README.md 36.1 KB
Newer Older
xuchao's avatar
xuchao committed
1
2
<div align="center" xmlns="http://www.w3.org/1999/html">
<!-- logo -->
徐超's avatar
徐超 committed
3
<p align="center">
drunkpig's avatar
drunkpig committed
4
  <img src="docs/images/MinerU-logo.png" width="300px" style="vertical-align:middle;">
徐超's avatar
徐超 committed
5
6
</p>

xuchao's avatar
xuchao committed
7
<!-- icon -->
8

赵小蒙's avatar
赵小蒙 committed
9
10
11
[![stars](https://img.shields.io/github/stars/opendatalab/MinerU.svg)](https://github.com/opendatalab/MinerU)
[![forks](https://img.shields.io/github/forks/opendatalab/MinerU.svg)](https://github.com/opendatalab/MinerU)
[![open issues](https://img.shields.io/github/issues-raw/opendatalab/MinerU)](https://github.com/opendatalab/MinerU/issues)
myhloli's avatar
myhloli committed
12
13
14
15
[![issue resolution](https://img.shields.io/github/issues-closed-raw/opendatalab/MinerU)](https://github.com/opendatalab/MinerU/issues)
[![PyPI version](https://badge.fury.io/py/magic-pdf.svg)](https://badge.fury.io/py/magic-pdf)
[![Downloads](https://static.pepy.tech/badge/magic-pdf)](https://pepy.tech/project/magic-pdf)
[![Downloads](https://static.pepy.tech/badge/magic-pdf/month)](https://pepy.tech/project/magic-pdf)
16

quyuan's avatar
quyuan committed
17
<<<<<<< HEAD
18
19
[![HuggingFace](https://img.shields.io/badge/HuggingFace-Demo-yellow.svg?logo=)](https://huggingface.co/spaces/opendatalab/MinerU)
[![ModelScope](https://img.shields.io/badge/ModelScope-Demo-purple?logo=&labelColor=white)](https://www.modelscope.cn/studios/OpenDataLab/MinerU)
quyuan's avatar
quyuan committed
20
=======
Xiaomeng Zhao's avatar
Xiaomeng Zhao committed
21
22
23
[![OpenDataLab](https://img.shields.io/badge/Demo_on_OpenDataLab-blue?logo=&labelColor=white)](https://opendatalab.com/OpenSourceTools/Extractor/PDF)
[![HuggingFace](https://img.shields.io/badge/Demo_on_HuggingFace-yellow.svg?logo=&labelColor=white)](https://huggingface.co/spaces/opendatalab/MinerU)
[![ModelScope](https://img.shields.io/badge/Demo_on_ModelScope-purple?logo=&labelColor=white)](https://www.modelscope.cn/studios/OpenDataLab/MinerU)
quyuan's avatar
quyuan committed
24
>>>>>>> 0140d7d271ac3b1561ca2272030e9e038b469999
25
26
27
[![Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/gist/papayalove/b5f4913389e7ff9883c6b687de156e78/mineru_demo.ipynb)
[![Paper](https://img.shields.io/badge/Paper-arXiv-green)](#)

xuchao's avatar
xuchao committed
28
<a href="https://trendshift.io/repositories/11174" target="_blank"><img src="https://trendshift.io/api/badge/repositories/11174" alt="opendatalab%2FMinerU | Trendshift" style="width: 250px; height: 55px;" width="250" height="55"/></a>
drunkpig's avatar
drunkpig committed
29

xuchao's avatar
xuchao committed
30
<!-- language -->
31

xuchao's avatar
xuchao committed
32
[English](README.md) | [简体中文](README_zh-CN.md)
赵小蒙's avatar
赵小蒙 committed
33

xuchao's avatar
xuchao committed
34
<!-- hot link -->
35

徐超's avatar
徐超 committed
36
<p align="center">
xuchao's avatar
xuchao committed
37
<a href="https://github.com/opendatalab/PDF-Extract-Kit">PDF-Extract-Kit: High-Quality PDF Extraction Toolkit</a>🔥🔥🔥
徐超's avatar
徐超 committed
38
39
</p>

xuchao's avatar
xuchao committed
40
<!-- join us -->
41

徐超's avatar
徐超 committed
42
<p align="center">
xuchao's avatar
xuchao committed
43
    👋 join us on <a href="https://discord.gg/Tdedn9GTXq" target="_blank">Discord</a> and <a href="https://cdn.vansin.top/internlm/mineru.jpg" target="_blank">WeChat</a>
徐超's avatar
徐超 committed
44
</p>
赵小蒙's avatar
赵小蒙 committed
45

