utility.py 13.6 KB
Newer Older
LDOUBLEV's avatar
LDOUBLEV committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import argparse
WenmuZhou's avatar
WenmuZhou committed
16
import os
WenmuZhou's avatar
WenmuZhou committed
17
import sys
LDOUBLEV's avatar
LDOUBLEV committed
18
19
import cv2
import numpy as np
LDOUBLEV's avatar
LDOUBLEV committed
20
21
import json
from PIL import Image, ImageDraw, ImageFont
22
import math
WenmuZhou's avatar
WenmuZhou committed
23
24
from paddle.fluid.core import AnalysisConfig
from paddle.fluid.core import create_paddle_predictor
LDOUBLEV's avatar
LDOUBLEV committed
25
26
27
28
29
30
31


def parse_args():
    def str2bool(v):
        return v.lower() in ("true", "t", "1")

    parser = argparse.ArgumentParser()
WenmuZhou's avatar
WenmuZhou committed
32
    # params for prediction engine
LDOUBLEV's avatar
LDOUBLEV committed
33
34
35
36
37
    parser.add_argument("--use_gpu", type=str2bool, default=True)
    parser.add_argument("--ir_optim", type=str2bool, default=True)
    parser.add_argument("--use_tensorrt", type=str2bool, default=False)
    parser.add_argument("--gpu_mem", type=int, default=8000)

WenmuZhou's avatar
WenmuZhou committed
38
    # params for text detector
LDOUBLEV's avatar
LDOUBLEV committed
39
40
41
    parser.add_argument("--image_dir", type=str)
    parser.add_argument("--det_algorithm", type=str, default='DB')
    parser.add_argument("--det_model_dir", type=str)
WenmuZhou's avatar
WenmuZhou committed
42
43
    parser.add_argument("--det_limit_side_len", type=float, default=960)
    parser.add_argument("--det_limit_type", type=str, default='max')
LDOUBLEV's avatar
LDOUBLEV committed
44

WenmuZhou's avatar
WenmuZhou committed
45
    # DB parmas
LDOUBLEV's avatar
LDOUBLEV committed
46
47
    parser.add_argument("--det_db_thresh", type=float, default=0.3)
    parser.add_argument("--det_db_box_thresh", type=float, default=0.5)
WenmuZhou's avatar
WenmuZhou committed
48
    parser.add_argument("--det_db_unclip_ratio", type=float, default=1.6)
LDOUBLEV's avatar
LDOUBLEV committed
49

WenmuZhou's avatar
WenmuZhou committed
50
    # EAST parmas
LDOUBLEV's avatar
LDOUBLEV committed
51
52
53
54
    parser.add_argument("--det_east_score_thresh", type=float, default=0.8)
    parser.add_argument("--det_east_cover_thresh", type=float, default=0.1)
    parser.add_argument("--det_east_nms_thresh", type=float, default=0.2)

WenmuZhou's avatar
WenmuZhou committed
55
    # SAST parmas
licx's avatar
licx committed
56
57
    parser.add_argument("--det_sast_score_thresh", type=float, default=0.5)
    parser.add_argument("--det_sast_nms_thresh", type=float, default=0.2)
58
    parser.add_argument("--det_sast_polygon", type=bool, default=False)
licx's avatar
licx committed
59

WenmuZhou's avatar
WenmuZhou committed
60
    # params for text recognizer
LDOUBLEV's avatar
LDOUBLEV committed
61
62
    parser.add_argument("--rec_algorithm", type=str, default='CRNN')
    parser.add_argument("--rec_model_dir", type=str)
tink2123's avatar
fix bug  
tink2123 committed
63
64
    parser.add_argument("--rec_image_shape", type=str, default="3, 32, 320")
    parser.add_argument("--rec_char_type", type=str, default='ch')
WenmuZhou's avatar
WenmuZhou committed
65
    parser.add_argument("--rec_batch_num", type=int, default=6)
tink2123's avatar
fix bug  
tink2123 committed
66
    parser.add_argument("--max_text_length", type=int, default=25)
LDOUBLEV's avatar
LDOUBLEV committed
67
68
69
70
    parser.add_argument(
        "--rec_char_dict_path",
        type=str,
        default="./ppocr/utils/ppocr_keys_v1.txt")
WenmuZhou's avatar
WenmuZhou committed
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
    parser.add_argument("--use_space_char", type=str2bool, default=True)
    parser.add_argument(
        "--vis_font_path", type=str, default="./doc/simfang.ttf")

    # params for text classifier
    parser.add_argument("--use_angle_cls", type=str2bool, default=False)
    parser.add_argument("--cls_model_dir", type=str)
    parser.add_argument("--cls_image_shape", type=str, default="3, 48, 192")
    parser.add_argument("--label_list", type=list, default=['0', '180'])
    parser.add_argument("--cls_batch_num", type=int, default=30)
    parser.add_argument("--cls_thresh", type=float, default=0.9)

    parser.add_argument("--enable_mkldnn", type=str2bool, default=False)
    parser.add_argument("--use_zero_copy_run", type=str2bool, default=False)

    parser.add_argument("--use_pdserving", type=str2bool, default=False)

