rec_postprocess.py 24.5 KB
Newer Older
WenmuZhou's avatar
WenmuZhou committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import numpy as np
tink2123's avatar
tink2123 committed
15
import string
WenmuZhou's avatar
WenmuZhou committed
16
17
import paddle
from paddle.nn import functional as F
andyjpaddle's avatar
andyjpaddle committed
18
import re
WenmuZhou's avatar
WenmuZhou committed
19
20
21
22
23


class BaseRecLabelDecode(object):
    """ Convert between text-label and text-index """

tink2123's avatar
tink2123 committed
24
    def __init__(self, character_dict_path=None, use_space_char=False):
tink2123's avatar
tink2123 committed
25
26
27
        self.beg_str = "sos"
        self.end_str = "eos"

tink2123's avatar
tink2123 committed
28
29
        self.character_str = []
        if character_dict_path is None:
WenmuZhou's avatar
WenmuZhou committed
30
31
            self.character_str = "0123456789abcdefghijklmnopqrstuvwxyz"
            dict_character = list(self.character_str)
tink2123's avatar
tink2123 committed
32
33
            self.lower = True
        else:
WenmuZhou's avatar
WenmuZhou committed
34
35
36
37
            with open(character_dict_path, "rb") as fin:
                lines = fin.readlines()
                for line in lines:
                    line = line.decode('utf-8').strip("\n").strip("\r\n")
WenmuZhou's avatar
WenmuZhou committed
38
                    self.character_str.append(line)
WenmuZhou's avatar
WenmuZhou committed
39
            if use_space_char:
WenmuZhou's avatar
WenmuZhou committed
40
                self.character_str.append(" ")
WenmuZhou's avatar
WenmuZhou committed
41
            dict_character = list(self.character_str)
tink2123's avatar
tink2123 committed
42

WenmuZhou's avatar
WenmuZhou committed
43
44
45
46
47
48
49
50
51
        dict_character = self.add_special_char(dict_character)
        self.dict = {}
        for i, char in enumerate(dict_character):
            self.dict[char] = i
        self.character = dict_character

    def add_special_char(self, dict_character):
        return dict_character

littletomatodonkey's avatar
littletomatodonkey committed
52
    def decode(self, text_index, text_prob=None, is_remove_duplicate=False):
WenmuZhou's avatar
WenmuZhou committed
53
54
55
56
57
58
59
60
61
62
63
        """ convert text-index into text-label. """
        result_list = []
        ignored_tokens = self.get_ignored_tokens()
        batch_size = len(text_index)
        for batch_idx in range(batch_size):
            char_list = []
            conf_list = []
            for idx in range(len(text_index[batch_idx])):
                if text_index[batch_idx][idx] in ignored_tokens:
                    continue
                if is_remove_duplicate:
64
                    # only for predict
WenmuZhou's avatar
WenmuZhou committed
65
66
67
68
69
70
71
72
73
74
                    if idx > 0 and text_index[batch_idx][idx - 1] == text_index[
                            batch_idx][idx]:
                        continue
                char_list.append(self.character[int(text_index[batch_idx][
                    idx])])
                if text_prob is not None:
                    conf_list.append(text_prob[batch_idx][idx])
                else:
                    conf_list.append(1)
            text = ''.join(char_list)
zhoujun's avatar
zhoujun committed
75
            result_list.append((text, np.mean(conf_list)))
WenmuZhou's avatar
WenmuZhou committed
76
77
78
79
80
81
82
83
84
        return result_list

    def get_ignored_tokens(self):
        return [0]  # for ctc blank


class CTCLabelDecode(BaseRecLabelDecode):
    """ Convert between text-label and text-index """

tink2123's avatar
tink2123 committed
85
    def __init__(self, character_dict_path=None, use_space_char=False,
WenmuZhou's avatar
WenmuZhou committed
86
87
                 **kwargs):
        super(CTCLabelDecode, self).__init__(character_dict_path,
tink2123's avatar
tink2123 committed
88
                                             use_space_char)
WenmuZhou's avatar
WenmuZhou committed
89
90

