README.md 21.7 KB
Newer Older
xuchao's avatar
xuchao committed
1
2
<div align="center" xmlns="http://www.w3.org/1999/html">
<!-- logo -->
徐超's avatar
徐超 committed
3
<p align="center">
drunkpig's avatar
drunkpig committed
4
  <img src="docs/images/MinerU-logo.png" width="300px" style="vertical-align:middle;">
徐超's avatar
徐超 committed
5
6
</p>

xuchao's avatar
xuchao committed
7
<!-- icon -->
8

赵小蒙's avatar
赵小蒙 committed
9
10
11
[![stars](https://img.shields.io/github/stars/opendatalab/MinerU.svg)](https://github.com/opendatalab/MinerU)
[![forks](https://img.shields.io/github/forks/opendatalab/MinerU.svg)](https://github.com/opendatalab/MinerU)
[![open issues](https://img.shields.io/github/issues-raw/opendatalab/MinerU)](https://github.com/opendatalab/MinerU/issues)
myhloli's avatar
myhloli committed
12
13
14
15
[![issue resolution](https://img.shields.io/github/issues-closed-raw/opendatalab/MinerU)](https://github.com/opendatalab/MinerU/issues)
[![PyPI version](https://badge.fury.io/py/magic-pdf.svg)](https://badge.fury.io/py/magic-pdf)
[![Downloads](https://static.pepy.tech/badge/magic-pdf)](https://pepy.tech/project/magic-pdf)
[![Downloads](https://static.pepy.tech/badge/magic-pdf/month)](https://pepy.tech/project/magic-pdf)
16
17
18
19
20
21

[![HuggingFace](https://img.shields.io/badge/HuggingFace-Demo-yellow.svg?logo=)](https://huggingface.co/spaces/opendatalab/MinerU)
[![ModelScope](https://img.shields.io/badge/ModelScope-Demo-purple?logo=&labelColor=white)](https://www.modelscope.cn/studios/OpenDataLab/MinerU)
[![Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/gist/papayalove/b5f4913389e7ff9883c6b687de156e78/mineru_demo.ipynb)
[![Paper](https://img.shields.io/badge/Paper-arXiv-green)](#)

xuchao's avatar
xuchao committed
22
<a href="https://trendshift.io/repositories/11174" target="_blank"><img src="https://trendshift.io/api/badge/repositories/11174" alt="opendatalab%2FMinerU | Trendshift" style="width: 250px; height: 55px;" width="250" height="55"/></a>
drunkpig's avatar
drunkpig committed
23

xuchao's avatar
xuchao committed
24
<!-- language -->
25

xuchao's avatar
xuchao committed
26
[English](README.md) | [简体中文](README_zh-CN.md)
赵小蒙's avatar
赵小蒙 committed
27

xuchao's avatar
xuchao committed
28
<!-- hot link -->
29

徐超's avatar
徐超 committed
30
<p align="center">
xuchao's avatar
xuchao committed
31
<a href="https://github.com/opendatalab/PDF-Extract-Kit">PDF-Extract-Kit: High-Quality PDF Extraction Toolkit</a>🔥🔥🔥
徐超's avatar
徐超 committed
32
33
</p>

xuchao's avatar
xuchao committed
34
<!-- join us -->
35

徐超's avatar
徐超 committed
36
<p align="center">
xuchao's avatar
xuchao committed
37
    👋 join us on <a href="https://discord.gg/Tdedn9GTXq" target="_blank">Discord</a> and <a href="https://cdn.vansin.top/internlm/mineru.jpg" target="_blank">WeChat</a>
徐超's avatar
徐超 committed
38
</p>
赵小蒙's avatar
赵小蒙 committed
39

xuchao's avatar
xuchao committed
40
</div>
赵小蒙's avatar
赵小蒙 committed
41

xuchao's avatar
xuchao committed
42
# Changelog
drunkpig's avatar
drunkpig committed
43
- 2024/09/09: Version 0.8.0 released, supporting fast deployment with Dockerfile, and launching demos on Huggingface and Modelscope.
44
- 2024/08/30: Version 0.7.1 released, add paddle tablemaster table recognition option
xuchao's avatar
xuchao committed
45
46
47
48
49
- 2024/08/09: Version 0.7.0b1 released, simplified installation process, added table recognition functionality
- 2024/08/01: Version 0.6.2b1 released, optimized dependency conflict issues and installation documentation
- 2024/07/05: Initial open-source release

