README.md 16.6 KB
Newer Older
xuchao's avatar
xuchao committed
1
2
<div align="center" xmlns="http://www.w3.org/1999/html">
<!-- logo -->
徐超's avatar
徐超 committed
3
<p align="center">
drunkpig's avatar
drunkpig committed
4
  <img src="docs/images/MinerU-logo.png" width="300px" style="vertical-align:middle;">
徐超's avatar
徐超 committed
5
6
</p>

xuchao's avatar
xuchao committed
7
<!-- icon -->
8

赵小蒙's avatar
赵小蒙 committed
9
10
11
[![stars](https://img.shields.io/github/stars/opendatalab/MinerU.svg)](https://github.com/opendatalab/MinerU)
[![forks](https://img.shields.io/github/forks/opendatalab/MinerU.svg)](https://github.com/opendatalab/MinerU)
[![open issues](https://img.shields.io/github/issues-raw/opendatalab/MinerU)](https://github.com/opendatalab/MinerU/issues)
myhloli's avatar
myhloli committed
12
13
14
15
[![issue resolution](https://img.shields.io/github/issues-closed-raw/opendatalab/MinerU)](https://github.com/opendatalab/MinerU/issues)
[![PyPI version](https://badge.fury.io/py/magic-pdf.svg)](https://badge.fury.io/py/magic-pdf)
[![Downloads](https://static.pepy.tech/badge/magic-pdf)](https://pepy.tech/project/magic-pdf)
[![Downloads](https://static.pepy.tech/badge/magic-pdf/month)](https://pepy.tech/project/magic-pdf)
xuchao's avatar
xuchao committed
16
<a href="https://trendshift.io/repositories/11174" target="_blank"><img src="https://trendshift.io/api/badge/repositories/11174" alt="opendatalab%2FMinerU | Trendshift" style="width: 250px; height: 55px;" width="250" height="55"/></a>
drunkpig's avatar
drunkpig committed
17

xuchao's avatar
xuchao committed
18
<!-- language -->
19

xuchao's avatar
xuchao committed
20
[English](README.md) | [简体中文](README_zh-CN.md)
赵小蒙's avatar
赵小蒙 committed
21

xuchao's avatar
xuchao committed
22
<!-- hot link -->
23

徐超's avatar
徐超 committed
24
<p align="center">
xuchao's avatar
xuchao committed
25
<a href="https://github.com/opendatalab/PDF-Extract-Kit">PDF-Extract-Kit: High-Quality PDF Extraction Toolkit</a>🔥🔥🔥
徐超's avatar
徐超 committed
26
27
</p>

xuchao's avatar
xuchao committed
28
<!-- join us -->
29

徐超's avatar
徐超 committed
30
<p align="center">
xuchao's avatar
xuchao committed
31
    👋 join us on <a href="https://discord.gg/Tdedn9GTXq" target="_blank">Discord</a> and <a href="https://cdn.vansin.top/internlm/mineru.jpg" target="_blank">WeChat</a>
徐超's avatar
徐超 committed
32
</p>
赵小蒙's avatar
赵小蒙 committed
33

xuchao's avatar
xuchao committed
34
</div>
赵小蒙's avatar
赵小蒙 committed
35

xuchao's avatar
xuchao committed
36
# Changelog
37

xuchao's avatar
xuchao committed
38
39
40
41
42
- 2024/08/09: Version 0.7.0b1 released, simplified installation process, added table recognition functionality
- 2024/08/01: Version 0.6.2b1 released, optimized dependency conflict issues and installation documentation
- 2024/07/05: Initial open-source release