    def __call__(self, preds, label=None, *args, **kwargs):
91
92
        if isinstance(preds, tuple):
            preds = preds[-1]
WenmuZhou's avatar
WenmuZhou committed
93
94
        if isinstance(preds, paddle.Tensor):
            preds = preds.numpy()
WenmuZhou's avatar
WenmuZhou committed
95
96
        preds_idx = preds.argmax(axis=2)
        preds_prob = preds.max(axis=2)
WenmuZhou's avatar
WenmuZhou committed
97
        text = self.decode(preds_idx, preds_prob, is_remove_duplicate=True)
WenmuZhou's avatar
WenmuZhou committed
98
99
        if label is None:
            return text
littletomatodonkey's avatar
littletomatodonkey committed
100
        label = self.decode(label)
WenmuZhou's avatar
WenmuZhou committed
101
102
103
104
105
106
107
        return text, label

    def add_special_char(self, dict_character):
        dict_character = ['blank'] + dict_character
        return dict_character


littletomatodonkey's avatar
littletomatodonkey committed
108
109
110
111
112
113
114
115
116
class DistillationCTCLabelDecode(CTCLabelDecode):
    """
    Convert 
    Convert between text-label and text-index
    """

    def __init__(self,
                 character_dict_path=None,
                 use_space_char=False,
littletomatodonkey's avatar
littletomatodonkey committed
117
                 model_name=["student"],
118
                 key=None,
littletomatodonkey's avatar
littletomatodonkey committed
119
                 **kwargs):
tink2123's avatar
tink2123 committed
120
121
        super(DistillationCTCLabelDecode, self).__init__(character_dict_path,
                                                         use_space_char)
littletomatodonkey's avatar
littletomatodonkey committed
122
123
        if not isinstance(model_name, list):
            model_name = [model_name]
littletomatodonkey's avatar
littletomatodonkey committed
124
        self.model_name = model_name
littletomatodonkey's avatar
littletomatodonkey committed
125

126
        self.key = key
littletomatodonkey's avatar
littletomatodonkey committed
127
128

    def __call__(self, preds, label=None, *args, **kwargs):
littletomatodonkey's avatar
littletomatodonkey committed
129
130
131
132
133
134
135
        output = dict()
        for name in self.model_name:
            pred = preds[name]
            if self.key is not None:
                pred = pred[self.key]
            output[name] = super().__call__(pred, label=label, *args, **kwargs)
        return output
littletomatodonkey's avatar
littletomatodonkey committed
136
137


Topdu's avatar
Topdu committed
138
139
140
class NRTRLabelDecode(BaseRecLabelDecode):
    """ Convert between text-label and text-index """

tink2123's avatar
tink2123 committed
141
    def __init__(self, character_dict_path=None, use_space_char=True, **kwargs):
Topdu's avatar
Topdu committed
142
        super(NRTRLabelDecode, self).__init__(character_dict_path,
tink2123's avatar
tink2123 committed
143
                                              use_space_char)
Topdu's avatar
Topdu committed
144
145
146

    def __call__(self, preds, label=None, *args, **kwargs):

Topdu's avatar
Topdu committed
147
148
149
150
151
152
153
154
155
156
157
158
159
        if len(preds) == 2:
            preds_id = preds[0]
            preds_prob = preds[1]
            if isinstance(preds_id, paddle.Tensor):
                preds_id = preds_id.numpy()
            if isinstance(preds_prob, paddle.Tensor):
                preds_prob = preds_prob.numpy()
            if preds_id[0][0] == 2:
                preds_idx = preds_id[:, 1:]
                preds_prob = preds_prob[:, 1:]
            else:
                preds_idx = preds_id
            text = self.decode(preds_idx, preds_prob, is_remove_duplicate=False)
Topdu's avatar
Topdu committed
160
161
            if label is None:
                return text
andyjpaddle's avatar
andyjpaddle committed
162
            label = self.decode(label[:, 1:])
Topdu's avatar
Topdu committed
163
164
165
166
167
168
169
170
        else:
            if isinstance(preds, paddle.Tensor):
                preds = preds.numpy()
            preds_idx = preds.argmax(axis=2)
            preds_prob = preds.max(axis=2)
            text = self.decode(preds_idx, preds_prob, is_remove_duplicate=False)
            if label is None:
                return text
andyjpaddle's avatar
andyjpaddle committed
171
            label = self.decode(label[:, 1:])
Topdu's avatar
Topdu committed
172
173
174
        return text, label

    def add_special_char(self, dict_character):
andyjpaddle's avatar
andyjpaddle committed
175
        dict_character = ['blank', '<unk>', '<s>', '</s>'] + dict_character
Topdu's avatar
Topdu committed
176
        return dict_character
andyjpaddle's avatar
andyjpaddle committed
177

