rec_model.py 5.11 KB
Newer Older
LDOUBLEV's avatar
LDOUBLEV committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

from paddle import fluid

from ppocr.utils.utility import create_module
from ppocr.utils.utility import initial_logger
logger = initial_logger()
from copy import deepcopy


class RecModel(object):
    def __init__(self, params):
        super(RecModel, self).__init__()
        global_params = params['Global']
        char_num = global_params['char_ops'].get_char_num()
        global_params['char_num'] = char_num
tink2123's avatar
tink2123 committed
33
        self.char_type = global_params['character_type']
tink2123's avatar
tink2123 committed
34
        self.infer_img = global_params['infer_img']
LDOUBLEV's avatar
LDOUBLEV committed
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
        if "TPS" in params:
            tps_params = deepcopy(params["TPS"])
            tps_params.update(global_params)
            self.tps = create_module(tps_params['function'])\
                (params=tps_params)
        else:
            self.tps = None

        backbone_params = deepcopy(params["Backbone"])
        backbone_params.update(global_params)
        self.backbone = create_module(backbone_params['function'])\
                (params=backbone_params)

        head_params = deepcopy(params["Head"])
        head_params.update(global_params)
        self.head = create_module(head_params['function'])\
                (params=head_params)

        loss_params = deepcopy(params["Loss"])
        loss_params.update(global_params)
        self.loss = create_module(loss_params['function'])\
                (params=loss_params)

        self.loss_type = global_params['loss_type']
        self.image_shape = global_params['image_shape']
        self.max_text_length = global_params['max_text_length']

    def create_feed(self, mode):
        image_shape = deepcopy(self.image_shape)
        image_shape.insert(0, -1)
        if mode == "train":
tink2123's avatar
tink2123 committed
66
            image = fluid.data(name='image', shape=image_shape, dtype='float32')
LDOUBLEV's avatar
LDOUBLEV committed
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
            if self.loss_type == "attention":
                label_in = fluid.data(
                    name='label_in',
                    shape=[None, 1],
                    dtype='int32',
                    lod_level=1)
                label_out = fluid.data(
                    name='label_out',
                    shape=[None, 1],
                    dtype='int32',
                    lod_level=1)
                feed_list = [image, label_in, label_out]
                labels = {'label_in': label_in, 'label_out': label_out}
            else:
                label = fluid.data(
                    name='label', shape=[None, 1], dtype='int32', lod_level=1)
                feed_list = [image, label]
                labels = {'label': label}
            loader = fluid.io.DataLoader.from_generator(
                feed_list=feed_list,
                capacity=64,
                use_double_buffer=True,
                iterable=False)
        else:
tink2123's avatar
tink2123 committed
91
            if self.char_type == "ch" and self.infer_img:
tink2123's avatar
tink2123 committed
92
93
94
95
96
97
98
99
                image_shape[-1] = -1
                if self.tps != None:
                    logger.info(
                        "WARNRNG!!!\n"
                        "TPS does not support variable shape in chinese!"
                        "We set default shape=[3,32,320], it may affect the inference effect"
                    )
                    image_shape[-1] = 320
tink2123's avatar
tink2123 committed
100
            image = fluid.data(name='image', shape=image_shape, dtype='float32')
LDOUBLEV's avatar
LDOUBLEV committed
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
            labels = None
            loader = None
        return image, labels, loader

    def __call__(self, mode):
        image, labels, loader = self.create_feed(mode)
        if self.tps is None:
            inputs = image
        else:
            inputs = self.tps(image)
        conv_feas = self.backbone(inputs)
        predicts = self.head(conv_feas, labels, mode)
        decoded_out = predicts['decoded_out']
        if mode == "train":
            loss = self.loss(predicts, labels)
            if self.loss_type == "attention":
                label = labels['label_out']
            else:
                label = labels['label']
            outputs = {'total_loss':loss, 'decoded_out':\
                decoded_out, 'label':label}
            return loader, outputs
        elif mode == "export":
LDOUBLEV's avatar
LDOUBLEV committed
124
            predict = predicts['predict']
dyning's avatar
dyning committed
125
126
            if self.loss_type == "ctc":
                predict = fluid.layers.softmax(predict)
LDOUBLEV's avatar
LDOUBLEV committed
127
            return [image, {'decoded_out': decoded_out, 'predicts': predict}]
LDOUBLEV's avatar
LDOUBLEV committed
128
        else:
dyning's avatar
dyning committed
129
130
131
132
            predict = predicts['predict']
            if self.loss_type == "ctc":
                predict = fluid.layers.softmax(predict)
            return loader, {'decoded_out': decoded_out, 'predicts': predict}