rec_model.py 8.87 KB
Newer Older
LDOUBLEV's avatar
LDOUBLEV committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

from paddle import fluid

from ppocr.utils.utility import create_module
from ppocr.utils.utility import initial_logger
logger = initial_logger()
from copy import deepcopy


class RecModel(object):
    def __init__(self, params):
        super(RecModel, self).__init__()
        global_params = params['Global']
        char_num = global_params['char_ops'].get_char_num()
        global_params['char_num'] = char_num
tink2123's avatar
tink2123 committed
33
        self.char_type = global_params['character_type']
tink2123's avatar
tink2123 committed
34
        self.infer_img = global_params['infer_img']
LDOUBLEV's avatar
LDOUBLEV committed
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
        if "TPS" in params:
            tps_params = deepcopy(params["TPS"])
            tps_params.update(global_params)
            self.tps = create_module(tps_params['function'])\
                (params=tps_params)
        else:
            self.tps = None

        backbone_params = deepcopy(params["Backbone"])
        backbone_params.update(global_params)
        self.backbone = create_module(backbone_params['function'])\
                (params=backbone_params)

        head_params = deepcopy(params["Head"])
        head_params.update(global_params)
        self.head = create_module(head_params['function'])\
                (params=head_params)

        loss_params = deepcopy(params["Loss"])
        loss_params.update(global_params)
        self.loss = create_module(loss_params['function'])\
                (params=loss_params)

        self.loss_type = global_params['loss_type']
        self.image_shape = global_params['image_shape']
        self.max_text_length = global_params['max_text_length']
tink2123's avatar
tink2123 committed
61
62
63
64
        if "num_heads" in params:
            self.num_heads = global_params["num_heads"]
        else:
            self.num_heads = None
LDOUBLEV's avatar
LDOUBLEV committed
65
66
67
68
69

    def create_feed(self, mode):
        image_shape = deepcopy(self.image_shape)
        image_shape.insert(0, -1)
        if mode == "train":
tink2123's avatar
tink2123 committed
70
            image = fluid.data(name='image', shape=image_shape, dtype='float32')
LDOUBLEV's avatar
LDOUBLEV committed
71
72
73
74
75
76
77
78
79
80
81
82
83
            if self.loss_type == "attention":
                label_in = fluid.data(
                    name='label_in',
                    shape=[None, 1],
                    dtype='int32',
                    lod_level=1)
                label_out = fluid.data(
                    name='label_out',
                    shape=[None, 1],
                    dtype='int32',
                    lod_level=1)
                feed_list = [image, label_in, label_out]
                labels = {'label_in': label_in, 'label_out': label_out}
tink2123's avatar
tink2123 committed
84
            elif self.loss_type == "srn":
tink2123's avatar
tink2123 committed
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
                encoder_word_pos = fluid.data(
                    name="encoder_word_pos",
                    shape=[
                        -1, int((image_shape[-2] / 8) * (image_shape[-1] / 8)),
                        1
                    ],
                    dtype="int64")
                gsrm_word_pos = fluid.data(
                    name="gsrm_word_pos",
                    shape=[-1, self.max_text_length, 1],
                    dtype="int64")
                gsrm_slf_attn_bias1 = fluid.data(
                    name="gsrm_slf_attn_bias1",
                    shape=[
                        -1, self.num_heads, self.max_text_length,
                        self.max_text_length
                    ])
                gsrm_slf_attn_bias2 = fluid.data(
                    name="gsrm_slf_attn_bias2",
                    shape=[
                        -1, self.num_heads, self.max_text_length,
                        self.max_text_length
                    ])
                lbl_weight = fluid.layers.data(
                    name="lbl_weight", shape=[-1, 1], dtype='int64')
tink2123's avatar
tink2123 committed
110
111
                label = fluid.data(
                    name='label', shape=[-1, 1], dtype='int32', lod_level=1)
tink2123's avatar
tink2123 committed
112
113
114
115
116
117
118
119
120
121
122
123
                feed_list = [
                    image, label, encoder_word_pos, gsrm_word_pos,
                    gsrm_slf_attn_bias1, gsrm_slf_attn_bias2, lbl_weight
                ]
                labels = {
                    'label': label,
                    'encoder_word_pos': encoder_word_pos,
                    'gsrm_word_pos': gsrm_word_pos,
                    'gsrm_slf_attn_bias1': gsrm_slf_attn_bias1,
                    'gsrm_slf_attn_bias2': gsrm_slf_attn_bias2,
                    'lbl_weight': lbl_weight
                }
LDOUBLEV's avatar
LDOUBLEV committed
124
125
126
127
128
129
130
131
132
133
134
            else:
                label = fluid.data(
                    name='label', shape=[None, 1], dtype='int32', lod_level=1)
                feed_list = [image, label]
                labels = {'label': label}
            loader = fluid.io.DataLoader.from_generator(
                feed_list=feed_list,
                capacity=64,
                use_double_buffer=True,
                iterable=False)
        else:
tink2123's avatar
tink2123 committed
135
136
            labels = None
            loader = None
tink2123's avatar
tink2123 committed
137
            if self.char_type == "ch" and self.infer_img:
tink2123's avatar
tink2123 committed
138
139
140
141
142
                image_shape[-1] = -1
                if self.tps != None:
                    logger.info(
                        "WARNRNG!!!\n"
                        "TPS does not support variable shape in chinese!"
tink2123's avatar
tink2123 committed
143
                        "We set img_shape to be the same , it may affect the inference effect"
tink2123's avatar
tink2123 committed
144
                    )
tink2123's avatar
tink2123 committed
145
                    image_shape = deepcopy(self.image_shape)
tink2123's avatar
tink2123 committed
146
            image = fluid.data(name='image', shape=image_shape, dtype='float32')
tink2123's avatar
tink2123 committed
147
            if self.loss_type == "srn":
tink2123's avatar
tink2123 committed
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
                encoder_word_pos = fluid.data(
                    name="encoder_word_pos",
                    shape=[
                        -1, int((image_shape[-2] / 8) * (image_shape[-1] / 8)),
                        1
                    ],
                    dtype="int64")
                gsrm_word_pos = fluid.data(
                    name="gsrm_word_pos",
                    shape=[-1, self.max_text_length, 1],
                    dtype="int64")
                gsrm_slf_attn_bias1 = fluid.data(
                    name="gsrm_slf_attn_bias1",
                    shape=[
                        -1, self.num_heads, self.max_text_length,
                        self.max_text_length
                    ])
                gsrm_slf_attn_bias2 = fluid.data(
                    name="gsrm_slf_attn_bias2",
                    shape=[
                        -1, self.num_heads, self.max_text_length,
                        self.max_text_length
                    ])
                feed_list = [
                    image, encoder_word_pos, gsrm_word_pos, gsrm_slf_attn_bias1,
                    gsrm_slf_attn_bias2
                ]
                labels = {
                    'encoder_word_pos': encoder_word_pos,
                    'gsrm_word_pos': gsrm_word_pos,
                    'gsrm_slf_attn_bias1': gsrm_slf_attn_bias1,
                    'gsrm_slf_attn_bias2': gsrm_slf_attn_bias2
                }
LDOUBLEV's avatar
LDOUBLEV committed
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
        return image, labels, loader

