rec_model.py 7.59 KB
Newer Older
LDOUBLEV's avatar
LDOUBLEV committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

from paddle import fluid

from ppocr.utils.utility import create_module
from ppocr.utils.utility import initial_logger
logger = initial_logger()
from copy import deepcopy


class RecModel(object):
    def __init__(self, params):
        super(RecModel, self).__init__()
        global_params = params['Global']
        char_num = global_params['char_ops'].get_char_num()
        global_params['char_num'] = char_num
tink2123's avatar
tink2123 committed
33
        self.char_type = global_params['character_type']
tink2123's avatar
tink2123 committed
34
        self.infer_img = global_params['infer_img']
LDOUBLEV's avatar
LDOUBLEV committed
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
        if "TPS" in params:
            tps_params = deepcopy(params["TPS"])
            tps_params.update(global_params)
            self.tps = create_module(tps_params['function'])\
                (params=tps_params)
        else:
            self.tps = None

        backbone_params = deepcopy(params["Backbone"])
        backbone_params.update(global_params)
        self.backbone = create_module(backbone_params['function'])\
                (params=backbone_params)

        head_params = deepcopy(params["Head"])
        head_params.update(global_params)
        self.head = create_module(head_params['function'])\
                (params=head_params)

        loss_params = deepcopy(params["Loss"])
        loss_params.update(global_params)
        self.loss = create_module(loss_params['function'])\
                (params=loss_params)

        self.loss_type = global_params['loss_type']
        self.image_shape = global_params['image_shape']
        self.max_text_length = global_params['max_text_length']
tink2123's avatar
tink2123 committed
61
        self.num_heads = global_params["num_heads"]
LDOUBLEV's avatar
LDOUBLEV committed
62
63
64
65
66

    def create_feed(self, mode):
        image_shape = deepcopy(self.image_shape)
        image_shape.insert(0, -1)
        if mode == "train":
tink2123's avatar
tink2123 committed
67
            image = fluid.data(name='image', shape=image_shape, dtype='float32')
LDOUBLEV's avatar
LDOUBLEV committed
68
69
70
71
72
73
74
75
76
77
78
79
80
            if self.loss_type == "attention":
                label_in = fluid.data(
                    name='label_in',
                    shape=[None, 1],
                    dtype='int32',
                    lod_level=1)
                label_out = fluid.data(
                    name='label_out',
                    shape=[None, 1],
                    dtype='int32',
                    lod_level=1)
                feed_list = [image, label_in, label_out]
                labels = {'label_in': label_in, 'label_out': label_out}
tink2123's avatar
tink2123 committed
81
82
83
84
85
86
87
88
89
90
91
92
            elif self.loss_type == "srn":
                encoder_word_pos = fluid.data(name="encoder_word_pos", shape=[-1, int((image_shape[-2] / 8) * (image_shape[-1] / 8)), 1], dtype="int64")
                gsrm_word_pos = fluid.data(name="gsrm_word_pos", shape=[-1, self.max_text_length, 1], dtype="int64")
                gsrm_slf_attn_bias1 = fluid.data(name="gsrm_slf_attn_bias1", shape=[-1, self.num_heads, self.max_text_length, self.max_text_length])
                gsrm_slf_attn_bias2 = fluid.data(name="gsrm_slf_attn_bias2", shape=[-1, self.num_heads, self.max_text_length, self.max_text_length])
                lbl_weight = fluid.layers.data(name="lbl_weight", shape=[-1, 1], dtype='int64')
                label = fluid.data(
                    name='label', shape=[-1, 1], dtype='int32', lod_level=1)
                feed_list = [image, label, encoder_word_pos, gsrm_word_pos, gsrm_slf_attn_bias1, gsrm_slf_attn_bias2, lbl_weight]
                labels = {'label': label, 'encoder_word_pos': encoder_word_pos,
                          'gsrm_word_pos': gsrm_word_pos, 'gsrm_slf_attn_bias1': gsrm_slf_attn_bias1,
                          'gsrm_slf_attn_bias2': gsrm_slf_attn_bias2,'lbl_weight':lbl_weight}
LDOUBLEV's avatar
LDOUBLEV committed
93
94
95
96
97
98
99
100
101
102
103
            else:
                label = fluid.data(
                    name='label', shape=[None, 1], dtype='int32', lod_level=1)
                feed_list = [image, label]
                labels = {'label': label}
            loader = fluid.io.DataLoader.from_generator(
                feed_list=feed_list,
                capacity=64,
                use_double_buffer=True,
                iterable=False)
        else:
tink2123's avatar
tink2123 committed
104
105
            labels = None
            loader = None
tink2123's avatar
tink2123 committed
106
            if self.char_type == "ch" and self.infer_img:
tink2123's avatar
tink2123 committed
107
108
109
110
111
                image_shape[-1] = -1
                if self.tps != None:
                    logger.info(
                        "WARNRNG!!!\n"
                        "TPS does not support variable shape in chinese!"
tink2123's avatar
tink2123 committed
112
                        "We set img_shape to be the same , it may affect the inference effect"
tink2123's avatar
tink2123 committed
113
                    )
tink2123's avatar
tink2123 committed
114
                    image_shape = deepcopy(self.image_shape)
tink2123's avatar
tink2123 committed
115
116
117
118
119
120
121
122
123
                    image = fluid.data(name='image', shape=image_shape, dtype='float32')
            if self.loss_type == "srn":
                encoder_word_pos = fluid.data(name="encoder_word_pos", shape=[-1, int((image_shape[-2] / 8) * (image_shape[-1] / 8)), 1], dtype="int64")
                gsrm_word_pos = fluid.data(name="gsrm_word_pos", shape=[-1, self.max_text_length, 1], dtype="int64")
                gsrm_slf_attn_bias1 = fluid.data(name="gsrm_slf_attn_bias1", shape=[-1, self.num_heads, self.max_text_length, self.max_text_length])
                gsrm_slf_attn_bias2 = fluid.data(name="gsrm_slf_attn_bias2", shape=[-1, self.num_heads, self.max_text_length, self.max_text_length])
                feed_list = [image, encoder_word_pos, gsrm_word_pos, gsrm_slf_attn_bias1, gsrm_slf_attn_bias2]
                labels = {'encoder_word_pos': encoder_word_pos, 'gsrm_word_pos': gsrm_word_pos,
                        'gsrm_slf_attn_bias1': gsrm_slf_attn_bias1, 'gsrm_slf_attn_bias2': gsrm_slf_attn_bias2}
LDOUBLEV's avatar
LDOUBLEV committed
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
        return image, labels, loader

