README.md 9.7 KB
Newer Older
徐超's avatar
徐超 committed
1
2
3
<div id="top">

<p align="center">
drunkpig's avatar
drunkpig committed
4
  <img src="docs/images/MinerU-logo.png" width="300px" style="vertical-align:middle;">
徐超's avatar
徐超 committed
5
6
7
</p>

</div>
赵小蒙's avatar
赵小蒙 committed
8
<div align="center">
赵小蒙's avatar
赵小蒙 committed
9

赵小蒙's avatar
赵小蒙 committed
10
11
12
[![stars](https://img.shields.io/github/stars/opendatalab/MinerU.svg)](https://github.com/opendatalab/MinerU)
[![forks](https://img.shields.io/github/forks/opendatalab/MinerU.svg)](https://github.com/opendatalab/MinerU)
[![open issues](https://img.shields.io/github/issues-raw/opendatalab/MinerU)](https://github.com/opendatalab/MinerU/issues)
myhloli's avatar
myhloli committed
13
14
15
16
[![issue resolution](https://img.shields.io/github/issues-closed-raw/opendatalab/MinerU)](https://github.com/opendatalab/MinerU/issues)
[![PyPI version](https://badge.fury.io/py/magic-pdf.svg)](https://badge.fury.io/py/magic-pdf)
[![Downloads](https://static.pepy.tech/badge/magic-pdf)](https://pepy.tech/project/magic-pdf)
[![Downloads](https://static.pepy.tech/badge/magic-pdf/month)](https://pepy.tech/project/magic-pdf)
drunkpig's avatar
drunkpig committed
17
18

<a href="https://trendshift.io/repositories/11174" target="_blank"><img src="https://trendshift.io/api/badge/repositories/11174" alt="opendatalab%2FMinerU | Trendshift" style="width: 200px; height: 55px;"/></a>
myhloli's avatar
myhloli committed
19
20
21



赵小蒙's avatar
赵小蒙 committed
22

23
[English](README.md) | [简体中文](README_zh-CN.md) | [日本語](README_ja-JP.md)
赵小蒙's avatar
赵小蒙 committed
24
25
26
27

</div>

<div align="center">
徐超's avatar
徐超 committed
28
29
30
31
32
33
<p align="center">
<a href="https://github.com/opendatalab/MinerU">MinerU: An end-to-end PDF parsing tool based on PDF-Extract-Kit, supporting conversion from PDF to Markdown.</a>🚀🚀🚀<br>
<a href="https://github.com/opendatalab/PDF-Extract-Kit">PDF-Extract-Kit: A Comprehensive Toolkit for High-Quality PDF Content Extraction</a>🔥🔥🔥
</p>

<p align="center">
徐超's avatar
徐超 committed
34
    👋 join us on <a href="https://discord.gg/AsQMhuMN" target="_blank">Discord</a> and <a href="https://cdn.vansin.top/internlm/mineru.jpg" target="_blank">WeChat</a>
徐超's avatar
徐超 committed
35
</p>
赵小蒙's avatar
赵小蒙 committed
36
</div>
赵小蒙's avatar
赵小蒙 committed
37

赵小蒙's avatar
赵小蒙 committed
38
39
# MinerU 

赵小蒙's avatar
赵小蒙 committed
40

赵小蒙's avatar
赵小蒙 committed
41
42
## Introduction

赵小蒙's avatar
赵小蒙 committed
43
MinerU is a one-stop, open-source, high-quality data extraction tool, includes the following primary features:
赵小蒙's avatar
赵小蒙 committed
44

赵小蒙's avatar
赵小蒙 committed
45
46
- [Magic-PDF](#Magic-PDF)  PDF Document Extraction  
- [Magic-Doc](#Magic-Doc)  Webpage & E-book Extraction
赵小蒙's avatar
赵小蒙 committed
47