LDOUBLEV's avatar
LDOUBLEV committed
88
89
90
    return parser.parse_args()


WenmuZhou's avatar
WenmuZhou committed
91
92
93
94
95
96
97
98
99
100
101
def create_predictor(args, mode, logger):
    if mode == "det":
        model_dir = args.det_model_dir
    elif mode == 'cls':
        model_dir = args.cls_model_dir
    else:
        model_dir = args.rec_model_dir

    if model_dir is None:
        logger.info("not find {} model file path {}".format(mode, model_dir))
        sys.exit(0)
WenmuZhou's avatar
WenmuZhou committed
102
103
    model_file_path = model_dir + "/model"
    params_file_path = model_dir + "/params"
WenmuZhou's avatar
WenmuZhou committed
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
    if not os.path.exists(model_file_path):
        logger.info("not find model file path {}".format(model_file_path))
        sys.exit(0)
    if not os.path.exists(params_file_path):
        logger.info("not find params file path {}".format(params_file_path))
        sys.exit(0)

    config = AnalysisConfig(model_file_path, params_file_path)

    if args.use_gpu:
        config.enable_use_gpu(args.gpu_mem, 0)
    else:
        config.disable_gpu()
        config.set_cpu_math_library_num_threads(6)
        if args.enable_mkldnn:
            # cache 10 different shapes for mkldnn to avoid memory leak
            config.set_mkldnn_cache_capacity(10)
            config.enable_mkldnn()

    # config.enable_memory_optim()
    config.disable_glog_info()

    if args.use_zero_copy_run:
        config.delete_pass("conv_transpose_eltwiseadd_bn_fuse_pass")
        config.switch_use_feed_fetch_ops(False)
    else:
        config.switch_use_feed_fetch_ops(True)

    predictor = create_paddle_predictor(config)
    input_names = predictor.get_input_names()
    for name in input_names:
        input_tensor = predictor.get_input_tensor(name)
    output_names = predictor.get_output_names()
    output_tensors = []
    for output_name in output_names:
        output_tensor = predictor.get_output_tensor(output_name)
        output_tensors.append(output_tensor)
    return predictor, input_tensor, output_tensors


LDOUBLEV's avatar
LDOUBLEV committed
144
def draw_text_det_res(dt_boxes, img_path):
LDOUBLEV's avatar
LDOUBLEV committed
145
146
147
148
    src_im = cv2.imread(img_path)
    for box in dt_boxes:
        box = np.array(box).astype(np.int32).reshape(-1, 2)
        cv2.polylines(src_im, [box], True, color=(255, 255, 0), thickness=2)
LDOUBLEV's avatar
LDOUBLEV committed
149
    return src_im
LDOUBLEV's avatar
LDOUBLEV committed
150
151


LDOUBLEV's avatar
LDOUBLEV committed
152
153
def resize_img(img, input_size=600):
    """
LDOUBLEV's avatar
LDOUBLEV committed
154
    resize img and limit the longest side of the image to input_size
LDOUBLEV's avatar
LDOUBLEV committed
155
156
157
158
159
    """
    img = np.array(img)
    im_shape = img.shape
    im_size_max = np.max(im_shape[0:2])
    im_scale = float(input_size) / float(im_size_max)
WenmuZhou's avatar
WenmuZhou committed
160
161
    img = cv2.resize(img, None, None, fx=im_scale, fy=im_scale)
    return img
LDOUBLEV's avatar
LDOUBLEV committed
162
163