Topdu's avatar
Topdu committed
178
179
180
181
182
183
184
185
    def decode(self, text_index, text_prob=None, is_remove_duplicate=False):
        """ convert text-index into text-label. """
        result_list = []
        batch_size = len(text_index)
        for batch_idx in range(batch_size):
            char_list = []
            conf_list = []
            for idx in range(len(text_index[batch_idx])):
andyjpaddle's avatar
andyjpaddle committed
186
                if text_index[batch_idx][idx] == 3:  # end
Topdu's avatar
Topdu committed
187
188
                    break
                try:
andyjpaddle's avatar
andyjpaddle committed
189
190
                    char_list.append(self.character[int(text_index[batch_idx][
                        idx])])
Topdu's avatar
Topdu committed
191
192
193
194
195
196
197
198
199
200
201
                except:
                    continue
                if text_prob is not None:
                    conf_list.append(text_prob[batch_idx][idx])
                else:
                    conf_list.append(1)
            text = ''.join(char_list)
            result_list.append((text.lower(), np.mean(conf_list)))
        return result_list


WenmuZhou's avatar
WenmuZhou committed
202
203
204
class AttnLabelDecode(BaseRecLabelDecode):
    """ Convert between text-label and text-index """

tink2123's avatar
tink2123 committed
205
    def __init__(self, character_dict_path=None, use_space_char=False,
WenmuZhou's avatar
WenmuZhou committed
206
207
                 **kwargs):
        super(AttnLabelDecode, self).__init__(character_dict_path,
tink2123's avatar
tink2123 committed
208
                                              use_space_char)
WenmuZhou's avatar
WenmuZhou committed
209
210

    def add_special_char(self, dict_character):
LDOUBLEV's avatar
LDOUBLEV committed
211
212
213
214
        self.beg_str = "sos"
        self.end_str = "eos"
        dict_character = dict_character
        dict_character = [self.beg_str] + dict_character + [self.end_str]
WenmuZhou's avatar
WenmuZhou committed
215
216
        return dict_character

LDOUBLEV's avatar
LDOUBLEV committed
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
    def decode(self, text_index, text_prob=None, is_remove_duplicate=False):
        """ convert text-index into text-label. """
        result_list = []
        ignored_tokens = self.get_ignored_tokens()
        [beg_idx, end_idx] = self.get_ignored_tokens()
        batch_size = len(text_index)
        for batch_idx in range(batch_size):
            char_list = []
            conf_list = []
            for idx in range(len(text_index[batch_idx])):
                if text_index[batch_idx][idx] in ignored_tokens:
                    continue
                if int(text_index[batch_idx][idx]) == int(end_idx):
                    break
                if is_remove_duplicate:
                    # only for predict
                    if idx > 0 and text_index[batch_idx][idx - 1] == text_index[
                            batch_idx][idx]:
                        continue
andyjpaddle's avatar
andyjpaddle committed
236
237
                char_list.append(self.character[int(text_index[batch_idx][
                    idx])])
LDOUBLEV's avatar
LDOUBLEV committed
238
239
240
241
242
243
244
245
                if text_prob is not None:
                    conf_list.append(text_prob[batch_idx][idx])
                else:
                    conf_list.append(1)
            text = ''.join(char_list)
            result_list.append((text, np.mean(conf_list)))
        return result_list

LDOUBLEV's avatar
LDOUBLEV committed
246
247
    def __call__(self, preds, label=None, *args, **kwargs):
        """
WenmuZhou's avatar
WenmuZhou committed
248
        text = self.decode(text)
LDOUBLEV's avatar
LDOUBLEV committed
249
250
251
252
253
254
255
256
257
258
259
        if label is None:
            return text
        else:
            label = self.decode(label, is_remove_duplicate=False)
            return text, label
        """
        if isinstance(preds, paddle.Tensor):
            preds = preds.numpy()

        preds_idx = preds.argmax(axis=2)
        preds_prob = preds.max(axis=2)
LDOUBLEV's avatar
LDOUBLEV committed
260
        text = self.decode(preds_idx, preds_prob, is_remove_duplicate=False)
LDOUBLEV's avatar
LDOUBLEV committed
261
262
        if label is None:
            return text
LDOUBLEV's avatar
LDOUBLEV committed
263
        label = self.decode(label, is_remove_duplicate=False)
LDOUBLEV's avatar
LDOUBLEV committed
264
265
        return text, label

