ocr_rec.cpp 7.2 KB
Newer Older
littletomatodonkey's avatar
littletomatodonkey committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include <include/ocr_rec.h>

namespace PaddleOCR {
MissPenguin's avatar
MissPenguin committed
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
    
void CRNNRecognizer::Run(std::vector<cv::Mat> img_list, std::vector<double> *times) {
    std::chrono::duration<float> preprocess_diff = std::chrono::steady_clock::now() - std::chrono::steady_clock::now();
    std::chrono::duration<float> inference_diff = std::chrono::steady_clock::now() - std::chrono::steady_clock::now();
    std::chrono::duration<float> postprocess_diff = std::chrono::steady_clock::now() - std::chrono::steady_clock::now();

    int img_num = img_list.size();
    std::vector<float> width_list;
    for (int i = 0; i < img_num; i++) {
        width_list.push_back(float(img_list[i].cols) / img_list[i].rows);
    }
    std::vector<int> indices = Utility::argsort(width_list);

    for (int beg_img_no = 0; beg_img_no < img_num; beg_img_no += this->rec_batch_num_) {
        auto preprocess_start = std::chrono::steady_clock::now();
        int end_img_no = min(img_num, beg_img_no + this->rec_batch_num_);
        float max_wh_ratio = 0;
        for (int ino = beg_img_no; ino < end_img_no; ino ++) {
            int h = img_list[indices[ino]].rows;
            int w = img_list[indices[ino]].cols;
            float wh_ratio = w * 1.0 / h;
            max_wh_ratio = max(max_wh_ratio, wh_ratio);
        }
//         cout << "max_wh_ratio: " << max_wh_ratio << endl;
        std::vector<cv::Mat> norm_img_batch;
        for (int ino = beg_img_no; ino < end_img_no; ino ++) {
            cv::Mat srcimg;
            img_list[indices[ino]].copyTo(srcimg);
            cv::Mat resize_img;
            this->resize_op_.Run(srcimg, resize_img, max_wh_ratio, this->use_tensorrt_);
            this->normalize_op_.Run(&resize_img, this->mean_, this->scale_, this->is_scale_);
            norm_img_batch.push_back(resize_img);
        }
        
        int batch_width = int(ceilf(32 * max_wh_ratio)) - 1;
        std::vector<float> input(this->rec_batch_num_ * 3 * 32 * batch_width, 0.0f);
        this->permute_op_.Run(norm_img_batch, input.data());
        auto preprocess_end = std::chrono::steady_clock::now();
        preprocess_diff += preprocess_end - preprocess_start;

        // Inference.
        auto input_names = this->predictor_->GetInputNames();
        auto input_t = this->predictor_->GetInputHandle(input_names[0]);
        input_t->Reshape({this->rec_batch_num_, 3, 32, batch_width});
        auto inference_start = std::chrono::steady_clock::now();
        input_t->CopyFromCpu(input.data());
        this->predictor_->Run();

        std::vector<float> predict_batch;
        auto output_names = this->predictor_->GetOutputNames();
        auto output_t = this->predictor_->GetOutputHandle(output_names[0]);
        auto predict_shape = output_t->shape();

        int out_num = std::accumulate(predict_shape.begin(), predict_shape.end(), 1,
MissPenguin's avatar
MissPenguin committed
72
                                std::multiplies<int>());
MissPenguin's avatar
MissPenguin committed
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
        predict_batch.resize(out_num);

        output_t->CopyToCpu(predict_batch.data());
        auto inference_end = std::chrono::steady_clock::now();
        inference_diff += inference_end - inference_start;
        
        // ctc decode
        auto postprocess_start = std::chrono::steady_clock::now();
        for (int m = 0; m < predict_shape[0]; m++) {
            std::vector<std::string> str_res;
            int argmax_idx;
            int last_index = 0;
            float score = 0.f;
            int count = 0;
            float max_value = 0.0f;

            for (int n = 0; n < predict_shape[1]; n++) {
                argmax_idx =
                    int(Utility::argmax(&predict_batch[(m * predict_shape[1] + n) * predict_shape[2]],
                                        &predict_batch[(m * predict_shape[1] + n + 1) * predict_shape[2]]));
                max_value =
                    float(*std::max_element(&predict_batch[(m * predict_shape[1] + n) * predict_shape[2]],
                                            &predict_batch[(m * predict_shape[1] + n + 1) * predict_shape[2]]));

                if (argmax_idx > 0 && (!(n > 0 && argmax_idx == last_index))) {
                    score += max_value;
                    count += 1;
                    str_res.push_back(label_list_[argmax_idx]);
                }
                last_index = argmax_idx;
            }
            score /= count;
            if (isnan(score))
                continue;
            for (int i = 0; i < str_res.size(); i++) {
                std::cout << str_res[i];
            }
            std::cout << "\tscore: " << score << std::endl;
        }
        auto postprocess_end = std::chrono::steady_clock::now();
        postprocess_diff += postprocess_end - postprocess_start;
WenmuZhou's avatar
WenmuZhou committed
114
    }
MissPenguin's avatar
MissPenguin committed
115
116
117
    times->push_back(double(preprocess_diff.count() * 1000));
    times->push_back(double(inference_diff.count() * 1000));
    times->push_back(double(postprocess_diff.count() * 1000));
littletomatodonkey's avatar
littletomatodonkey committed
118
119
}