<!-- TABLE OF CONTENT -->
50

xuchao's avatar
xuchao committed
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
<details open="open">
  <summary><h2 style="display: inline-block">Table of Contents</h2></summary>
  <ol>
    <li>
      <a href="#mineru">MinerU</a>
      <ul>
        <li><a href="#project-introduction">Project Introduction</a></li>
        <li><a href="#key-features">Key Features</a></li>
        <li><a href="#quick-start">Quick Start</a>
            <ul>
            <li><a href="#online-demo">Online Demo</a></li>
            <li><a href="#quick-cpu-demo">Quick CPU Demo</a></li>
            <li><a href="#using-gpu">Using GPU</a></li>
            </ul>
        </li>
        <li><a href="#usage">Usage</a>
            <ul>
            <li><a href="#command-line">Command Line</a></li>
            <li><a href="#api">API</a></li>
            <li><a href="#development-guide">Development Guide</a></li>
            </ul>
        </li>
      </ul>
    </li>
    <li><a href="#todo">TODO</a></li>
    <li><a href="#known-issues">Known Issues</a></li>
    <li><a href="#faq">FAQ</a></li>
    <li><a href="#all-thanks-to-our-contributors">All Thanks To Our Contributors</a></li>
    <li><a href="#license-information">License Information</a></li>
    <li><a href="#acknowledgments">Acknowledgments</a></li>
    <li><a href="#citation">Citation</a></li>
    <li><a href="#star-history">Star History</a></li>
    <li><a href="#magic-doc">Magic-doc</a></li>
    <li><a href="#magic-html">Magic-html</a></li>
    <li><a href="#links">Links</a></li>
  </ol>
</details>

# MinerU
90

xuchao's avatar
xuchao committed
91
## Project Introduction
92

xuchao's avatar
xuchao committed
93
94
95
MinerU is a tool that converts PDFs into machine-readable formats (e.g., markdown, JSON), allowing for easy extraction into any format.
MinerU was born during the pre-training process of [InternLM](https://github.com/InternLM/InternLM). We focus on solving symbol conversion issues in scientific literature and hope to contribute to technological development in the era of large models.
Compared to well-known commercial products, MinerU is still young. If you encounter any issues or if the results are not as expected, please submit an issue on [issue](https://github.com/opendatalab/MinerU/issues) and **attach the relevant PDF**.
myhloli's avatar
myhloli committed
96

Xiaomeng Zhao's avatar
Xiaomeng Zhao committed
97
https://github.com/user-attachments/assets/4bea02c9-6d54-4cd6-97ed-dff14340982c
myhloli's avatar
myhloli committed
98

xuchao's avatar
xuchao committed
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
## Key Features

- Removes elements such as headers, footers, footnotes, and page numbers while maintaining semantic continuity
- Outputs text in a human-readable order from multi-column documents
- Retains the original structure of the document, including titles, paragraphs, and lists
- Extracts images, image captions, tables, and table captions
- Automatically recognizes formulas in the document and converts them to LaTeX
- Automatically recognizes tables in the document and converts them to LaTeX
- Automatically detects and enables OCR for corrupted PDFs
- Supports both CPU and GPU environments
- Supports Windows, Linux, and Mac platforms

## Quick Start

If you encounter any installation issues, please first consult the <a href="#faq">FAQ</a>. </br>
If the parsing results are not as expected, refer to the <a href="#known-issues">Known Issues</a>. </br>
There are three different ways to experience MinerU:
116

xuchao's avatar
xuchao committed
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
- [Online Demo (No Installation Required)](#online-demo)
- [Quick CPU Demo (Windows, Linux, Mac)](#quick-cpu-demo)
- [Linux/Windows + CUDA](#Using-GPU)

**⚠️ Pre-installation Notice—Hardware and Software Environment Support**

To ensure the stability and reliability of the project, we only optimize and test for specific hardware and software environments during development. This ensures that users deploying and running the project on recommended system configurations will get the best performance with the fewest compatibility issues.