WenmuZhou's avatar
WenmuZhou committed
266
267
268
269
270
271
272
273
274
275
276
277
278
    def get_ignored_tokens(self):
        beg_idx = self.get_beg_end_flag_idx("beg")
        end_idx = self.get_beg_end_flag_idx("end")
        return [beg_idx, end_idx]

    def get_beg_end_flag_idx(self, beg_or_end):
        if beg_or_end == "beg":
            idx = np.array(self.dict[self.beg_str])
        elif beg_or_end == "end":
            idx = np.array(self.dict[self.end_str])
        else:
            assert False, "unsupport type %s in get_beg_end_flag_idx" \
                          % beg_or_end
MissPenguin's avatar
MissPenguin committed
279
        return idx
tink2123's avatar
tink2123 committed
280
281


tink2123's avatar
tink2123 committed
282
283
284
class SEEDLabelDecode(BaseRecLabelDecode):
    """ Convert between text-label and text-index """

tink2123's avatar
tink2123 committed
285
    def __init__(self, character_dict_path=None, use_space_char=False,
tink2123's avatar
tink2123 committed
286
287
                 **kwargs):
        super(SEEDLabelDecode, self).__init__(character_dict_path,
tink2123's avatar
tink2123 committed
288
                                              use_space_char)
tink2123's avatar
tink2123 committed
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359

    def add_special_char(self, dict_character):
        self.beg_str = "sos"
        self.end_str = "eos"
        dict_character = dict_character + [self.end_str]
        return dict_character

    def get_ignored_tokens(self):
        end_idx = self.get_beg_end_flag_idx("eos")
        return [end_idx]

    def get_beg_end_flag_idx(self, beg_or_end):
        if beg_or_end == "sos":
            idx = np.array(self.dict[self.beg_str])
        elif beg_or_end == "eos":
            idx = np.array(self.dict[self.end_str])
        else:
            assert False, "unsupport type %s in get_beg_end_flag_idx" % beg_or_end
        return idx

    def decode(self, text_index, text_prob=None, is_remove_duplicate=False):
        """ convert text-index into text-label. """
        result_list = []
        [end_idx] = self.get_ignored_tokens()
        batch_size = len(text_index)
        for batch_idx in range(batch_size):
            char_list = []
            conf_list = []
            for idx in range(len(text_index[batch_idx])):
                if int(text_index[batch_idx][idx]) == int(end_idx):
                    break
                if is_remove_duplicate:
                    # only for predict
                    if idx > 0 and text_index[batch_idx][idx - 1] == text_index[
                            batch_idx][idx]:
                        continue
                char_list.append(self.character[int(text_index[batch_idx][
                    idx])])
                if text_prob is not None:
                    conf_list.append(text_prob[batch_idx][idx])
                else:
                    conf_list.append(1)
            text = ''.join(char_list)
            result_list.append((text, np.mean(conf_list)))
        return result_list

    def __call__(self, preds, label=None, *args, **kwargs):
        """
        text = self.decode(text)
        if label is None:
            return text
        else:
            label = self.decode(label, is_remove_duplicate=False)
            return text, label
        """
        preds_idx = preds["rec_pred"]
        if isinstance(preds_idx, paddle.Tensor):
            preds_idx = preds_idx.numpy()
        if "rec_pred_scores" in preds:
            preds_idx = preds["rec_pred"]
            preds_prob = preds["rec_pred_scores"]
        else:
            preds_idx = preds["rec_pred"].argmax(axis=2)
            preds_prob = preds["rec_pred"].max(axis=2)
        text = self.decode(preds_idx, preds_prob, is_remove_duplicate=False)
        if label is None:
            return text
        label = self.decode(label, is_remove_duplicate=False)
        return text, label


tink2123's avatar
tink2123 committed
360
361
362
class SRNLabelDecode(BaseRecLabelDecode):
    """ Convert between text-label and text-index """

tink2123's avatar
tink2123 committed
363
    def __init__(self, character_dict_path=None, use_space_char=False,
tink2123's avatar
tink2123 committed
364
365
                 **kwargs):
        super(SRNLabelDecode, self).__init__(character_dict_path,
tink2123's avatar
tink2123 committed
366
                                             use_space_char)
367
        self.max_text_length = kwargs.get('max_text_length', 25)
tink2123's avatar
tink2123 committed
368
369
370
371
372
373
374
375
376
377
378

    def __call__(self, preds, label=None, *args, **kwargs):
        pred = preds['predict']
        char_num = len(self.character_str) + 2
        if isinstance(pred, paddle.Tensor):
            pred = pred.numpy()
        pred = np.reshape(pred, [-1, char_num])

        preds_idx = np.argmax(pred, axis=1)
        preds_prob = np.max(pred, axis=1)

