
239
240
241
242
243
            txts,
            scores,
            img_h=img.shape[0],
            img_w=600,
            threshold=drop_score,
            font_path=font_path)
244
        img = np.concatenate([np.array(img), np.array(txt_img)], axis=1)
LDOUBLEV's avatar
LDOUBLEV committed
245
246
        return img
    return image
247
248


WenmuZhou's avatar
WenmuZhou committed
249
250
251
252
253
254
def draw_ocr_box_txt(image,
                     boxes,
                     txts,
                     scores=None,
                     drop_score=0.5,
                     font_path="./doc/simfang.ttf"):
255
256
257
    h, w = image.height, image.width
    img_left = image.copy()
    img_right = Image.new('RGB', (w, h), (255, 255, 255))
258
259

    import random
LDOUBLEV's avatar
LDOUBLEV committed
260

261
262
263
    random.seed(0)
    draw_left = ImageDraw.Draw(img_left)
    draw_right = ImageDraw.Draw(img_right)
WenmuZhou's avatar
WenmuZhou committed
264
265
266
    for idx, (box, txt) in enumerate(zip(boxes, txts)):
        if scores is not None and scores[idx] < drop_score:
            continue
tink2123's avatar
tink2123 committed
267
268
        color = (random.randint(0, 255), random.randint(0, 255),
                 random.randint(0, 255))
269
        draw_left.polygon(box, fill=color)
tink2123's avatar
tink2123 committed
270
271
272
273
274
275
276
277
278
279
        draw_right.polygon(
            [
                box[0][0], box[0][1], box[1][0], box[1][1], box[2][0],
                box[2][1], box[3][0], box[3][1]
            ],
            outline=color)
        box_height = math.sqrt((box[0][0] - box[3][0])**2 + (box[0][1] - box[3][
            1])**2)
        box_width = math.sqrt((box[0][0] - box[1][0])**2 + (box[0][1] - box[1][
            1])**2)
280
281
        if box_height > 2 * box_width:
            font_size = max(int(box_width * 0.9), 10)
WenmuZhou's avatar
WenmuZhou committed
282
            font = ImageFont.truetype(font_path, font_size, encoding="utf-8")
283
284
285
            cur_y = box[0][1]
            for c in txt:
                char_size = font.getsize(c)
tink2123's avatar
tink2123 committed
286
287
                draw_right.text(
                    (box[0][0] + 3, cur_y), c, fill=(0, 0, 0), font=font)
288
289
290
                cur_y += char_size[1]
        else:
            font_size = max(int(box_height * 0.8), 10)
WenmuZhou's avatar
WenmuZhou committed
291
            font = ImageFont.truetype(font_path, font_size, encoding="utf-8")
tink2123's avatar
tink2123 committed
292
293
            draw_right.text(
                [box[0][0], box[0][1]], txt, fill=(0, 0, 0), font=font)
294
295
296
297
    img_left = Image.blend(image, img_left, 0.5)
    img_show = Image.new('RGB', (w * 2, h), (255, 255, 255))
    img_show.paste(img_left, (0, 0, w, h))
    img_show.paste(img_right, (w, 0, w * 2, h))
298
299
300
    return np.array(img_show)


301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
def str_count(s):
    """
    Count the number of Chinese characters,
    a single English character and a single number
    equal to half the length of Chinese characters.
    args:
        s(string): the input of string
    return(int):
        the number of Chinese characters
    """
    import string
    count_zh = count_pu = 0
    s_len = len(s)
    en_dg_count = 0
    for c in s:
        if c in string.ascii_letters or c.isdigit() or c.isspace():
            en_dg_count += 1
        elif c.isalpha():
            count_zh += 1
        else:
            count_pu += 1
    return s_len - math.ceil(en_dg_count / 2)


WenmuZhou's avatar
WenmuZhou committed
325
326
327
328
329
330
def text_visual(texts,
                scores,
                img_h=400,
                img_w=600,
                threshold=0.,
                font_path="./doc/simfang.ttf"):
331
332
333
334
335
336
337
    """
    create new blank img and draw txt on it
    args:
        texts(list): the text will be draw
        scores(list|None): corresponding score of each txt
        img_h(int): the height of blank img
        img_w(int): the width of blank img
WenmuZhou's avatar
WenmuZhou committed
338
        font_path: the path of font which is used to draw text
339
340
341
342
343
344
345
346
347
    return(array):
    """
    if scores is not None:
        assert len(texts) == len(
            scores), "The number of txts and corresponding scores must match"

    def create_blank_img():
        blank_img = np.ones(shape=[img_h, img_w], dtype=np.int8) * 255
        blank_img[:, img_w - 1:] = 0
LDOUBLEV's avatar
LDOUBLEV committed
348
349
        blank_img = Image.fromarray(blank_img).convert("RGB")
        draw_txt = ImageDraw.Draw(blank_img)
350
        return blank_img, draw_txt
LDOUBLEV's avatar
LDOUBLEV committed
351