xuchao's avatar
xuchao committed
46
</div>
赵小蒙's avatar
赵小蒙 committed
47

xuchao's avatar
xuchao committed
48
# Changelog
drunkpig's avatar
drunkpig committed
49
- 2024/09/09: Version 0.8.0 released, supporting fast deployment with Dockerfile, and launching demos on Huggingface and Modelscope.
50
- 2024/08/30: Version 0.7.1 released, add paddle tablemaster table recognition option
xuchao's avatar
xuchao committed
51
52
53
54
55
- 2024/08/09: Version 0.7.0b1 released, simplified installation process, added table recognition functionality
- 2024/08/01: Version 0.6.2b1 released, optimized dependency conflict issues and installation documentation
- 2024/07/05: Initial open-source release

<!-- TABLE OF CONTENT -->
56

xuchao's avatar
xuchao committed
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
<details open="open">
  <summary><h2 style="display: inline-block">Table of Contents</h2></summary>
  <ol>
    <li>
      <a href="#mineru">MinerU</a>
      <ul>
        <li><a href="#project-introduction">Project Introduction</a></li>
        <li><a href="#key-features">Key Features</a></li>
        <li><a href="#quick-start">Quick Start</a>
            <ul>
            <li><a href="#online-demo">Online Demo</a></li>
            <li><a href="#quick-cpu-demo">Quick CPU Demo</a></li>
            <li><a href="#using-gpu">Using GPU</a></li>
            </ul>
        </li>
        <li><a href="#usage">Usage</a>
            <ul>
            <li><a href="#command-line">Command Line</a></li>
            <li><a href="#api">API</a></li>
            <li><a href="#development-guide">Development Guide</a></li>
            </ul>
        </li>
      </ul>
    </li>
    <li><a href="#todo">TODO</a></li>
    <li><a href="#known-issues">Known Issues</a></li>
    <li><a href="#faq">FAQ</a></li>
    <li><a href="#all-thanks-to-our-contributors">All Thanks To Our Contributors</a></li>
    <li><a href="#license-information">License Information</a></li>
    <li><a href="#acknowledgments">Acknowledgments</a></li>
    <li><a href="#citation">Citation</a></li>
    <li><a href="#star-history">Star History</a></li>
    <li><a href="#magic-doc">Magic-doc</a></li>
    <li><a href="#magic-html">Magic-html</a></li>
    <li><a href="#links">Links</a></li>
  </ol>
</details>

# MinerU
96

xuchao's avatar
xuchao committed
97
## Project Introduction
98

xuchao's avatar
xuchao committed
99
100
101
MinerU is a tool that converts PDFs into machine-readable formats (e.g., markdown, JSON), allowing for easy extraction into any format.
MinerU was born during the pre-training process of [InternLM](https://github.com/InternLM/InternLM). We focus on solving symbol conversion issues in scientific literature and hope to contribute to technological development in the era of large models.
Compared to well-known commercial products, MinerU is still young. If you encounter any issues or if the results are not as expected, please submit an issue on [issue](https://github.com/opendatalab/MinerU/issues) and **attach the relevant PDF**.
myhloli's avatar
myhloli committed
102

Xiaomeng Zhao's avatar
Xiaomeng Zhao committed
103
https://github.com/user-attachments/assets/4bea02c9-6d54-4cd6-97ed-dff14340982c
myhloli's avatar
myhloli committed
104

xuchao's avatar
xuchao committed
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
## Key Features

- Removes elements such as headers, footers, footnotes, and page numbers while maintaining semantic continuity
- Outputs text in a human-readable order from multi-column documents
- Retains the original structure of the document, including titles, paragraphs, and lists
- Extracts images, image captions, tables, and table captions
- Automatically recognizes formulas in the document and converts them to LaTeX
- Automatically recognizes tables in the document and converts them to LaTeX
- Automatically detects and enables OCR for corrupted PDFs
- Supports both CPU and GPU environments
- Supports Windows, Linux, and Mac platforms

## Quick Start

If you encounter any installation issues, please first consult the <a href="#faq">FAQ</a>. </br>
If the parsing results are not as expected, refer to the <a href="#known-issues">Known Issues</a>. </br>
There are three different ways to experience MinerU:
122

xuchao's avatar
xuchao committed
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
- [Online Demo (No Installation Required)](#online-demo)
- [Quick CPU Demo (Windows, Linux, Mac)](#quick-cpu-demo)
- [Linux/Windows + CUDA](#Using-GPU)

**⚠️ Pre-installation Notice—Hardware and Software Environment Support**

To ensure the stability and reliability of the project, we only optimize and test for specific hardware and software environments during development. This ensures that users deploying and running the project on recommended system configurations will get the best performance with the fewest compatibility issues.