379
        preds_idx = np.reshape(preds_idx, [-1, self.max_text_length])
tink2123's avatar
tink2123 committed
380

381
        preds_prob = np.reshape(preds_prob, [-1, self.max_text_length])
tink2123's avatar
tink2123 committed
382

tink2123's avatar
tink2123 committed
383
        text = self.decode(preds_idx, preds_prob)
tink2123's avatar
tink2123 committed
384
385

        if label is None:
LDOUBLEV's avatar
LDOUBLEV committed
386
            text = self.decode(preds_idx, preds_prob, is_remove_duplicate=False)
tink2123's avatar
tink2123 committed
387
            return text
tink2123's avatar
tink2123 committed
388
        label = self.decode(label)
tink2123's avatar
tink2123 committed
389
390
        return text, label

LDOUBLEV's avatar
LDOUBLEV committed
391
    def decode(self, text_index, text_prob=None, is_remove_duplicate=False):
tink2123's avatar
tink2123 committed
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
        """ convert text-index into text-label. """
        result_list = []
        ignored_tokens = self.get_ignored_tokens()
        batch_size = len(text_index)

        for batch_idx in range(batch_size):
            char_list = []
            conf_list = []
            for idx in range(len(text_index[batch_idx])):
                if text_index[batch_idx][idx] in ignored_tokens:
                    continue
                if is_remove_duplicate:
                    # only for predict
                    if idx > 0 and text_index[batch_idx][idx - 1] == text_index[
                            batch_idx][idx]:
                        continue
                char_list.append(self.character[int(text_index[batch_idx][
                    idx])])
                if text_prob is not None:
                    conf_list.append(text_prob[batch_idx][idx])
                else:
                    conf_list.append(1)

            text = ''.join(char_list)
            result_list.append((text, np.mean(conf_list)))
        return result_list

    def add_special_char(self, dict_character):
        dict_character = dict_character + [self.beg_str, self.end_str]
        return dict_character

    def get_ignored_tokens(self):
        beg_idx = self.get_beg_end_flag_idx("beg")
        end_idx = self.get_beg_end_flag_idx("end")
        return [beg_idx, end_idx]

    def get_beg_end_flag_idx(self, beg_or_end):
        if beg_or_end == "beg":
            idx = np.array(self.dict[self.beg_str])
        elif beg_or_end == "end":
            idx = np.array(self.dict[self.end_str])
        else:
            assert False, "unsupport type %s in get_beg_end_flag_idx" \
                          % beg_or_end
        return idx
WenmuZhou's avatar
WenmuZhou committed
437
438
439
440
441


class TableLabelDecode(object):
    """  """

andyjpaddle's avatar
andyjpaddle committed
442
443
444
    def __init__(self, character_dict_path, **kwargs):
        list_character, list_elem = self.load_char_elem_dict(
            character_dict_path)
WenmuZhou's avatar
WenmuZhou committed
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
        list_character = self.add_special_char(list_character)
        list_elem = self.add_special_char(list_elem)
        self.dict_character = {}
        self.dict_idx_character = {}
        for i, char in enumerate(list_character):
            self.dict_idx_character[i] = char
            self.dict_character[char] = i
        self.dict_elem = {}
        self.dict_idx_elem = {}
        for i, elem in enumerate(list_elem):
            self.dict_idx_elem[i] = elem
            self.dict_elem[elem] = i