By focusing resources on the mainline environment, our team can more efficiently resolve potential bugs and develop new features.

In non-mainline environments, due to the diversity of hardware and software configurations, as well as third-party dependency compatibility issues, we cannot guarantee 100% project availability. Therefore, for users who wish to use this project in non-recommended environments, we suggest carefully reading the documentation and FAQ first. Most issues already have corresponding solutions in the FAQ. We also encourage community feedback to help us gradually expand support.

<table>
    <tr>
        <td colspan="3" rowspan="2">Operating System</td>
    </tr>
    <tr>
        <td>Ubuntu 22.04 LTS</td>
        <td>Windows 10 / 11</td>
        <td>macOS 11+</td>
    </tr>
    <tr>
        <td colspan="3">CPU</td>
        <td>x86_64</td>
        <td>x86_64</td>
        <td>x86_64 / arm64</td>
    </tr>
    <tr>
        <td colspan="3">Memory</td>
        <td colspan="3">16GB or more, recommended 32GB+</td>
    </tr>
    <tr>
        <td colspan="3">Python Version</td>
        <td colspan="3">3.10</td>
    </tr>
    <tr>
        <td colspan="3">Nvidia Driver Version</td>
        <td>latest (Proprietary Driver)</td>
        <td>latest</td>
        <td>None</td>
    </tr>
    <tr>
        <td colspan="3">CUDA Environment</td>
        <td>Automatic installation [12.1 (pytorch) + 11.8 (paddle)]</td>
        <td>11.8 (manual installation) + cuDNN v8.7.0 (manual installation)</td>
        <td>None</td>
    </tr>
    <tr>
        <td rowspan="2">GPU Hardware Support List</td>
        <td colspan="2">Minimum Requirement 8G+ VRAM</td>
        <td colspan="2">3060ti/3070/3080/3080ti/4060/4070/4070ti<br>
        8G VRAM only enables layout and formula recognition acceleration</td>
        <td rowspan="2">None</td>
    </tr>
    <tr>
        <td colspan="2">Recommended Configuration 16G+ VRAM</td>
        <td colspan="2">3090/3090ti/4070ti super/4080/4090<br>
sfk's avatar
sfk committed
174
175
176
        16G or more can enable layout, formula recognition, and OCR acceleration simultaneously<br>
        24G or more can enable layout, formula recognition, OCR acceleration and table recognition simultaneously
        </td>
xuchao's avatar
xuchao committed
177
178
179
180
181
182
183
184
185
186
    </tr>
</table>

### Online Demo

[Click here for the online demo](https://opendatalab.com/OpenSourceTools/Extractor/PDF)

### Quick CPU Demo

#### 1. Install magic-pdf
187

188
189
190
```bash
conda create -n MinerU python=3.10
conda activate MinerU
191
pip install -U magic-pdf[full] --extra-index-url https://wheels.myhloli.com
192
```
193

xuchao's avatar
xuchao committed
194
195
196
#### 2. Download model weight files

Refer to [How to Download Model Files](docs/how_to_download_models_en.md) for detailed instructions.
197

xuchao's avatar
xuchao committed
198
> ❗️After downloading the models, please make sure to verify the completeness of the model files.
199
>
xuchao's avatar
xuchao committed
200
201
202
> Check if the model file sizes match the description on the webpage. If possible, use sha256 to verify the integrity of the files.

#### 3. Copy and configure the template file
203

xuchao's avatar
xuchao committed
204
You can find the `magic-pdf.template.json` template configuration file in the root directory of the repository.
205

xuchao's avatar
xuchao committed
206
> ❗️Make sure to execute the following command to copy the configuration file to your **user directory**; otherwise, the program will not run.
207
>
xuchao's avatar
xuchao committed
208
> The user directory for Windows is `C:\Users\YourUsername`, for Linux it is `/home/YourUsername`, and for macOS it is `/Users/YourUsername`.
209