By focusing resources on the mainline environment, our team can more efficiently resolve potential bugs and develop new features.

In non-mainline environments, due to the diversity of hardware and software configurations, as well as third-party dependency compatibility issues, we cannot guarantee 100% project availability. Therefore, for users who wish to use this project in non-recommended environments, we suggest carefully reading the documentation and FAQ first. Most issues already have corresponding solutions in the FAQ. We also encourage community feedback to help us gradually expand support.

<table>
    <tr>
        <td colspan="3" rowspan="2">Operating System</td>
    </tr>
    <tr>
        <td>Ubuntu 22.04 LTS</td>
        <td>Windows 10 / 11</td>
        <td>macOS 11+</td>
    </tr>
    <tr>
        <td colspan="3">CPU</td>
        <td>x86_64</td>
        <td>x86_64</td>
        <td>x86_64 / arm64</td>
    </tr>
    <tr>
        <td colspan="3">Memory</td>
        <td colspan="3">16GB or more, recommended 32GB+</td>
    </tr>
    <tr>
        <td colspan="3">Python Version</td>
        <td colspan="3">3.10</td>
    </tr>
    <tr>
        <td colspan="3">Nvidia Driver Version</td>
        <td>latest (Proprietary Driver)</td>
        <td>latest</td>
        <td>None</td>
    </tr>
    <tr>
        <td colspan="3">CUDA Environment</td>
        <td>Automatic installation [12.1 (pytorch) + 11.8 (paddle)]</td>
        <td>11.8 (manual installation) + cuDNN v8.7.0 (manual installation)</td>
        <td>None</td>
    </tr>
    <tr>
        <td rowspan="2">GPU Hardware Support List</td>
        <td colspan="2">Minimum Requirement 8G+ VRAM</td>
        <td colspan="2">3060ti/3070/3080/3080ti/4060/4070/4070ti<br>
        8G VRAM only enables layout and formula recognition acceleration</td>
        <td rowspan="2">None</td>
    </tr>
    <tr>
        <td colspan="2">Recommended Configuration 16G+ VRAM</td>
        <td colspan="2">3090/3090ti/4070ti super/4080/4090<br>
sfk's avatar
sfk committed
180
181
182
        16G or more can enable layout, formula recognition, and OCR acceleration simultaneously<br>
        24G or more can enable layout, formula recognition, OCR acceleration and table recognition simultaneously
        </td>
xuchao's avatar
xuchao committed
183
184
185
186
187
    </tr>
</table>

### Online Demo

Xiaomeng Zhao's avatar
Xiaomeng Zhao committed
188
189
190
[![OpenDataLab](https://img.shields.io/badge/Demo_on_OpenDataLab-blue?logo=&labelColor=white)](https://opendatalab.com/OpenSourceTools/Extractor/PDF)
[![HuggingFace](https://img.shields.io/badge/Demo_on_HuggingFace-yellow.svg?logo=&labelColor=white)](https://huggingface.co/spaces/opendatalab/MinerU)
[![ModelScope](https://img.shields.io/badge/Demo_on_ModelScope-purple?logo=&labelColor=white)](https://www.modelscope.cn/studios/OpenDataLab/MinerU)
xuchao's avatar
xuchao committed
191
192
193
194

### Quick CPU Demo

#### 1. Install magic-pdf
195

196
197
198
```bash
conda create -n MinerU python=3.10
conda activate MinerU
199
pip install -U magic-pdf[full] --extra-index-url https://wheels.myhloli.com
200
```
201

xuchao's avatar
xuchao committed
202
203
204
#### 2. Download model weight files

Refer to [How to Download Model Files](docs/how_to_download_models_en.md) for detailed instructions.
205

xuchao's avatar
xuchao committed
206
> ❗️After downloading the models, please make sure to verify the completeness of the model files.
207
>
xuchao's avatar
xuchao committed
208
209
210
> Check if the model file sizes match the description on the webpage. If possible, use sha256 to verify the integrity of the files.