    def load_char_elem_dict(self, character_dict_path):
        list_character = []
        list_elem = []
        with open(character_dict_path, "rb") as fin:
            lines = fin.readlines()
andyjpaddle's avatar
andyjpaddle committed
463
464
            substr = lines[0].decode('utf-8').strip("\n").strip("\r\n").split(
                "\t")
WenmuZhou's avatar
WenmuZhou committed
465
466
467
            character_num = int(substr[0])
            elem_num = int(substr[1])
            for cno in range(1, 1 + character_num):
WenmuZhou's avatar
WenmuZhou committed
468
                character = lines[cno].decode('utf-8').strip("\n").strip("\r\n")
WenmuZhou's avatar
WenmuZhou committed
469
470
                list_character.append(character)
            for eno in range(1 + character_num, 1 + character_num + elem_num):
WenmuZhou's avatar
WenmuZhou committed
471
                elem = lines[eno].decode('utf-8').strip("\n").strip("\r\n")
WenmuZhou's avatar
WenmuZhou committed
472
473
474
475
476
477
478
479
480
481
482
483
                list_elem.append(elem)
        return list_character, list_elem

    def add_special_char(self, list_character):
        self.beg_str = "sos"
        self.end_str = "eos"
        list_character = [self.beg_str] + list_character + [self.end_str]
        return list_character

    def __call__(self, preds):
        structure_probs = preds['structure_probs']
        loc_preds = preds['loc_preds']
andyjpaddle's avatar
andyjpaddle committed
484
        if isinstance(structure_probs, paddle.Tensor):
WenmuZhou's avatar
WenmuZhou committed
485
            structure_probs = structure_probs.numpy()
andyjpaddle's avatar
andyjpaddle committed
486
        if isinstance(loc_preds, paddle.Tensor):
WenmuZhou's avatar
WenmuZhou committed
487
488
489
            loc_preds = loc_preds.numpy()
        structure_idx = structure_probs.argmax(axis=2)
        structure_probs = structure_probs.max(axis=2)
andyjpaddle's avatar
andyjpaddle committed
490
491
        structure_str, structure_pos, result_score_list, result_elem_idx_list = self.decode(
            structure_idx, structure_probs, 'elem')
WenmuZhou's avatar
WenmuZhou committed
492
493
494
495
496
497
498
499
500
501
502
503
504
505
        res_html_code_list = []
        res_loc_list = []
        batch_num = len(structure_str)
        for bno in range(batch_num):
            res_loc = []
            for sno in range(len(structure_str[bno])):
                text = structure_str[bno][sno]
                if text in ['<td>', '<td']:
                    pos = structure_pos[bno][sno]
                    res_loc.append(loc_preds[bno, pos])
            res_html_code = ''.join(structure_str[bno])
            res_loc = np.array(res_loc)
            res_html_code_list.append(res_html_code)
            res_loc_list.append(res_loc)
andyjpaddle's avatar
andyjpaddle committed
506
507
508
509
510
511
512
        return {
            'res_html_code': res_html_code_list,
            'res_loc': res_loc_list,
            'res_score_list': result_score_list,
            'res_elem_idx_list': result_elem_idx_list,
            'structure_str_list': structure_str
        }
WenmuZhou's avatar
WenmuZhou committed
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576

    def decode(self, text_index, structure_probs, char_or_elem):
        """convert text-label into text-index.
        """
        if char_or_elem == "char":
            current_dict = self.dict_idx_character
        else:
            current_dict = self.dict_idx_elem
            ignored_tokens = self.get_ignored_tokens('elem')
            beg_idx, end_idx = ignored_tokens

        result_list = []
        result_pos_list = []
        result_score_list = []
        result_elem_idx_list = []
        batch_size = len(text_index)
        for batch_idx in range(batch_size):
            char_list = []
            elem_pos_list = []
            elem_idx_list = []
            score_list = []
            for idx in range(len(text_index[batch_idx])):
                tmp_elem_idx = int(text_index[batch_idx][idx])
                if idx > 0 and tmp_elem_idx == end_idx:
                    break
                if tmp_elem_idx in ignored_tokens:
                    continue

                char_list.append(current_dict[tmp_elem_idx])
                elem_pos_list.append(idx)
                score_list.append(structure_probs[batch_idx, idx])
                elem_idx_list.append(tmp_elem_idx)
            result_list.append(char_list)
            result_pos_list.append(elem_pos_list)
            result_score_list.append(score_list)
            result_elem_idx_list.append(elem_idx_list)
        return result_list, result_pos_list, result_score_list, result_elem_idx_list

    def get_ignored_tokens(self, char_or_elem):
        beg_idx = self.get_beg_end_flag_idx("beg", char_or_elem)
        end_idx = self.get_beg_end_flag_idx("end", char_or_elem)
        return [beg_idx, end_idx]