<!-- TABLE OF CONTENT -->
43

xuchao's avatar
xuchao committed
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
<details open="open">
  <summary><h2 style="display: inline-block">Table of Contents</h2></summary>
  <ol>
    <li>
      <a href="#mineru">MinerU</a>
      <ul>
        <li><a href="#project-introduction">Project Introduction</a></li>
        <li><a href="#key-features">Key Features</a></li>
        <li><a href="#quick-start">Quick Start</a>
            <ul>
            <li><a href="#online-demo">Online Demo</a></li>
            <li><a href="#quick-cpu-demo">Quick CPU Demo</a></li>
            <li><a href="#using-gpu">Using GPU</a></li>
            </ul>
        </li>
        <li><a href="#usage">Usage</a>
            <ul>
            <li><a href="#command-line">Command Line</a></li>
            <li><a href="#api">API</a></li>
            <li><a href="#development-guide">Development Guide</a></li>
            </ul>
        </li>
      </ul>
    </li>
    <li><a href="#todo">TODO</a></li>
    <li><a href="#known-issues">Known Issues</a></li>
    <li><a href="#faq">FAQ</a></li>
    <li><a href="#all-thanks-to-our-contributors">All Thanks To Our Contributors</a></li>
    <li><a href="#license-information">License Information</a></li>
    <li><a href="#acknowledgments">Acknowledgments</a></li>
    <li><a href="#citation">Citation</a></li>
    <li><a href="#star-history">Star History</a></li>
    <li><a href="#magic-doc">Magic-doc</a></li>
    <li><a href="#magic-html">Magic-html</a></li>
    <li><a href="#links">Links</a></li>
  </ol>
</details>

# MinerU
83

xuchao's avatar
xuchao committed
84
## Project Introduction
85

xuchao's avatar
xuchao committed
86
87
88
MinerU is a tool that converts PDFs into machine-readable formats (e.g., markdown, JSON), allowing for easy extraction into any format.
MinerU was born during the pre-training process of [InternLM](https://github.com/InternLM/InternLM). We focus on solving symbol conversion issues in scientific literature and hope to contribute to technological development in the era of large models.
Compared to well-known commercial products, MinerU is still young. If you encounter any issues or if the results are not as expected, please submit an issue on [issue](https://github.com/opendatalab/MinerU/issues) and **attach the relevant PDF**.
myhloli's avatar
myhloli committed
89

Xiaomeng Zhao's avatar
Xiaomeng Zhao committed
90
https://github.com/user-attachments/assets/4bea02c9-6d54-4cd6-97ed-dff14340982c
myhloli's avatar
myhloli committed
91

xuchao's avatar
xuchao committed
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
## Key Features

- Removes elements such as headers, footers, footnotes, and page numbers while maintaining semantic continuity
- Outputs text in a human-readable order from multi-column documents
- Retains the original structure of the document, including titles, paragraphs, and lists
- Extracts images, image captions, tables, and table captions
- Automatically recognizes formulas in the document and converts them to LaTeX
- Automatically recognizes tables in the document and converts them to LaTeX
- Automatically detects and enables OCR for corrupted PDFs
- Supports both CPU and GPU environments
- Supports Windows, Linux, and Mac platforms

## Quick Start

If you encounter any installation issues, please first consult the <a href="#faq">FAQ</a>. </br>
If the parsing results are not as expected, refer to the <a href="#known-issues">Known Issues</a>. </br>
There are three different ways to experience MinerU:
109

xuchao's avatar
xuchao committed
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
- [Online Demo (No Installation Required)](#online-demo)
- [Quick CPU Demo (Windows, Linux, Mac)](#quick-cpu-demo)
- [Linux/Windows + CUDA](#Using-GPU)

**⚠️ Pre-installation Notice—Hardware and Software Environment Support**

To ensure the stability and reliability of the project, we only optimize and test for specific hardware and software environments during development. This ensures that users deploying and running the project on recommended system configurations will get the best performance with the fewest compatibility issues.

By focusing resources on the mainline environment, our team can more efficiently resolve potential bugs and develop new features.

In non-mainline environments, due to the diversity of hardware and software configurations, as well as third-party dependency compatibility issues, we cannot guarantee 100% project availability. Therefore, for users who wish to use this project in non-recommended environments, we suggest carefully reading the documentation and FAQ first. Most issues already have corresponding solutions in the FAQ. We also encourage community feedback to help us gradually expand support.