#### 3. Copy and configure the template file
211

xuchao's avatar
xuchao committed
212
You can find the `magic-pdf.template.json` template configuration file in the root directory of the repository.
213

xuchao's avatar
xuchao committed
214
> ❗️Make sure to execute the following command to copy the configuration file to your **user directory**; otherwise, the program will not run.
215
>
xuchao's avatar
xuchao committed
216
> The user directory for Windows is `C:\Users\YourUsername`, for Linux it is `/home/YourUsername`, and for macOS it is `/Users/YourUsername`.
217

赵小蒙's avatar
赵小蒙 committed
218
```bash
赵小蒙's avatar
赵小蒙 committed
219
cp magic-pdf.template.json ~/magic-pdf.json
220
```
221

xuchao's avatar
xuchao committed
222
Find the `magic-pdf.json` file in your user directory and configure the "models-dir" path to point to the directory where the model weight files were downloaded in [Step 2](#2-download-model-weight-files).
223

xuchao's avatar
xuchao committed
224
225
226
> ❗️Make sure to correctly configure the **absolute path** to the model weight files directory, otherwise the program will not run because it can't find the model files.
>
> On Windows, this path should include the drive letter and all backslashes (`\`) in the path should be replaced with forward slashes (`/`) to avoid syntax errors in the JSON file due to escape sequences.
227
>
xuchao's avatar
xuchao committed
228
> For example: If the models are stored in the "models" directory at the root of the D drive, the "model-dir" value should be `D:/models`.
229

230
231
```json
{
xuchao's avatar
xuchao committed
232
233
234
  // other config
  "models-dir": "D:/models",
  "table-config": {
235
        "model": "TableMaster", // Another option of this value is 'struct_eqtable'
xuchao's avatar
xuchao committed
236
237
238
        "is_table_recog_enable": false, // Table recognition is disabled by default, modify this value to enable it
        "max_time": 400
    }
239
240
241
}
```

xuchao's avatar
xuchao committed
242
### Using GPU
243

xuchao's avatar
xuchao committed
244
If your device supports CUDA and meets the GPU requirements of the mainline environment, you can use GPU acceleration. Please select the appropriate guide based on your system:
245

xuchao's avatar
xuchao committed
246
247
- [Ubuntu 22.04 LTS + GPU](docs/README_Ubuntu_CUDA_Acceleration_en_US.md)
- [Windows 10/11 + GPU](docs/README_Windows_CUDA_Acceleration_en_US.md)
248
249
- Quick Deployment with Docker
    > Docker requires a GPU with at least 16GB of VRAM, and all acceleration features are enabled by default.
250
251
252
253
254
255
    >
    > Before running this Docker, you can use the following command to check if your device supports CUDA acceleration on Docker.
    > 
    > ```bash
    > docker run --rm --gpus=all nvidia/cuda:12.1.0-base-ubuntu22.04 nvidia-smi
    > ```
256
257
  ```bash
  wget https://github.com/opendatalab/MinerU/raw/master/Dockerfile
258
259
  docker build -t mineru:latest .
  docker run --rm -it --gpus=all mineru:latest /bin/bash
260
261
  magic-pdf --help
  ```
262

xuchao's avatar
xuchao committed
263
## Usage
264

xuchao's avatar
xuchao committed
265
### Command Line
266
267

```bash
xuchao's avatar
xuchao committed
268
269
270
271
272
273
274
magic-pdf --help
Usage: magic-pdf [OPTIONS]

Options:
  -v, --version                display the version and exit
  -p, --path PATH              local pdf filepath or directory  [required]
  -o, --output-dir TEXT        output local directory
275
  -m, --method [ocr|txt|auto]  the method for parsing pdf.
xuchao's avatar
xuchao committed
276
277
278
279
                               ocr: using ocr technique to extract information from pdf,
                               txt: suitable for the text-based pdf only and outperform ocr,
                               auto: automatically choose the best method for parsing pdf
                                  from ocr and txt.
280
                               without method specified, auto will be used by default.
xuchao's avatar
xuchao committed
281
282
283
284
285
286
287
288
  --help                       Show this message and exit.


## show version
magic-pdf -v

## command line example
magic-pdf -p {some_pdf} -o {some_output_dir} -m auto
289
290
```

xuchao's avatar
xuchao committed
291
292
293
294
`{some_pdf}` can be a single PDF file or a directory containing multiple PDFs.
The results will be saved in the `{some_output_dir}` directory. The output file list is as follows:

```text
295
296
297
298
299
300
301
├── some_pdf.md                          # markdown file
├── images                               # directory for storing images
├── some_pdf_layout.pdf                  # layout diagram
├── some_pdf_middle.json                 # MinerU intermediate processing result
├── some_pdf_model.json                  # model inference result
├── some_pdf_origin.pdf                  # original PDF file
└── some_pdf_spans.pdf                   # smallest granularity bbox position information diagram
302
303
```