    def get_beg_end_flag_idx(self, beg_or_end, char_or_elem):
        if char_or_elem == "char":
            if beg_or_end == "beg":
                idx = self.dict_character[self.beg_str]
            elif beg_or_end == "end":
                idx = self.dict_character[self.end_str]
            else:
                assert False, "Unsupport type %s in get_beg_end_flag_idx of char" \
                              % beg_or_end
        elif char_or_elem == "elem":
            if beg_or_end == "beg":
                idx = self.dict_elem[self.beg_str]
            elif beg_or_end == "end":
                idx = self.dict_elem[self.end_str]
            else:
                assert False, "Unsupport type %s in get_beg_end_flag_idx of elem" \
                              % beg_or_end
        else:
            assert False, "Unsupport type %s in char_or_elem" \
                          % char_or_elem
        return idx
andyjpaddle's avatar
andyjpaddle committed
577
578
579
580
581


class SARLabelDecode(BaseRecLabelDecode):
    """ Convert between text-label and text-index """

tink2123's avatar
tink2123 committed
582
    def __init__(self, character_dict_path=None, use_space_char=False,
andyjpaddle's avatar
andyjpaddle committed
583
584
                 **kwargs):
        super(SARLabelDecode, self).__init__(character_dict_path,
tink2123's avatar
tink2123 committed
585
                                             use_space_char)
andyjpaddle's avatar
andyjpaddle committed
586

andyjpaddle's avatar
andyjpaddle committed
587
        self.rm_symbol = kwargs.get('rm_symbol', False)
andyjpaddle's avatar
andyjpaddle committed
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605

    def add_special_char(self, dict_character):
        beg_end_str = "<BOS/EOS>"
        unknown_str = "<UKN>"
        padding_str = "<PAD>"
        dict_character = dict_character + [unknown_str]
        self.unknown_idx = len(dict_character) - 1
        dict_character = dict_character + [beg_end_str]
        self.start_idx = len(dict_character) - 1
        self.end_idx = len(dict_character) - 1
        dict_character = dict_character + [padding_str]
        self.padding_idx = len(dict_character) - 1
        return dict_character

    def decode(self, text_index, text_prob=None, is_remove_duplicate=False):
        """ convert text-index into text-label. """
        result_list = []
        ignored_tokens = self.get_ignored_tokens()
andyjpaddle's avatar
andyjpaddle committed
606

andyjpaddle's avatar
andyjpaddle committed
607
608
609
610
611
612
613
614
        batch_size = len(text_index)
        for batch_idx in range(batch_size):
            char_list = []
            conf_list = []
            for idx in range(len(text_index[batch_idx])):
                if text_index[batch_idx][idx] in ignored_tokens:
                    continue
                if int(text_index[batch_idx][idx]) == int(self.end_idx):
andyjpaddle's avatar
andyjpaddle committed
615
                    if text_prob is None and idx == 0:
andyjpaddle's avatar
andyjpaddle committed
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
                        continue
                    else:
                        break
                if is_remove_duplicate:
                    # only for predict
                    if idx > 0 and text_index[batch_idx][idx - 1] == text_index[
                            batch_idx][idx]:
                        continue
                char_list.append(self.character[int(text_index[batch_idx][
                    idx])])
                if text_prob is not None:
                    conf_list.append(text_prob[batch_idx][idx])
                else:
                    conf_list.append(1)
            text = ''.join(char_list)
631
632
633
634
            if self.rm_symbol:
                comp = re.compile('[^A-Z^a-z^0-9^\u4e00-\u9fa5]')
                text = text.lower()
                text = comp.sub('', text)
andyjpaddle's avatar
andyjpaddle committed
635
636
637
638
639
640
641
642
            result_list.append((text, np.mean(conf_list)))
        return result_list

    def __call__(self, preds, label=None, *args, **kwargs):
        if isinstance(preds, paddle.Tensor):
            preds = preds.numpy()
        preds_idx = preds.argmax(axis=2)
        preds_prob = preds.max(axis=2)
andyjpaddle's avatar
andyjpaddle committed
643

andyjpaddle's avatar
andyjpaddle committed
644
645
646
647
648
649
650
651
652
        text = self.decode(preds_idx, preds_prob, is_remove_duplicate=False)

        if label is None:
            return text
        label = self.decode(label, is_remove_duplicate=False)
        return text, label

    def get_ignored_tokens(self):
        return [self.padding_idx]