<table>
    <tr>
        <td colspan="3" rowspan="2">Operating System</td>
    </tr>
    <tr>
        <td>Ubuntu 22.04 LTS</td>
        <td>Windows 10 / 11</td>
        <td>macOS 11+</td>
    </tr>
    <tr>
        <td colspan="3">CPU</td>
        <td>x86_64</td>
        <td>x86_64</td>
        <td>x86_64 / arm64</td>
    </tr>
    <tr>
        <td colspan="3">Memory</td>
        <td colspan="3">16GB or more, recommended 32GB+</td>
    </tr>
    <tr>
        <td colspan="3">Python Version</td>
        <td colspan="3">3.10</td>
    </tr>
    <tr>
        <td colspan="3">Nvidia Driver Version</td>
        <td>latest (Proprietary Driver)</td>
        <td>latest</td>
        <td>None</td>
    </tr>
    <tr>
        <td colspan="3">CUDA Environment</td>
        <td>Automatic installation [12.1 (pytorch) + 11.8 (paddle)]</td>
        <td>11.8 (manual installation) + cuDNN v8.7.0 (manual installation)</td>
        <td>None</td>
    </tr>
    <tr>
        <td rowspan="2">GPU Hardware Support List</td>
        <td colspan="2">Minimum Requirement 8G+ VRAM</td>
        <td colspan="2">3060ti/3070/3080/3080ti/4060/4070/4070ti<br>
        8G VRAM only enables layout and formula recognition acceleration</td>
        <td rowspan="2">None</td>
    </tr>
    <tr>
        <td colspan="2">Recommended Configuration 16G+ VRAM</td>
        <td colspan="2">3090/3090ti/4070ti super/4080/4090<br>
        16G or more can enable layout, formula recognition, and OCR acceleration simultaneously</td>
    </tr>
</table>

### Online Demo

[Click here for the online demo](https://opendatalab.com/OpenSourceTools/Extractor/PDF)

### Quick CPU Demo

#### 1. Install magic-pdf
178

179
180
181
```bash
conda create -n MinerU python=3.10
conda activate MinerU
xuchao's avatar
xuchao committed
182
pip install magic-pdf[full]==0.7.0b1 --extra-index-url https://wheels.myhloli.com
183
```
184

xuchao's avatar
xuchao committed
185
186
187
#### 2. Download model weight files

Refer to [How to Download Model Files](docs/how_to_download_models_en.md) for detailed instructions.
188

xuchao's avatar
xuchao committed
189
> ❗️After downloading the models, please make sure to verify the completeness of the model files.
190
>
xuchao's avatar
xuchao committed
191
192
193
> Check if the model file sizes match the description on the webpage. If possible, use sha256 to verify the integrity of the files.

#### 3. Copy and configure the template file
194

xuchao's avatar
xuchao committed
195
You can find the `magic-pdf.template.json` template configuration file in the root directory of the repository.
196

xuchao's avatar
xuchao committed
197
> ❗️Make sure to execute the following command to copy the configuration file to your **user directory**; otherwise, the program will not run.
198
>
xuchao's avatar
xuchao committed
199
> The user directory for Windows is `C:\Users\YourUsername`, for Linux it is `/home/YourUsername`, and for macOS it is `/Users/YourUsername`.
200

赵小蒙's avatar
赵小蒙 committed
201
```bash
赵小蒙's avatar
赵小蒙 committed
202
cp magic-pdf.template.json ~/magic-pdf.json
203
```
204

xuchao's avatar
xuchao committed
205
Find the `magic-pdf.json` file in your user directory and configure the "models-dir" path to point to the directory where the model weight files were downloaded in [Step 2](#2-download-model-weight-files).
206

xuchao's avatar
xuchao committed
207
208
209
> ❗️Make sure to correctly configure the **absolute path** to the model weight files directory, otherwise the program will not run because it can't find the model files.
>
> On Windows, this path should include the drive letter and all backslashes (`\`) in the path should be replaced with forward slashes (`/`) to avoid syntax errors in the JSON file due to escape sequences.
210
>
xuchao's avatar
xuchao committed
211
> For example: If the models are stored in the "models" directory at the root of the D drive, the "model-dir" value should be `D:/models`.
212