赵小蒙's avatar
赵小蒙 committed
48

赵小蒙's avatar
赵小蒙 committed
49
# Magic-PDF
赵小蒙's avatar
赵小蒙 committed
50

赵小蒙's avatar
赵小蒙 committed
51

赵小蒙's avatar
赵小蒙 committed
52
## Introduction
赵小蒙's avatar
赵小蒙 committed
53

赵小蒙's avatar
赵小蒙 committed
54
Magic-PDF is a tool designed to convert PDF documents into Markdown format, capable of processing files stored locally or on object storage supporting S3 protocol.
赵小蒙's avatar
赵小蒙 committed
55

赵小蒙's avatar
赵小蒙 committed
56
Key features include:
赵小蒙's avatar
赵小蒙 committed
57

赵小蒙's avatar
赵小蒙 committed
58
59
60
- Support for multiple front-end model inputs
- Removal of headers, footers, footnotes, and page numbers
- Human-readable layout formatting
赵小蒙's avatar
赵小蒙 committed
61
- Retains the original document's structure and formatting, including headings, paragraphs, lists, and more
赵小蒙's avatar
赵小蒙 committed
62
63
64
65
66
- Extraction and display of images and tables within markdown
- Conversion of equations into LaTeX format
- Automatic detection and conversion of garbled PDFs
- Compatibility with CPU and GPU environments
- Available for Windows, Linux, and macOS platforms
赵小蒙's avatar
赵小蒙 committed
67

myhloli's avatar
myhloli committed
68

Xiaomeng Zhao's avatar
Xiaomeng Zhao committed
69
https://github.com/user-attachments/assets/4bea02c9-6d54-4cd6-97ed-dff14340982c
myhloli's avatar
myhloli committed
70
71
72



赵小蒙's avatar
赵小蒙 committed
73
74
75
76
## Project Panorama

![Project Panorama](docs/images/project_panorama_en.png)

赵小蒙's avatar
赵小蒙 committed
77

78
79
80
81
## Flowchart

![Flowchart](docs/images/flowchart_en.png)

drunkpig's avatar
drunkpig committed
82
### Dependency repositorys
83

drunkpig's avatar
drunkpig committed
84
- [PDF-Extract-Kit : A Comprehensive Toolkit for High-Quality PDF Content Extraction](https://github.com/opendatalab/PDF-Extract-Kit) 🚀🚀🚀
赵小蒙's avatar
赵小蒙 committed
85

赵小蒙's avatar
赵小蒙 committed
86
## Getting Started
赵小蒙's avatar
赵小蒙 committed
87

赵小蒙's avatar
赵小蒙 committed
88
### Requirements
赵小蒙's avatar
赵小蒙 committed
89

赵小蒙's avatar
赵小蒙 committed
90
- Python >= 3.9
赵小蒙's avatar
赵小蒙 committed
91

92
93
94
95
96
97
Using a virtual environment is recommended to avoid potential dependency conflicts; both venv and conda are suitable. 
For example:
```bash
conda create -n MinerU python=3.10
conda activate MinerU
```
98

99
### Installation and Configuration
赵小蒙's avatar
赵小蒙 committed
100

赵小蒙's avatar
赵小蒙 committed
101
#### 1. Install Magic-PDF
赵小蒙's avatar
赵小蒙 committed
102

103
104
105
106
107
Install the full-feature package with pip:
>Note: The pip-installed package supports CPU-only and is ideal for quick tests.
>
>For CUDA/MPS acceleration in production, see [Acceleration Using CUDA or MPS](#4-Acceleration-Using-CUDA-or-MPS).

108
```bash
109
pip install magic-pdf[full-cpu]
110
```
111
112
113
114
The full-feature package depends on detectron2, which requires a compilation installation.   
If you need to compile it yourself, please refer to https://github.com/facebookresearch/detectron2/issues/5114  
Alternatively, you can directly use our precompiled whl package (limited to Python 3.10):

115
116
```bash
pip install detectron2 --extra-index-url https://myhloli.github.io/wheels/
赵小蒙's avatar
赵小蒙 committed
117
118
119
```


120
121
#### 2. Downloading model weights files

myhloli's avatar
myhloli committed
122
For detailed references, please see below [how_to_download_models](docs/how_to_download_models_en.md)
123
124
125
126
127

After downloading the model weights, move the 'models' directory to a directory on a larger disk space, preferably an SSD.