    def __call__(self, mode):
        image, labels, loader = self.create_feed(mode)
        if self.tps is None:
            inputs = image
        else:
            inputs = self.tps(image)
        conv_feas = self.backbone(inputs)
        predicts = self.head(conv_feas, labels, mode)
        decoded_out = predicts['decoded_out']
        if mode == "train":
            loss = self.loss(predicts, labels)
            if self.loss_type == "attention":
                label = labels['label_out']
            else:
                label = labels['label']
tink2123's avatar
tink2123 committed
141
142
143
144
145
146
147
            if self.loss_type == 'srn':
                total_loss, img_loss, word_loss = self.loss(predicts, labels)
                outputs = {'total_loss':total_loss, 'img_loss':img_loss, 'word_loss':word_loss,
                           'decoded_out':decoded_out, 'label':label}
            else:
                outputs = {'total_loss':loss, 'decoded_out':\
                    decoded_out, 'label':label}
LDOUBLEV's avatar
LDOUBLEV committed
148
            return loader, outputs
tink2123's avatar
tink2123 committed
149

LDOUBLEV's avatar
LDOUBLEV committed
150
        elif mode == "export":
LDOUBLEV's avatar
LDOUBLEV committed
151
            predict = predicts['predict']
dyning's avatar
dyning committed
152
153
            if self.loss_type == "ctc":
                predict = fluid.layers.softmax(predict)
LDOUBLEV's avatar
LDOUBLEV committed
154
            return [image, {'decoded_out': decoded_out, 'predicts': predict}]
LDOUBLEV's avatar
LDOUBLEV committed
155
        else:
dyning's avatar
dyning committed
156
157
158
            predict = predicts['predict']
            if self.loss_type == "ctc":
                predict = fluid.layers.softmax(predict)
tink2123's avatar
tink2123 committed
159
            return loader, {'decoded_out': decoded_out, 'predicts': predict}