213
214
```json
{
xuchao's avatar
xuchao committed
215
216
217
218
219
220
  // other config
  "models-dir": "D:/models",
  "table-config": {
        "is_table_recog_enable": false, // Table recognition is disabled by default, modify this value to enable it
        "max_time": 400
    }
221
222
223
}
```

xuchao's avatar
xuchao committed
224
### Using GPU
225

xuchao's avatar
xuchao committed
226
If your device supports CUDA and meets the GPU requirements of the mainline environment, you can use GPU acceleration. Please select the appropriate guide based on your system:
227

xuchao's avatar
xuchao committed
228
229
- [Ubuntu 22.04 LTS + GPU](docs/README_Ubuntu_CUDA_Acceleration_en_US.md)
- [Windows 10/11 + GPU](docs/README_Windows_CUDA_Acceleration_en_US.md)
230

xuchao's avatar
xuchao committed
231
## Usage
232

xuchao's avatar
xuchao committed
233
### Command Line
234
235

```bash
xuchao's avatar
xuchao committed
236
237
238
239
240
241
242
magic-pdf --help
Usage: magic-pdf [OPTIONS]

Options:
  -v, --version                display the version and exit
  -p, --path PATH              local pdf filepath or directory  [required]
  -o, --output-dir TEXT        output local directory
243
  -m, --method [ocr|txt|auto]  the method for parsing pdf.
xuchao's avatar
xuchao committed
244
245
246
247
                               ocr: using ocr technique to extract information from pdf,
                               txt: suitable for the text-based pdf only and outperform ocr,
                               auto: automatically choose the best method for parsing pdf
                                  from ocr and txt.
248
                               without method specified, auto will be used by default.
xuchao's avatar
xuchao committed
249
250
251
252
253
254
255
256
  --help                       Show this message and exit.


## show version
magic-pdf -v

## command line example
magic-pdf -p {some_pdf} -o {some_output_dir} -m auto
257
258
```

xuchao's avatar
xuchao committed
259
260
261
262
`{some_pdf}` can be a single PDF file or a directory containing multiple PDFs.
The results will be saved in the `{some_output_dir}` directory. The output file list is as follows:

```text
263
264
265
266
267
268
269
├── some_pdf.md                          # markdown file
├── images                               # directory for storing images
├── some_pdf_layout.pdf                  # layout diagram
├── some_pdf_middle.json                 # MinerU intermediate processing result
├── some_pdf_model.json                  # model inference result
├── some_pdf_origin.pdf                  # original PDF file
└── some_pdf_spans.pdf                   # smallest granularity bbox position information diagram
270
271
```

xuchao's avatar
xuchao committed
272
For more information about the output files, please refer to the [Output File Description](docs/output_file_en_us.md).
273

xuchao's avatar
xuchao committed
274
### API
赵小蒙's avatar
赵小蒙 committed
275

xuchao's avatar
xuchao committed
276
Processing files from local disk
277

赵小蒙's avatar
赵小蒙 committed
278
279
280
```python
image_writer = DiskReaderWriter(local_image_dir)
image_dir = str(os.path.basename(local_image_dir))
281
jso_useful_key = {"_pdf_type": "", "model_list": []}
赵小蒙's avatar
赵小蒙 committed
282
283
pipe = UNIPipe(pdf_bytes, jso_useful_key, image_writer)
pipe.pipe_classify()
xuchao's avatar
xuchao committed
284
pipe.pipe_analyze()
赵小蒙's avatar
赵小蒙 committed
285
286
287
288
pipe.pipe_parse()
md_content = pipe.pipe_mk_markdown(image_dir, drop_mode="none")
```