352
353
354
355
    blank_img, draw_txt = create_blank_img()

    font_size = 20
    txt_color = (0, 0, 0)
WenmuZhou's avatar
WenmuZhou committed
356
    font = ImageFont.truetype(font_path, font_size, encoding="utf-8")
357
358
359

    gap = font_size + 5
    txt_img_list = []
LDOUBLEV's avatar
LDOUBLEV committed
360
    count, index = 1, 0
361
362
    for idx, txt in enumerate(texts):
        index += 1
LDOUBLEV's avatar
LDOUBLEV committed
363
        if scores[idx] < threshold or math.isnan(scores[idx]):
364
365
366
367
368
369
370
371
372
373
374
            index -= 1
            continue
        first_line = True
        while str_count(txt) >= img_w // font_size - 4:
            tmp = txt
            txt = tmp[:img_w // font_size - 4]
            if first_line:
                new_txt = str(index) + ': ' + txt
                first_line = False
            else:
                new_txt = '    ' + txt
LDOUBLEV's avatar
LDOUBLEV committed
375
            draw_txt.text((0, gap * count), new_txt, txt_color, font=font)
376
377
378
379
380
            txt = tmp[img_w // font_size - 4:]
            if count >= img_h // gap - 1:
                txt_img_list.append(np.array(blank_img))
                blank_img, draw_txt = create_blank_img()
                count = 0
LDOUBLEV's avatar
LDOUBLEV committed
381
            count += 1
382
383
384
        if first_line:
            new_txt = str(index) + ': ' + txt + '   ' + '%.3f' % (scores[idx])
        else:
LDOUBLEV's avatar
LDOUBLEV committed
385
            new_txt = "  " + txt + "  " + '%.3f' % (scores[idx])
LDOUBLEV's avatar
LDOUBLEV committed
386
        draw_txt.text((0, gap * count), new_txt, txt_color, font=font)
387
        # whether add new blank img or not
LDOUBLEV's avatar
LDOUBLEV committed
388
        if count >= img_h // gap - 1 and idx + 1 < len(texts):
389
390
391
            txt_img_list.append(np.array(blank_img))
            blank_img, draw_txt = create_blank_img()
            count = 0
LDOUBLEV's avatar
LDOUBLEV committed
392
        count += 1
393
394
395
396
397
398
    txt_img_list.append(np.array(blank_img))
    if len(txt_img_list) == 1:
        blank_img = np.array(txt_img_list[0])
    else:
        blank_img = np.concatenate(txt_img_list, axis=1)
    return np.array(blank_img)
LDOUBLEV's avatar
LDOUBLEV committed
399
400


dyning's avatar
dyning committed
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
def base64_to_cv2(b64str):
    import base64
    data = base64.b64decode(b64str.encode('utf8'))
    data = np.fromstring(data, np.uint8)
    data = cv2.imdecode(data, cv2.IMREAD_COLOR)
    return data


def draw_boxes(image, boxes, scores=None, drop_score=0.5):
    if scores is None:
        scores = [1] * len(boxes)
    for (box, score) in zip(boxes, scores):
        if score < drop_score:
            continue
        box = np.reshape(np.array(box), [-1, 1, 2]).astype(np.int64)
        image = cv2.polylines(np.array(image), [box], True, (255, 0, 0), 2)
    return image


LDOUBLEV's avatar
LDOUBLEV committed
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
if __name__ == '__main__':
    test_img = "./doc/test_v2"
    predict_txt = "./doc/predict.txt"
    f = open(predict_txt, 'r')
    data = f.readlines()
    img_path, anno = data[0].strip().split('\t')
    img_name = os.path.basename(img_path)
    img_path = os.path.join(test_img, img_name)
    image = Image.open(img_path)

    data = json.loads(anno)
    boxes, txts, scores = [], [], []
    for dic in data:
        boxes.append(dic['points'])
        txts.append(dic['transcription'])
        scores.append(round(dic['scores'], 3))

WenmuZhou's avatar
WenmuZhou committed
437
    new_img = draw_ocr(image, boxes, txts, scores)
LDOUBLEV's avatar
LDOUBLEV committed
438

MissPenguin's avatar
MissPenguin committed
439
    cv2.imwrite(img_name, new_img)