xuchao's avatar
xuchao committed
304
For more information about the output files, please refer to the [Output File Description](docs/output_file_en_us.md).
305

xuchao's avatar
xuchao committed
306
### API
赵小蒙's avatar
赵小蒙 committed
307

xuchao's avatar
xuchao committed
308
Processing files from local disk
309

赵小蒙's avatar
赵小蒙 committed
310
311
312
```python
image_writer = DiskReaderWriter(local_image_dir)
image_dir = str(os.path.basename(local_image_dir))
313
jso_useful_key = {"_pdf_type": "", "model_list": []}
赵小蒙's avatar
赵小蒙 committed
314
315
pipe = UNIPipe(pdf_bytes, jso_useful_key, image_writer)
pipe.pipe_classify()
xuchao's avatar
xuchao committed
316
pipe.pipe_analyze()
赵小蒙's avatar
赵小蒙 committed
317
318
319
320
pipe.pipe_parse()
md_content = pipe.pipe_mk_markdown(image_dir, drop_mode="none")
```

xuchao's avatar
xuchao committed
321
Processing files from object storage
322

赵小蒙's avatar
赵小蒙 committed
323
324
325
326
327
```python
s3pdf_cli = S3ReaderWriter(pdf_ak, pdf_sk, pdf_endpoint)
image_dir = "s3://img_bucket/"
s3image_cli = S3ReaderWriter(img_ak, img_sk, img_endpoint, parent_path=image_dir)
pdf_bytes = s3pdf_cli.read(s3_pdf_path, mode=s3pdf_cli.MODE_BIN)
328
jso_useful_key = {"_pdf_type": "", "model_list": []}
赵小蒙's avatar
赵小蒙 committed
329
330
pipe = UNIPipe(pdf_bytes, jso_useful_key, s3image_cli)
pipe.pipe_classify()
xuchao's avatar
xuchao committed
331
pipe.pipe_analyze()
赵小蒙's avatar
赵小蒙 committed
332
333
334
335
pipe.pipe_parse()
md_content = pipe.pipe_mk_markdown(image_dir, drop_mode="none")
```

xuchao's avatar
xuchao committed
336
For detailed implementation, refer to:
337

xuchao's avatar
xuchao committed
338
339
- [demo.py Simplest Processing Method](demo/demo.py)
- [magic_pdf_parse_main.py More Detailed Processing Workflow](demo/magic_pdf_parse_main.py)
赵小蒙's avatar
赵小蒙 committed
340

xuchao's avatar
xuchao committed
341
### Development Guide
赵小蒙's avatar
赵小蒙 committed
342

xuchao's avatar
xuchao committed
343
TODO
赵小蒙's avatar
赵小蒙 committed
344

xuchao's avatar
xuchao committed
345
# TODO
赵小蒙's avatar
赵小蒙 committed
346

xuchao's avatar
xuchao committed
347
348
349
350
351
- [ ] Semantic-based reading order
- [ ] List recognition within the text
- [ ] Code block recognition within the text
- [ ] Table of contents recognition
- [x] Table recognition
352
- [ ] [Chemical formula recognition](docs/chemical_knowledge_introduction/introduction.pdf)
xuchao's avatar
xuchao committed
353
- [ ] Geometric shape recognition
赵小蒙's avatar
赵小蒙 committed
354

xuchao's avatar
xuchao committed
355
# Known Issues
356

xuchao's avatar
xuchao committed
357
358
359
360
361
362
- Reading order is segmented based on rules, which can cause disordered sequences in some cases
- Vertical text is not supported
- Lists, code blocks, and table of contents are not yet supported in the layout model
- Comic books, art books, elementary school textbooks, and exercise books are not well-parsed yet
- Enabling OCR may produce better results in PDFs with a high density of formulas
- If you are processing PDFs with a large number of formulas, it is strongly recommended to enable the OCR function. When using PyMuPDF to extract text, overlapping text lines can occur, leading to inaccurate formula insertion positions.
赵小蒙's avatar
赵小蒙 committed
363