xuchao's avatar
xuchao committed
289
Processing files from object storage
290

赵小蒙's avatar
赵小蒙 committed
291
292
293
294
295
```python
s3pdf_cli = S3ReaderWriter(pdf_ak, pdf_sk, pdf_endpoint)
image_dir = "s3://img_bucket/"
s3image_cli = S3ReaderWriter(img_ak, img_sk, img_endpoint, parent_path=image_dir)
pdf_bytes = s3pdf_cli.read(s3_pdf_path, mode=s3pdf_cli.MODE_BIN)
296
jso_useful_key = {"_pdf_type": "", "model_list": []}
赵小蒙's avatar
赵小蒙 committed
297
298
pipe = UNIPipe(pdf_bytes, jso_useful_key, s3image_cli)
pipe.pipe_classify()
xuchao's avatar
xuchao committed
299
pipe.pipe_analyze()
赵小蒙's avatar
赵小蒙 committed
300
301
302
303
pipe.pipe_parse()
md_content = pipe.pipe_mk_markdown(image_dir, drop_mode="none")
```

xuchao's avatar
xuchao committed
304
For detailed implementation, refer to:
305

xuchao's avatar
xuchao committed
306
307
- [demo.py Simplest Processing Method](demo/demo.py)
- [magic_pdf_parse_main.py More Detailed Processing Workflow](demo/magic_pdf_parse_main.py)
赵小蒙's avatar
赵小蒙 committed
308

xuchao's avatar
xuchao committed
309
### Development Guide
赵小蒙's avatar
赵小蒙 committed
310

xuchao's avatar
xuchao committed
311
TODO
赵小蒙's avatar
赵小蒙 committed
312

xuchao's avatar
xuchao committed
313
# TODO
赵小蒙's avatar
赵小蒙 committed
314

xuchao's avatar
xuchao committed
315
316
317
318
319
320
321
- [ ] Semantic-based reading order
- [ ] List recognition within the text
- [ ] Code block recognition within the text
- [ ] Table of contents recognition
- [x] Table recognition
- [ ] Chemical formula recognition
- [ ] Geometric shape recognition
赵小蒙's avatar
赵小蒙 committed
322

xuchao's avatar
xuchao committed
323
# Known Issues
324

xuchao's avatar
xuchao committed
325
326
327
328
329
330
331
- Reading order is segmented based on rules, which can cause disordered sequences in some cases
- Vertical text is not supported
- Lists, code blocks, and table of contents are not yet supported in the layout model
- Comic books, art books, elementary school textbooks, and exercise books are not well-parsed yet
- Enabling OCR may produce better results in PDFs with a high density of formulas
- If you are processing PDFs with a large number of formulas, it is strongly recommended to enable the OCR function. When using PyMuPDF to extract text, overlapping text lines can occur, leading to inaccurate formula insertion positions.
- **Table Recognition** is currently in the testing phase; recognition speed is slow, and accuracy needs improvement. Below are some performance test results in an Ubuntu 22.04 LTS + Intel(R) Xeon(R) Platinum 8352V CPU @ 2.10GHz + NVIDIA GeForce RTX 4090 environment for reference.
赵小蒙's avatar
赵小蒙 committed
332

333
334
335
336
337
| Table Size   | Parsing Time |
| ------------ | ------------ |
| 6\*5 55kb    | 37s          |
| 16\*12 284kb | 3m18s        |
| 44\*7 559kb  | 4m12s        |
赵小蒙's avatar
赵小蒙 committed
338

xuchao's avatar
xuchao committed
339
# FAQ
340

xuchao's avatar
xuchao committed
341
[FAQ in Chinese](docs/FAQ_zh_cn.md)
赵小蒙's avatar
赵小蒙 committed
342

xuchao's avatar
xuchao committed
343
[FAQ in English](docs/FAQ_en_us.md)
赵小蒙's avatar
赵小蒙 committed
344

赵小蒙's avatar
赵小蒙 committed
345
346
# All Thanks To Our Contributors

347
<a href="https://github.com/opendatalab/MinerU/graphs/contributors">
赵小蒙's avatar
赵小蒙 committed
348
349
350
351
352
353
354
  <img src="https://contrib.rocks/image?repo=opendatalab/MinerU" />
</a>

