rec_model.py 9.16 KB
Newer Older
LDOUBLEV's avatar
LDOUBLEV committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

from paddle import fluid

from ppocr.utils.utility import create_module
from ppocr.utils.utility import initial_logger
logger = initial_logger()
from copy import deepcopy


class RecModel(object):
    def __init__(self, params):
        super(RecModel, self).__init__()
        global_params = params['Global']
        char_num = global_params['char_ops'].get_char_num()
        global_params['char_num'] = char_num
tink2123's avatar
tink2123 committed
33
        self.char_type = global_params['character_type']
tink2123's avatar
tink2123 committed
34
        self.infer_img = global_params['infer_img']
LDOUBLEV's avatar
LDOUBLEV committed
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
        if "TPS" in params:
            tps_params = deepcopy(params["TPS"])
            tps_params.update(global_params)
            self.tps = create_module(tps_params['function'])\
                (params=tps_params)
        else:
            self.tps = None

        backbone_params = deepcopy(params["Backbone"])
        backbone_params.update(global_params)
        self.backbone = create_module(backbone_params['function'])\
                (params=backbone_params)

        head_params = deepcopy(params["Head"])
        head_params.update(global_params)
        self.head = create_module(head_params['function'])\
                (params=head_params)

        loss_params = deepcopy(params["Loss"])
        loss_params.update(global_params)
        self.loss = create_module(loss_params['function'])\
                (params=loss_params)

        self.loss_type = global_params['loss_type']
        self.image_shape = global_params['image_shape']
        self.max_text_length = global_params['max_text_length']
tink2123's avatar
fix bug  
tink2123 committed
61
        if "num_heads" in global_params:
tink2123's avatar
tink2123 committed
62
63
64
            self.num_heads = global_params["num_heads"]
        else:
            self.num_heads = None
LDOUBLEV's avatar
LDOUBLEV committed
65
66
67
68
69

    def create_feed(self, mode):
        image_shape = deepcopy(self.image_shape)
        image_shape.insert(0, -1)
        if mode == "train":
tink2123's avatar
tink2123 committed
70
            image = fluid.data(name='image', shape=image_shape, dtype='float32')
LDOUBLEV's avatar
LDOUBLEV committed
71
72
73
74
75
76
77
78
79
80
81
82
83
            if self.loss_type == "attention":
                label_in = fluid.data(
                    name='label_in',
                    shape=[None, 1],
                    dtype='int32',
                    lod_level=1)
                label_out = fluid.data(
                    name='label_out',
                    shape=[None, 1],
                    dtype='int32',
                    lod_level=1)
                feed_list = [image, label_in, label_out]
                labels = {'label_in': label_in, 'label_out': label_out}
tink2123's avatar
tink2123 committed
84
            elif self.loss_type == "srn":
tink2123's avatar
tink2123 committed
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
                encoder_word_pos = fluid.data(
                    name="encoder_word_pos",
                    shape=[
                        -1, int((image_shape[-2] / 8) * (image_shape[-1] / 8)),
                        1
                    ],
                    dtype="int64")
                gsrm_word_pos = fluid.data(
                    name="gsrm_word_pos",
                    shape=[-1, self.max_text_length, 1],
                    dtype="int64")
                gsrm_slf_attn_bias1 = fluid.data(
                    name="gsrm_slf_attn_bias1",
                    shape=[
                        -1, self.num_heads, self.max_text_length,
                        self.max_text_length
tink2123's avatar
tink2123 committed
101
102
                    ],
                    dtype="float32")
tink2123's avatar
tink2123 committed
103
104
105
106
107
                gsrm_slf_attn_bias2 = fluid.data(
                    name="gsrm_slf_attn_bias2",
                    shape=[
                        -1, self.num_heads, self.max_text_length,
                        self.max_text_length
tink2123's avatar
tink2123 committed
108
109
                    ],
                    dtype="float32")
tink2123's avatar
tink2123 committed
110
111
                lbl_weight = fluid.layers.data(
                    name="lbl_weight", shape=[-1, 1], dtype='int64')
tink2123's avatar
tink2123 committed
112
113
                label = fluid.data(
                    name='label', shape=[-1, 1], dtype='int32', lod_level=1)
tink2123's avatar
tink2123 committed
114
115
116
117
118
119
120
121
122
123
124
125
                feed_list = [
                    image, label, encoder_word_pos, gsrm_word_pos,
                    gsrm_slf_attn_bias1, gsrm_slf_attn_bias2, lbl_weight
                ]
                labels = {
                    'label': label,
                    'encoder_word_pos': encoder_word_pos,
                    'gsrm_word_pos': gsrm_word_pos,
                    'gsrm_slf_attn_bias1': gsrm_slf_attn_bias1,
                    'gsrm_slf_attn_bias2': gsrm_slf_attn_bias2,
                    'lbl_weight': lbl_weight
                }
LDOUBLEV's avatar
LDOUBLEV committed
126
127
128
129
130
131
132
133
134
135
136
            else:
                label = fluid.data(
                    name='label', shape=[None, 1], dtype='int32', lod_level=1)
                feed_list = [image, label]
                labels = {'label': label}
            loader = fluid.io.DataLoader.from_generator(
                feed_list=feed_list,
                capacity=64,
                use_double_buffer=True,
                iterable=False)
        else:
tink2123's avatar
tink2123 committed
137
138
            labels = None
            loader = None
tink2123's avatar
tink2123 committed
139
            if self.char_type == "ch" and self.infer_img:
tink2123's avatar
tink2123 committed
140
141
142
143
144
                image_shape[-1] = -1
                if self.tps != None:
                    logger.info(
                        "WARNRNG!!!\n"
                        "TPS does not support variable shape in chinese!"
tink2123's avatar
tink2123 committed
145
                        "We set img_shape to be the same , it may affect the inference effect"
tink2123's avatar
tink2123 committed
146
                    )
tink2123's avatar
tink2123 committed
147
                    image_shape = deepcopy(self.image_shape)
tink2123's avatar
tink2123 committed
148
            image = fluid.data(name='image', shape=image_shape, dtype='float32')
tink2123's avatar
tink2123 committed
149
            if self.loss_type == "srn":
tink2123's avatar
tink2123 committed
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
                encoder_word_pos = fluid.data(
                    name="encoder_word_pos",
                    shape=[
                        -1, int((image_shape[-2] / 8) * (image_shape[-1] / 8)),
                        1
                    ],
                    dtype="int64")
                gsrm_word_pos = fluid.data(
                    name="gsrm_word_pos",
                    shape=[-1, self.max_text_length, 1],
                    dtype="int64")
                gsrm_slf_attn_bias1 = fluid.data(
                    name="gsrm_slf_attn_bias1",
                    shape=[
                        -1, self.num_heads, self.max_text_length,
                        self.max_text_length
tink2123's avatar
tink2123 committed
166
167
                    ],
                    dtype="float32")
tink2123's avatar
tink2123 committed
168
169
170
171
172
                gsrm_slf_attn_bias2 = fluid.data(
                    name="gsrm_slf_attn_bias2",
                    shape=[
                        -1, self.num_heads, self.max_text_length,
                        self.max_text_length
tink2123's avatar
tink2123 committed
173
174
                    ],
                    dtype="float32")
tink2123's avatar
tink2123 committed
175
176
177
178
179
180
181
182
183
184
                feed_list = [
                    image, encoder_word_pos, gsrm_word_pos, gsrm_slf_attn_bias1,
                    gsrm_slf_attn_bias2
                ]
                labels = {
                    'encoder_word_pos': encoder_word_pos,
                    'gsrm_word_pos': gsrm_word_pos,
                    'gsrm_slf_attn_bias1': gsrm_slf_attn_bias1,
                    'gsrm_slf_attn_bias2': gsrm_slf_attn_bias2
                }
LDOUBLEV's avatar
LDOUBLEV committed
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
        return image, labels, loader