#### 3. Copy the Configuration File and Make Configurations
128
You can get the [magic-pdf.template.json](magic-pdf.template.json) file in the repository root directory.
赵小蒙's avatar
赵小蒙 committed
129
```bash
赵小蒙's avatar
赵小蒙 committed
130
cp magic-pdf.template.json ~/magic-pdf.json
131
132
133
134
135
136
137
138
139
140
```
In magic-pdf.json, configure "models-dir" to point to the directory where the model weights files are located.

```json
{
  "models-dir": "/tmp/models"
}
```


141
142
#### 4. Acceleration Using CUDA or MPS
If you have an available Nvidia GPU or are using a Mac with Apple Silicon, you can leverage acceleration with CUDA or MPS respectively.
143
144
##### CUDA

myhloli's avatar
myhloli committed
145
146
You need to install the corresponding PyTorch version according to your CUDA version.  
This example installs the CUDA 11.8 version.More information https://pytorch.org/get-started/locally/  
147
148
149
```bash
pip install --force-reinstall torch==2.3.1 torchvision==0.18.1 --index-url https://download.pytorch.org/whl/cu118
```
myhloli's avatar
myhloli committed
150
Also, you need to modify the value of "device-mode" in the configuration file magic-pdf.json.  
151
152
153
154
155
156
157
158
```json
{
  "device-mode":"cuda"
}
```

##### MPS

myhloli's avatar
myhloli committed
159
160
For macOS users with M-series chip devices, you can use MPS for inference acceleration.  
You also need to modify the value of "device-mode" in the configuration file magic-pdf.json.  
161
162
163
164
165
166
```json
{
  "device-mode":"mps"
}
```

167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193

### Usage

#### 1.Usage via Command Line

###### simple

```bash
magic-pdf pdf-command --pdf "pdf_path" --inside_model true
```
After the program has finished, you can find the generated markdown files under the directory "/tmp/magic-pdf".  
You can find the corresponding xxx_model.json file in the markdown directory.   
If you intend to do secondary development on the post-processing pipeline, you can use the command:  
```bash
magic-pdf pdf-command --pdf "pdf_path" --model "model_json_path"
```
In this way, you won't need to re-run the model data, making debugging more convenient.


###### more 

```bash
magic-pdf --help
```


#### 2. Usage via Api
赵小蒙's avatar
赵小蒙 committed
194
195
196
197
198

###### Local
```python
image_writer = DiskReaderWriter(local_image_dir)
image_dir = str(os.path.basename(local_image_dir))
199
jso_useful_key = {"_pdf_type": "", "model_list": []}
赵小蒙's avatar
赵小蒙 committed
200
201
202
203
204
205
206
207
208
209
210
211
pipe = UNIPipe(pdf_bytes, jso_useful_key, image_writer)
pipe.pipe_classify()
pipe.pipe_parse()
md_content = pipe.pipe_mk_markdown(image_dir, drop_mode="none")
```

###### Object Storage
```python
s3pdf_cli = S3ReaderWriter(pdf_ak, pdf_sk, pdf_endpoint)
image_dir = "s3://img_bucket/"
s3image_cli = S3ReaderWriter(img_ak, img_sk, img_endpoint, parent_path=image_dir)
pdf_bytes = s3pdf_cli.read(s3_pdf_path, mode=s3pdf_cli.MODE_BIN)
212
jso_useful_key = {"_pdf_type": "", "model_list": []}
赵小蒙's avatar
赵小蒙 committed
213
214
215
216
217
218
pipe = UNIPipe(pdf_bytes, jso_useful_key, s3image_cli)
pipe.pipe_classify()
pipe.pipe_parse()
md_content = pipe.pipe_mk_markdown(image_dir, drop_mode="none")
```

219
Demo can be referred to [demo.py](demo/demo.py)
赵小蒙's avatar
赵小蒙 committed
220

赵小蒙's avatar
赵小蒙 committed
221

赵小蒙's avatar
赵小蒙 committed
222
223
# Magic-Doc

赵小蒙's avatar
赵小蒙 committed
224

赵小蒙's avatar
赵小蒙 committed
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
## Introduction

Magic-Doc is a tool designed to convert web pages or multi-format e-books into markdown format.

