ocr_rec.cpp 7.18 KB
Newer Older
littletomatodonkey's avatar
littletomatodonkey committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include <include/ocr_rec.h>

namespace PaddleOCR {

MissPenguin's avatar
MissPenguin committed
19
void CRNNRecognizer::Run(cv::Mat &img, std::vector<double> *times) {
littletomatodonkey's avatar
littletomatodonkey committed
20
21
22
23
  cv::Mat srcimg;
  img.copyTo(srcimg);
  cv::Mat resize_img;

MissPenguin's avatar
MissPenguin committed
24
  float wh_ratio = float(srcimg.cols) / float(srcimg.rows);
MissPenguin's avatar
MissPenguin committed
25
  auto preprocess_start = std::chrono::steady_clock::now();
MissPenguin's avatar
MissPenguin committed
26
  this->resize_op_.Run(srcimg, resize_img, wh_ratio, this->use_tensorrt_);
littletomatodonkey's avatar
littletomatodonkey committed
27

MissPenguin's avatar
MissPenguin committed
28
29
30
31
32
33
  this->normalize_op_.Run(&resize_img, this->mean_, this->scale_,
                          this->is_scale_);

  std::vector<float> input(1 * 3 * resize_img.rows * resize_img.cols, 0.0f);

  this->permute_op_.Run(&resize_img, input.data());
MissPenguin's avatar
MissPenguin committed
34
  auto preprocess_end = std::chrono::steady_clock::now();
MissPenguin's avatar
MissPenguin committed
35
36

  // Inference.
MissPenguin's avatar
MissPenguin committed
37
  auto inference_start = std::chrono::steady_clock::now();
MissPenguin's avatar
MissPenguin committed
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
  auto input_names = this->predictor_->GetInputNames();
  auto input_t = this->predictor_->GetInputHandle(input_names[0]);
  input_t->Reshape({1, 3, resize_img.rows, resize_img.cols});
  input_t->CopyFromCpu(input.data());
  this->predictor_->Run();

  std::vector<float> predict_batch;
  auto output_names = this->predictor_->GetOutputNames();
  auto output_t = this->predictor_->GetOutputHandle(output_names[0]);
  auto predict_shape = output_t->shape();

  int out_num = std::accumulate(predict_shape.begin(), predict_shape.end(), 1,
                                std::multiplies<int>());
  predict_batch.resize(out_num);

  output_t->CopyToCpu(predict_batch.data());
MissPenguin's avatar
MissPenguin committed
54
  auto inference_end = std::chrono::steady_clock::now();
MissPenguin's avatar
MissPenguin committed
55
56

  // ctc decode
MissPenguin's avatar
MissPenguin committed
57
  auto postprocess_start = std::chrono::steady_clock::now();
MissPenguin's avatar
MissPenguin committed
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
  std::vector<std::string> str_res;
  int argmax_idx;
  int last_index = 0;
  float score = 0.f;
  int count = 0;
  float max_value = 0.0f;

  for (int n = 0; n < predict_shape[1]; n++) {
    argmax_idx =
        int(Utility::argmax(&predict_batch[n * predict_shape[2]],
                            &predict_batch[(n + 1) * predict_shape[2]]));
    max_value =
        float(*std::max_element(&predict_batch[n * predict_shape[2]],
                                &predict_batch[(n + 1) * predict_shape[2]]));

    if (argmax_idx > 0 && (!(n > 0 && argmax_idx == last_index))) {
      score += max_value;
      count += 1;
      str_res.push_back(label_list_[argmax_idx]);
WenmuZhou's avatar
WenmuZhou committed
77
    }
MissPenguin's avatar
MissPenguin committed
78
79
80
81
82
    last_index = argmax_idx;
  }
  score /= count;
  for (int i = 0; i < str_res.size(); i++) {
    std::cout << str_res[i];
littletomatodonkey's avatar
littletomatodonkey committed
83
  }
MissPenguin's avatar
MissPenguin committed
84
  std::cout << "\tscore: " << score << std::endl;
MissPenguin's avatar
MissPenguin committed
85
86
87
88
89
90
91
92
  auto postprocess_end = std::chrono::steady_clock::now();

  std::chrono::duration<float> preprocess_diff = preprocess_end - preprocess_start;
  times->push_back(double(preprocess_diff.count() * 1000));
  std::chrono::duration<float> inference_diff = inference_end - inference_start;
  times->push_back(double(inference_diff.count() * 1000));
  std::chrono::duration<float> postprocess_diff = postprocess_end - postprocess_start;
  times->push_back(double(postprocess_diff.count() * 1000));
littletomatodonkey's avatar
littletomatodonkey committed
93
94
}

littletomatodonkey's avatar
littletomatodonkey committed
95
void CRNNRecognizer::LoadModel(const std::string &model_dir) {
LDOUBLEV's avatar
LDOUBLEV committed
96
97
  //   AnalysisConfig config;
  paddle_infer::Config config;
WenmuZhou's avatar
WenmuZhou committed
98
99
  config.SetModel(model_dir + "/inference.pdmodel",
                  model_dir + "/inference.pdiparams");
littletomatodonkey's avatar
littletomatodonkey committed
100