# License Information

[LICENSE.md](LICENSE.md)

xuchao's avatar
xuchao committed
355
This project currently uses PyMuPDF to achieve advanced functionality. However, since it adheres to the AGPL license, it may impose restrictions on certain usage scenarios. In future iterations, we plan to explore and replace it with a more permissive PDF processing library to enhance user-friendliness and flexibility.
赵小蒙's avatar
赵小蒙 committed
356
357

# Acknowledgments
358

xuchao's avatar
xuchao committed
359
360
- [PDF-Extract-Kit](https://github.com/opendatalab/PDF-Extract-Kit)
- [StructEqTable](https://github.com/UniModal4Reasoning/StructEqTable-Deploy)
赵小蒙's avatar
赵小蒙 committed
361
362
- [PaddleOCR](https://github.com/PaddlePaddle/PaddleOCR)
- [PyMuPDF](https://github.com/pymupdf/PyMuPDF)
赵小蒙's avatar
赵小蒙 committed
363
364
- [fast-langdetect](https://github.com/LlmKira/fast-langdetect)
- [pdfminer.six](https://github.com/pdfminer/pdfminer.six)
赵小蒙's avatar
赵小蒙 committed
365

赵小蒙's avatar
赵小蒙 committed
366
367
368
# Citation

```bibtex
Conghui He's avatar
Conghui He committed
369
370
371
372
373
374
375
@article{he2024opendatalab,
  title={Opendatalab: Empowering general artificial intelligence with open datasets},
  author={He, Conghui and Li, Wei and Jin, Zhenjiang and Xu, Chao and Wang, Bin and Lin, Dahua},
  journal={arXiv preprint arXiv:2407.13773},
  year={2024}
}

赵小蒙's avatar
赵小蒙 committed
376
377
378
379
380
381
382
383
384
@misc{2024mineru,
    title={MinerU: A One-stop, Open-source, High-quality Data Extraction Tool},
    author={MinerU Contributors},
    howpublished = {\url{https://github.com/opendatalab/MinerU}},
    year={2024}
}
```

# Star History
赵小蒙's avatar
赵小蒙 committed
385

赵小蒙's avatar
赵小蒙 committed
386
387
388
389
390
391
<a>
 <picture>
   <source media="(prefers-color-scheme: dark)" srcset="https://api.star-history.com/svg?repos=opendatalab/MinerU&type=Date&theme=dark" />
   <source media="(prefers-color-scheme: light)" srcset="https://api.star-history.com/svg?repos=opendatalab/MinerU&type=Date" />
   <img alt="Star History Chart" src="https://api.star-history.com/svg?repos=opendatalab/MinerU&type=Date" />
 </picture>
myhloli's avatar
myhloli committed
392
</a>
qiangqiang199's avatar
qiangqiang199 committed
393

xuchao's avatar
xuchao committed
394
# Magic-doc
395

xuchao's avatar
xuchao committed
396
397
398
[Magic-Doc](https://github.com/InternLM/magic-doc) Fast speed ppt/pptx/doc/docx/pdf extraction tool

# Magic-html
399

xuchao's avatar
xuchao committed
400
401
[Magic-HTML](https://github.com/opendatalab/magic-html) Mixed web page extraction tool

qiangqiang199's avatar
qiangqiang199 committed
402
# Links
xuchao's avatar
xuchao committed
403

qiangqiang199's avatar
qiangqiang199 committed
404
405
- [LabelU (A Lightweight Multi-modal Data Annotation Tool)](https://github.com/opendatalab/labelU)
- [LabelLLM (An Open-source LLM Dialogue Annotation Platform)](https://github.com/opendatalab/LabelLLM)
qiangqiang199's avatar
qiangqiang199 committed
406
- [PDF-Extract-Kit (A Comprehensive Toolkit for High-Quality PDF Content Extraction)](https://github.com/opendatalab/PDF-Extract-Kit)