MissPenguin's avatar
MissPenguin committed
120
    
littletomatodonkey's avatar
littletomatodonkey committed
121
void CRNNRecognizer::LoadModel(const std::string &model_dir) {
LDOUBLEV's avatar
LDOUBLEV committed
122
123
  //   AnalysisConfig config;
  paddle_infer::Config config;
WenmuZhou's avatar
WenmuZhou committed
124
125
  config.SetModel(model_dir + "/inference.pdmodel",
                  model_dir + "/inference.pdiparams");
littletomatodonkey's avatar
littletomatodonkey committed
126

littletomatodonkey's avatar
littletomatodonkey committed
127
128
  if (this->use_gpu_) {
    config.EnableUseGpu(this->gpu_mem_, this->gpu_id_);
129
    if (this->use_tensorrt_) {
MissPenguin's avatar
MissPenguin committed
130
131
132
133
134
135
136
      auto precision = paddle_infer::Config::Precision::kFloat32;
      if (this->precision_ == "fp16") {
        precision = paddle_infer::Config::Precision::kHalf;
      }
     if (this->precision_ == "int8") {
        precision = paddle_infer::Config::Precision::kInt8;
      } 
137
138
      config.EnableTensorRtEngine(
          1 << 20, 10, 3,
MissPenguin's avatar
MissPenguin committed
139
          precision,
140
          false, false);
MissPenguin's avatar
MissPenguin committed
141

LDOUBLEV's avatar
LDOUBLEV committed
142
      std::map<std::string, std::vector<int>> min_input_shape = {
MissPenguin's avatar
MissPenguin committed
143
144
          {"x", {1, 3, 32, 10}},
          {"lstm_0.tmp_0", {10, 1, 96}}};
LDOUBLEV's avatar
LDOUBLEV committed
145
      std::map<std::string, std::vector<int>> max_input_shape = {
MissPenguin's avatar
MissPenguin committed
146
147
          {"x", {1, 3, 32, 2000}},
          {"lstm_0.tmp_0", {1000, 1, 96}}};
LDOUBLEV's avatar
LDOUBLEV committed
148
      std::map<std::string, std::vector<int>> opt_input_shape = {
MissPenguin's avatar
MissPenguin committed
149
150
          {"x", {1, 3, 32, 320}},
          {"lstm_0.tmp_0", {25, 1, 96}}};
LDOUBLEV's avatar
LDOUBLEV committed
151
152
153

      config.SetTRTDynamicShapeInfo(min_input_shape, max_input_shape,
                                    opt_input_shape);
154
    }
littletomatodonkey's avatar
littletomatodonkey committed
155
156
  } else {
    config.DisableGpu();
littletomatodonkey's avatar
littletomatodonkey committed
157
158
    if (this->use_mkldnn_) {
      config.EnableMKLDNN();
WenmuZhou's avatar
WenmuZhou committed
159
160
      // cache 10 different shapes for mkldnn to avoid memory leak
      config.SetMkldnnCacheCapacity(10);
littletomatodonkey's avatar
littletomatodonkey committed
161
    }
littletomatodonkey's avatar
littletomatodonkey committed
162
163
    config.SetCpuMathLibraryNumThreads(this->cpu_math_library_num_threads_);
  }
littletomatodonkey's avatar
littletomatodonkey committed
164

LDOUBLEV's avatar
LDOUBLEV committed
165
  config.SwitchUseFeedFetchOps(false);
littletomatodonkey's avatar
littletomatodonkey committed
166
  // true for multiple input
littletomatodonkey's avatar
littletomatodonkey committed
167
  config.SwitchSpecifyInputNames(true);
littletomatodonkey's avatar
littletomatodonkey committed
168
169
170
171

  config.SwitchIrOptim(true);

  config.EnableMemoryOptim();
MissPenguin's avatar
MissPenguin committed
172
//   config.DisableGlogInfo();
littletomatodonkey's avatar
littletomatodonkey committed
173

LDOUBLEV's avatar
LDOUBLEV committed
174
  this->predictor_ = CreatePredictor(config);
littletomatodonkey's avatar
littletomatodonkey committed
175
176
}

littletomatodonkey's avatar
littletomatodonkey committed
177
} // namespace PaddleOCR