Key Features Include:

- Web Page Extraction
  - Cross-modal precise parsing of text, images, tables, and formula information.

- E-Book Document Extraction
  - Supports various document formats including epub, mobi, with full adaptation for text and images.

- Language Type Identification
  - Accurate recognition of 176 languages.

https://github.com/opendatalab/MinerU/assets/11393164/a5a650e9-f4c0-463e-acc3-960967f1a1ca



https://github.com/opendatalab/MinerU/assets/11393164/0f4a6fe9-6cca-4113-9fdc-a537749d764d



https://github.com/opendatalab/MinerU/assets/11393164/20438a02-ce6c-4af8-9dde-d722a4e825b2



赵小蒙's avatar
赵小蒙 committed
252

赵小蒙's avatar
赵小蒙 committed
253
254
## Project Repository

赵小蒙's avatar
赵小蒙 committed
255
- [Magic-Doc](https://github.com/InternLM/magic-doc)
赵小蒙's avatar
赵小蒙 committed
256
  Outstanding Webpage and E-book Extraction Tool
赵小蒙's avatar
赵小蒙 committed
257
258


赵小蒙's avatar
赵小蒙 committed
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
# All Thanks To Our Contributors

<a href="https://github.com/magicpdf/Magic-PDF/graphs/contributors">
  <img src="https://contrib.rocks/image?repo=opendatalab/MinerU" />
</a>


# License Information

[LICENSE.md](LICENSE.md)

The project currently leverages PyMuPDF to deliver advanced functionalities; however, its adherence to the AGPL license may impose limitations on certain use cases. In upcoming iterations, we intend to explore and transition to a more permissively licensed PDF processing library to enhance user-friendliness and flexibility.


# Acknowledgments

- [PaddleOCR](https://github.com/PaddlePaddle/PaddleOCR)
- [PyMuPDF](https://github.com/pymupdf/PyMuPDF)
赵小蒙's avatar
赵小蒙 committed
277
278
- [fast-langdetect](https://github.com/LlmKira/fast-langdetect)
- [pdfminer.six](https://github.com/pdfminer/pdfminer.six)
赵小蒙's avatar
赵小蒙 committed
279
280


赵小蒙's avatar
赵小蒙 committed
281
282
283
284
285
286
287
288
289
290
291
292
293
# Citation

```bibtex
@misc{2024mineru,
    title={MinerU: A One-stop, Open-source, High-quality Data Extraction Tool},
    author={MinerU Contributors},
    howpublished = {\url{https://github.com/opendatalab/MinerU}},
    year={2024}
}
```


# Star History
赵小蒙's avatar
赵小蒙 committed
294

赵小蒙's avatar
赵小蒙 committed
295
296
297
298
299
300
<a>
 <picture>
   <source media="(prefers-color-scheme: dark)" srcset="https://api.star-history.com/svg?repos=opendatalab/MinerU&type=Date&theme=dark" />
   <source media="(prefers-color-scheme: light)" srcset="https://api.star-history.com/svg?repos=opendatalab/MinerU&type=Date" />
   <img alt="Star History Chart" src="https://api.star-history.com/svg?repos=opendatalab/MinerU&type=Date" />
 </picture>
myhloli's avatar
myhloli committed
301
</a>
qiangqiang199's avatar
qiangqiang199 committed
302
303
304
305

# Links
- [LabelU (A Lightweight Multi-modal Data Annotation Tool)](https://github.com/opendatalab/labelU)
- [LabelLLM (An Open-source LLM Dialogue Annotation Platform)](https://github.com/opendatalab/LabelLLM)
qiangqiang199's avatar
qiangqiang199 committed
306
- [PDF-Extract-Kit (A Comprehensive Toolkit for High-Quality PDF Content Extraction)](https://github.com/opendatalab/PDF-Extract-Kit)