    def __call__(self, mode):
        image, labels, loader = self.create_feed(mode)
        if self.tps is None:
            inputs = image
        else:
            inputs = self.tps(image)
        conv_feas = self.backbone(inputs)
        predicts = self.head(conv_feas, labels, mode)
        decoded_out = predicts['decoded_out']
        if mode == "train":
            loss = self.loss(predicts, labels)
            if self.loss_type == "attention":
                label = labels['label_out']
            else:
                label = labels['label']
tink2123's avatar
tink2123 committed
202
203
            if self.loss_type == 'srn':
                total_loss, img_loss, word_loss = self.loss(predicts, labels)
tink2123's avatar
tink2123 committed
204
205
206
207
208
209
210
                outputs = {
                    'total_loss': total_loss,
                    'img_loss': img_loss,
                    'word_loss': word_loss,
                    'decoded_out': decoded_out,
                    'label': label
                }
tink2123's avatar
tink2123 committed
211
212
213
            else:
                outputs = {'total_loss':loss, 'decoded_out':\
                    decoded_out, 'label':label}
LDOUBLEV's avatar
LDOUBLEV committed
214
            return loader, outputs
tink2123's avatar
tink2123 committed
215

LDOUBLEV's avatar
LDOUBLEV committed
216
        elif mode == "export":
LDOUBLEV's avatar
LDOUBLEV committed
217
            predict = predicts['predict']
dyning's avatar
dyning committed
218
219
            if self.loss_type == "ctc":
                predict = fluid.layers.softmax(predict)
tink2123's avatar
tink2123 committed
220
            if self.loss_type == "srn":
tink2123's avatar
tink2123 committed
221
                raise Exception(
tink2123's avatar
tink2123 committed
222
                    "Warning! SRN does not support export model currently")
LDOUBLEV's avatar
LDOUBLEV committed
223
            return [image, {'decoded_out': decoded_out, 'predicts': predict}]
LDOUBLEV's avatar
LDOUBLEV committed
224
        else:
dyning's avatar
dyning committed
225
226
227
            predict = predicts['predict']
            if self.loss_type == "ctc":
                predict = fluid.layers.softmax(predict)
tink2123's avatar
tink2123 committed
228
            return loader, {'decoded_out': decoded_out, 'predicts': predict}