WenmuZhou's avatar
WenmuZhou committed
164
165
166
167
168
169
def draw_ocr(image,
             boxes,
             txts=None,
             scores=None,
             drop_score=0.5,
             font_path="./doc/simfang.ttf"):
170
171
172
    """
    Visualize the results of OCR detection and recognition
    args:
LDOUBLEV's avatar
LDOUBLEV committed
173
        image(Image|array): RGB image
174
175
176
177
        boxes(list): boxes with shape(N, 4, 2)
        txts(list): the texts
        scores(list): txxs corresponding scores
        drop_score(float): only scores greater than drop_threshold will be visualized
WenmuZhou's avatar
WenmuZhou committed
178
        font_path: the path of font which is used to draw text
179
180
181
    return(array):
        the visualized img
    """
LDOUBLEV's avatar
LDOUBLEV committed
182
183
    if scores is None:
        scores = [1] * len(boxes)
WenmuZhou's avatar
WenmuZhou committed
184
185
186
187
    box_num = len(boxes)
    for i in range(box_num):
        if scores is not None and (scores[i] < drop_score or
                                   math.isnan(scores[i])):
LDOUBLEV's avatar
LDOUBLEV committed
188
            continue
WenmuZhou's avatar
WenmuZhou committed
189
        box = np.reshape(np.array(boxes[i]), [-1, 1, 2]).astype(np.int64)
LDOUBLEV's avatar
LDOUBLEV committed
190
        image = cv2.polylines(np.array(image), [box], True, (255, 0, 0), 2)
WenmuZhou's avatar
WenmuZhou committed
191
    if txts is not None:
LDOUBLEV's avatar
LDOUBLEV committed
192
        img = np.array(resize_img(image, input_size=600))
193
        txt_img = text_visual(
WenmuZhou's avatar
WenmuZhou committed
194
195
196
197
198
199
            txts,
            scores,
            img_h=img.shape[0],
            img_w=600,
            threshold=drop_score,
            font_path=font_path)
200
        img = np.concatenate([np.array(img), np.array(txt_img)], axis=1)
LDOUBLEV's avatar
LDOUBLEV committed
201
202
        return img
    return image
203
204


205
206
207
208
def draw_ocr_box_txt(image, boxes, txts):
    h, w = image.height, image.width
    img_left = image.copy()
    img_right = Image.new('RGB', (w, h), (255, 255, 255))
209
210

    import random
LDOUBLEV's avatar
LDOUBLEV committed
211

212
213
214
    random.seed(0)
    draw_left = ImageDraw.Draw(img_left)
    draw_right = ImageDraw.Draw(img_right)
215
    for (box, txt) in zip(boxes, txts):
tink2123's avatar
tink2123 committed
216
217
        color = (random.randint(0, 255), random.randint(0, 255),
                 random.randint(0, 255))
218
        draw_left.polygon(box, fill=color)
tink2123's avatar
tink2123 committed
219
220
221
222
223
224
225
226
227
228
        draw_right.polygon(
            [
                box[0][0], box[0][1], box[1][0], box[1][1], box[2][0],
                box[2][1], box[3][0], box[3][1]
            ],
            outline=color)
        box_height = math.sqrt((box[0][0] - box[3][0])**2 + (box[0][1] - box[3][
            1])**2)
        box_width = math.sqrt((box[0][0] - box[1][0])**2 + (box[0][1] - box[1][
            1])**2)
229
230
        if box_height > 2 * box_width:
            font_size = max(int(box_width * 0.9), 10)
tink2123's avatar
tink2123 committed
231
232
            font = ImageFont.truetype(
                "./doc/simfang.ttf", font_size, encoding="utf-8")
233
234
235
            cur_y = box[0][1]
            for c in txt:
                char_size = font.getsize(c)
tink2123's avatar
tink2123 committed
236
237
                draw_right.text(
                    (box[0][0] + 3, cur_y), c, fill=(0, 0, 0), font=font)
238
239
240
                cur_y += char_size[1]
        else:
            font_size = max(int(box_height * 0.8), 10)
tink2123's avatar
tink2123 committed
241
242
243
244
            font = ImageFont.truetype(
                "./doc/simfang.ttf", font_size, encoding="utf-8")
            draw_right.text(
                [box[0][0], box[0][1]], txt, fill=(0, 0, 0), font=font)
245
246
247
248
    img_left = Image.blend(image, img_left, 0.5)
    img_show = Image.new('RGB', (w * 2, h), (255, 255, 255))
    img_show.paste(img_left, (0, 0, w, h))
    img_show.paste(img_right, (w, 0, w * 2, h))
249
250
251
    return np.array(img_show)


252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
def str_count(s):
    """
    Count the number of Chinese characters,
    a single English character and a single number
    equal to half the length of Chinese characters.

    args:
        s(string): the input of string
    return(int):
        the number of Chinese characters
    """
    import string
    count_zh = count_pu = 0
    s_len = len(s)
    en_dg_count = 0
    for c in s:
        if c in string.ascii_letters or c.isdigit() or c.isspace():
            en_dg_count += 1
        elif c.isalpha():
            count_zh += 1
        else:
            count_pu += 1
    return s_len - math.ceil(en_dg_count / 2)


WenmuZhou's avatar
WenmuZhou committed
277
278
279
280
281
282
def text_visual(texts,
                scores,
                img_h=400,
                img_w=600,
                threshold=0.,
                font_path="./doc/simfang.ttf"):
283
284
285
286
287
288
289
    """
    create new blank img and draw txt on it
    args:
        texts(list): the text will be draw
        scores(list|None): corresponding score of each txt
        img_h(int): the height of blank img
        img_w(int): the width of blank img
WenmuZhou's avatar
WenmuZhou committed
290
        font_path: the path of font which is used to draw text
291
292
293
294
295
296
297
298
299
300
    return(array):