    def __call__(self, mode):
        image, labels, loader = self.create_feed(mode)
        if self.tps is None:
            inputs = image
        else:
            inputs = self.tps(image)
        conv_feas = self.backbone(inputs)
        predicts = self.head(conv_feas, labels, mode)
        decoded_out = predicts['decoded_out']
        if mode == "train":
            loss = self.loss(predicts, labels)
            if self.loss_type == "attention":
                label = labels['label_out']
            else:
                label = labels['label']
tink2123's avatar
tink2123 committed
198
199
            if self.loss_type == 'srn':
                total_loss, img_loss, word_loss = self.loss(predicts, labels)
tink2123's avatar
tink2123 committed
200
201
202
203
204
205
206
                outputs = {
                    'total_loss': total_loss,
                    'img_loss': img_loss,
                    'word_loss': word_loss,
                    'decoded_out': decoded_out,
                    'label': label
                }
tink2123's avatar
tink2123 committed
207
208
209
            else:
                outputs = {'total_loss':loss, 'decoded_out':\
                    decoded_out, 'label':label}
LDOUBLEV's avatar
LDOUBLEV committed
210
            return loader, outputs
tink2123's avatar
tink2123 committed
211

LDOUBLEV's avatar
LDOUBLEV committed
212
        elif mode == "export":
LDOUBLEV's avatar
LDOUBLEV committed
213
            predict = predicts['predict']
dyning's avatar
dyning committed
214
215
            if self.loss_type == "ctc":
                predict = fluid.layers.softmax(predict)
LDOUBLEV's avatar
LDOUBLEV committed
216
            return [image, {'decoded_out': decoded_out, 'predicts': predict}]
LDOUBLEV's avatar
LDOUBLEV committed
217
        else:
dyning's avatar
dyning committed
218
219
220
            predict = predicts['predict']
            if self.loss_type == "ctc":
                predict = fluid.layers.softmax(predict)
tink2123's avatar
tink2123 committed
221
            return loader, {'decoded_out': decoded_out, 'predicts': predict}