364

xuchao's avatar
xuchao committed
365
# FAQ
366

xuchao's avatar
xuchao committed
367
[FAQ in Chinese](docs/FAQ_zh_cn.md)
赵小蒙's avatar
赵小蒙 committed
368

xuchao's avatar
xuchao committed
369
[FAQ in English](docs/FAQ_en_us.md)
赵小蒙's avatar
赵小蒙 committed
370

赵小蒙's avatar
赵小蒙 committed
371
372
# All Thanks To Our Contributors

373
<a href="https://github.com/opendatalab/MinerU/graphs/contributors">
赵小蒙's avatar
赵小蒙 committed
374
375
376
377
378
379
380
  <img src="https://contrib.rocks/image?repo=opendatalab/MinerU" />
</a>

# License Information

[LICENSE.md](LICENSE.md)

xuchao's avatar
xuchao committed
381
This project currently uses PyMuPDF to achieve advanced functionality. However, since it adheres to the AGPL license, it may impose restrictions on certain usage scenarios. In future iterations, we plan to explore and replace it with a more permissive PDF processing library to enhance user-friendliness and flexibility.
赵小蒙's avatar
赵小蒙 committed
382
383

# Acknowledgments
384

xuchao's avatar
xuchao committed
385
386
- [PDF-Extract-Kit](https://github.com/opendatalab/PDF-Extract-Kit)
- [StructEqTable](https://github.com/UniModal4Reasoning/StructEqTable-Deploy)
赵小蒙's avatar
赵小蒙 committed
387
388
- [PaddleOCR](https://github.com/PaddlePaddle/PaddleOCR)
- [PyMuPDF](https://github.com/pymupdf/PyMuPDF)
赵小蒙's avatar
赵小蒙 committed
389
390
- [fast-langdetect](https://github.com/LlmKira/fast-langdetect)
- [pdfminer.six](https://github.com/pdfminer/pdfminer.six)
赵小蒙's avatar
赵小蒙 committed
391

赵小蒙's avatar
赵小蒙 committed
392
393
394
# Citation

```bibtex
Conghui He's avatar
Conghui He committed
395
396
397
398
399
400
401
@article{he2024opendatalab,
  title={Opendatalab: Empowering general artificial intelligence with open datasets},
  author={He, Conghui and Li, Wei and Jin, Zhenjiang and Xu, Chao and Wang, Bin and Lin, Dahua},
  journal={arXiv preprint arXiv:2407.13773},
  year={2024}
}

赵小蒙's avatar
赵小蒙 committed
402
403
404
405
406
407
408
409
410
@misc{2024mineru,
    title={MinerU: A One-stop, Open-source, High-quality Data Extraction Tool},
    author={MinerU Contributors},
    howpublished = {\url{https://github.com/opendatalab/MinerU}},
    year={2024}
}
```

# Star History
赵小蒙's avatar
赵小蒙 committed
411

赵小蒙's avatar
赵小蒙 committed
412
413
414
415
416
417
<a>
 <picture>
   <source media="(prefers-color-scheme: dark)" srcset="https://api.star-history.com/svg?repos=opendatalab/MinerU&type=Date&theme=dark" />
   <source media="(prefers-color-scheme: light)" srcset="https://api.star-history.com/svg?repos=opendatalab/MinerU&type=Date" />
   <img alt="Star History Chart" src="https://api.star-history.com/svg?repos=opendatalab/MinerU&type=Date" />
 </picture>
myhloli's avatar
myhloli committed
418
</a>
qiangqiang199's avatar
qiangqiang199 committed
419

xuchao's avatar
xuchao committed
420
# Magic-doc
421

xuchao's avatar
xuchao committed
422
423
424
[Magic-Doc](https://github.com/InternLM/magic-doc) Fast speed ppt/pptx/doc/docx/pdf extraction tool

# Magic-html
425

xuchao's avatar
xuchao committed
426
427
[Magic-HTML](https://github.com/opendatalab/magic-html) Mixed web page extraction tool

qiangqiang199's avatar
qiangqiang199 committed
428
# Links
xuchao's avatar
xuchao committed
429

qiangqiang199's avatar
qiangqiang199 committed
430
431
- [LabelU (A Lightweight Multi-modal Data Annotation Tool)](https://github.com/opendatalab/labelU)
- [LabelLLM (An Open-source LLM Dialogue Annotation Platform)](https://github.com/opendatalab/LabelLLM)
qiangqiang199's avatar
qiangqiang199 committed
432
- [PDF-Extract-Kit (A Comprehensive Toolkit for High-Quality PDF Content Extraction)](https://github.com/opendatalab/PDF-Extract-Kit)