    """
    if scores is not None:
        assert len(texts) == len(
            scores), "The number of txts and corresponding scores must match"

    def create_blank_img():
        blank_img = np.ones(shape=[img_h, img_w], dtype=np.int8) * 255
        blank_img[:, img_w - 1:] = 0
LDOUBLEV's avatar
LDOUBLEV committed
301
302
        blank_img = Image.fromarray(blank_img).convert("RGB")
        draw_txt = ImageDraw.Draw(blank_img)
303
        return blank_img, draw_txt
LDOUBLEV's avatar
LDOUBLEV committed
304

305
306
307
308
    blank_img, draw_txt = create_blank_img()

    font_size = 20
    txt_color = (0, 0, 0)
WenmuZhou's avatar
WenmuZhou committed
309
    font = ImageFont.truetype(font_path, font_size, encoding="utf-8")
310
311
312

    gap = font_size + 5
    txt_img_list = []
LDOUBLEV's avatar
LDOUBLEV committed
313
    count, index = 1, 0
314
315
    for idx, txt in enumerate(texts):
        index += 1
LDOUBLEV's avatar
LDOUBLEV committed
316
        if scores[idx] < threshold or math.isnan(scores[idx]):
317
318
319
320
321
322
323
324
325
326
327
            index -= 1
            continue
        first_line = True
        while str_count(txt) >= img_w // font_size - 4:
            tmp = txt
            txt = tmp[:img_w // font_size - 4]
            if first_line:
                new_txt = str(index) + ': ' + txt
                first_line = False
            else:
                new_txt = '    ' + txt
LDOUBLEV's avatar
LDOUBLEV committed
328
            draw_txt.text((0, gap * count), new_txt, txt_color, font=font)
329
330
331
332
333
            txt = tmp[img_w // font_size - 4:]
            if count >= img_h // gap - 1:
                txt_img_list.append(np.array(blank_img))
                blank_img, draw_txt = create_blank_img()
                count = 0
LDOUBLEV's avatar
LDOUBLEV committed
334
            count += 1
335
336
337
        if first_line:
            new_txt = str(index) + ': ' + txt + '   ' + '%.3f' % (scores[idx])
        else:
LDOUBLEV's avatar
LDOUBLEV committed
338
            new_txt = "  " + txt + "  " + '%.3f' % (scores[idx])
LDOUBLEV's avatar
LDOUBLEV committed
339
        draw_txt.text((0, gap * count), new_txt, txt_color, font=font)
340
        # whether add new blank img or not
LDOUBLEV's avatar
LDOUBLEV committed
341
        if count >= img_h // gap - 1 and idx + 1 < len(texts):
342
343
344
            txt_img_list.append(np.array(blank_img))
            blank_img, draw_txt = create_blank_img()
            count = 0
LDOUBLEV's avatar
LDOUBLEV committed
345
        count += 1
346
347
348
349
350
351
    txt_img_list.append(np.array(blank_img))
    if len(txt_img_list) == 1:
        blank_img = np.array(txt_img_list[0])
    else:
        blank_img = np.concatenate(txt_img_list, axis=1)
    return np.array(blank_img)
LDOUBLEV's avatar
LDOUBLEV committed
352
353


dyning's avatar
dyning committed
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
def base64_to_cv2(b64str):
    import base64
    data = base64.b64decode(b64str.encode('utf8'))
    data = np.fromstring(data, np.uint8)
    data = cv2.imdecode(data, cv2.IMREAD_COLOR)
    return data


def draw_boxes(image, boxes, scores=None, drop_score=0.5):
    if scores is None:
        scores = [1] * len(boxes)
    for (box, score) in zip(boxes, scores):
        if score < drop_score:
            continue
        box = np.reshape(np.array(box), [-1, 1, 2]).astype(np.int64)
        image = cv2.polylines(np.array(image), [box], True, (255, 0, 0), 2)
    return image


LDOUBLEV's avatar
LDOUBLEV committed
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
if __name__ == '__main__':
    test_img = "./doc/test_v2"
    predict_txt = "./doc/predict.txt"
    f = open(predict_txt, 'r')
    data = f.readlines()
    img_path, anno = data[0].strip().split('\t')
    img_name = os.path.basename(img_path)
    img_path = os.path.join(test_img, img_name)
    image = Image.open(img_path)

    data = json.loads(anno)
    boxes, txts, scores = [], [], []
    for dic in data:
        boxes.append(dic['points'])
        txts.append(dic['transcription'])
        scores.append(round(dic['scores'], 3))

WenmuZhou's avatar
WenmuZhou committed
390
    new_img = draw_ocr(image, boxes, txts, scores)
LDOUBLEV's avatar
LDOUBLEV committed
391

MissPenguin's avatar
MissPenguin committed
392
    cv2.imwrite(img_name, new_img)