littletomatodonkey's avatar
littletomatodonkey committed
101
102
  if (this->use_gpu_) {
    config.EnableUseGpu(this->gpu_mem_, this->gpu_id_);
103
    if (this->use_tensorrt_) {
MissPenguin's avatar
MissPenguin committed
104
105
106
107
108
109
110
      auto precision = paddle_infer::Config::Precision::kFloat32;
      if (this->precision_ == "fp16") {
        precision = paddle_infer::Config::Precision::kHalf;
      }
     if (this->precision_ == "int8") {
        precision = paddle_infer::Config::Precision::kInt8;
      } 
111
112
      config.EnableTensorRtEngine(
          1 << 20, 10, 3,
MissPenguin's avatar
MissPenguin committed
113
          precision,
114
          false, false);
LDOUBLEV's avatar
LDOUBLEV committed
115
116
117
118
119
120
121
122
123
      std::map<std::string, std::vector<int>> min_input_shape = {
          {"x", {1, 3, 32, 10}}};
      std::map<std::string, std::vector<int>> max_input_shape = {
          {"x", {1, 3, 32, 2000}}};
      std::map<std::string, std::vector<int>> opt_input_shape = {
          {"x", {1, 3, 32, 320}}};

      config.SetTRTDynamicShapeInfo(min_input_shape, max_input_shape,
                                    opt_input_shape);
124
    }
littletomatodonkey's avatar
littletomatodonkey committed
125
126
  } else {
    config.DisableGpu();
littletomatodonkey's avatar
littletomatodonkey committed
127
128
    if (this->use_mkldnn_) {
      config.EnableMKLDNN();
WenmuZhou's avatar
WenmuZhou committed
129
130
      // cache 10 different shapes for mkldnn to avoid memory leak
      config.SetMkldnnCacheCapacity(10);
littletomatodonkey's avatar
littletomatodonkey committed
131
    }
littletomatodonkey's avatar
littletomatodonkey committed
132
133
    config.SetCpuMathLibraryNumThreads(this->cpu_math_library_num_threads_);
  }
littletomatodonkey's avatar
littletomatodonkey committed
134

LDOUBLEV's avatar
LDOUBLEV committed
135
  config.SwitchUseFeedFetchOps(false);
littletomatodonkey's avatar
littletomatodonkey committed
136
  // true for multiple input
littletomatodonkey's avatar
littletomatodonkey committed
137
  config.SwitchSpecifyInputNames(true);
littletomatodonkey's avatar
littletomatodonkey committed
138
139
140
141

  config.SwitchIrOptim(true);

  config.EnableMemoryOptim();
littletomatodonkey's avatar
littletomatodonkey committed
142
  config.DisableGlogInfo();
littletomatodonkey's avatar
littletomatodonkey committed
143

LDOUBLEV's avatar
LDOUBLEV committed
144
  this->predictor_ = CreatePredictor(config);
littletomatodonkey's avatar
littletomatodonkey committed
145
146
}

littletomatodonkey's avatar
littletomatodonkey committed
147
148
cv::Mat CRNNRecognizer::GetRotateCropImage(const cv::Mat &srcimage,
                                           std::vector<std::vector<int>> box) {
littletomatodonkey's avatar
littletomatodonkey committed
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
  cv::Mat image;
  srcimage.copyTo(image);
  std::vector<std::vector<int>> points = box;

  int x_collect[4] = {box[0][0], box[1][0], box[2][0], box[3][0]};
  int y_collect[4] = {box[0][1], box[1][1], box[2][1], box[3][1]};
  int left = int(*std::min_element(x_collect, x_collect + 4));
  int right = int(*std::max_element(x_collect, x_collect + 4));
  int top = int(*std::min_element(y_collect, y_collect + 4));
  int bottom = int(*std::max_element(y_collect, y_collect + 4));

  cv::Mat img_crop;
  image(cv::Rect(left, top, right - left, bottom - top)).copyTo(img_crop);

  for (int i = 0; i < points.size(); i++) {
    points[i][0] -= left;
    points[i][1] -= top;
  }

  int img_crop_width = int(sqrt(pow(points[0][0] - points[1][0], 2) +
                                pow(points[0][1] - points[1][1], 2)));
  int img_crop_height = int(sqrt(pow(points[0][0] - points[3][0], 2) +
                                 pow(points[0][1] - points[3][1], 2)));

  cv::Point2f pts_std[4];
  pts_std[0] = cv::Point2f(0., 0.);
  pts_std[1] = cv::Point2f(img_crop_width, 0.);
  pts_std[2] = cv::Point2f(img_crop_width, img_crop_height);
  pts_std[3] = cv::Point2f(0.f, img_crop_height);

  cv::Point2f pointsf[4];
  pointsf[0] = cv::Point2f(points[0][0], points[0][1]);
  pointsf[1] = cv::Point2f(points[1][0], points[1][1]);
  pointsf[2] = cv::Point2f(points[2][0], points[2][1]);
  pointsf[3] = cv::Point2f(points[3][0], points[3][1]);

  cv::Mat M = cv::getPerspectiveTransform(pointsf, pts_std);

  cv::Mat dst_img;
  cv::warpPerspective(img_crop, dst_img, M,
                      cv::Size(img_crop_width, img_crop_height),
                      cv::BORDER_REPLICATE);

  if (float(dst_img.rows) >= float(dst_img.cols) * 1.5) {
    cv::Mat srcCopy = cv::Mat(dst_img.rows, dst_img.cols, dst_img.depth());
    cv::transpose(dst_img, srcCopy);
    cv::flip(srcCopy, srcCopy, 0);
    return srcCopy;
  } else {
    return dst_img;
  }
}

littletomatodonkey's avatar
littletomatodonkey committed
202
} // namespace PaddleOCR