赵小蒙's avatar
赵小蒙 committed
210
```bash
赵小蒙's avatar
赵小蒙 committed
211
cp magic-pdf.template.json ~/magic-pdf.json
212
```
213

xuchao's avatar
xuchao committed
214
Find the `magic-pdf.json` file in your user directory and configure the "models-dir" path to point to the directory where the model weight files were downloaded in [Step 2](#2-download-model-weight-files).
215

xuchao's avatar
xuchao committed
216
217
218
> ❗️Make sure to correctly configure the **absolute path** to the model weight files directory, otherwise the program will not run because it can't find the model files.
>
> On Windows, this path should include the drive letter and all backslashes (`\`) in the path should be replaced with forward slashes (`/`) to avoid syntax errors in the JSON file due to escape sequences.
219
>
xuchao's avatar
xuchao committed
220
> For example: If the models are stored in the "models" directory at the root of the D drive, the "model-dir" value should be `D:/models`.
221

222
223
```json
{
xuchao's avatar
xuchao committed
224
225
226
  // other config
  "models-dir": "D:/models",
  "table-config": {
227
        "model": "TableMaster", // Another option of this value is 'struct_eqtable'
xuchao's avatar
xuchao committed
228
229
230
        "is_table_recog_enable": false, // Table recognition is disabled by default, modify this value to enable it
        "max_time": 400
    }
231
232
233
}
```

xuchao's avatar
xuchao committed
234
### Using GPU
235

xuchao's avatar
xuchao committed
236
If your device supports CUDA and meets the GPU requirements of the mainline environment, you can use GPU acceleration. Please select the appropriate guide based on your system:
237

xuchao's avatar
xuchao committed
238
239
- [Ubuntu 22.04 LTS + GPU](docs/README_Ubuntu_CUDA_Acceleration_en_US.md)
- [Windows 10/11 + GPU](docs/README_Windows_CUDA_Acceleration_en_US.md)
240
241
- Quick Deployment with Docker
    > Docker requires a GPU with at least 16GB of VRAM, and all acceleration features are enabled by default.
242
243
244
245
246
247
    >
    > Before running this Docker, you can use the following command to check if your device supports CUDA acceleration on Docker.
    > 
    > ```bash
    > docker run --rm --gpus=all nvidia/cuda:12.1.0-base-ubuntu22.04 nvidia-smi
    > ```
248
249
  ```bash
  wget https://github.com/opendatalab/MinerU/raw/master/Dockerfile
250
251
  docker build -t mineru:latest .
  docker run --rm -it --gpus=all mineru:latest /bin/bash
252
253
  magic-pdf --help
  ```
254

xuchao's avatar
xuchao committed
255
## Usage
256

xuchao's avatar
xuchao committed
257
### Command Line
258
259

```bash
xuchao's avatar
xuchao committed
260
261
262
263
264
265
266
magic-pdf --help
Usage: magic-pdf [OPTIONS]

Options:
  -v, --version                display the version and exit
  -p, --path PATH              local pdf filepath or directory  [required]
  -o, --output-dir TEXT        output local directory
267
  -m, --method [ocr|txt|auto]  the method for parsing pdf.
xuchao's avatar
xuchao committed
268
269
270
271
                               ocr: using ocr technique to extract information from pdf,
                               txt: suitable for the text-based pdf only and outperform ocr,
                               auto: automatically choose the best method for parsing pdf
                                  from ocr and txt.
272
                               without method specified, auto will be used by default.
xuchao's avatar
xuchao committed
273
274
275
276
277
278
279
280
  --help                       Show this message and exit.


## show version
magic-pdf -v

## command line example
magic-pdf -p {some_pdf} -o {some_output_dir} -m auto
281
282
```

xuchao's avatar
xuchao committed
283
284
285
286
`{some_pdf}` can be a single PDF file or a directory containing multiple PDFs.
The results will be saved in the `{some_output_dir}` directory. The output file list is as follows:

```text
287
288
289
290
291
292
293
├── some_pdf.md                          # markdown file
├── images                               # directory for storing images
├── some_pdf_layout.pdf                  # layout diagram
├── some_pdf_middle.json                 # MinerU intermediate processing result
├── some_pdf_model.json                  # model inference result
├── some_pdf_origin.pdf                  # original PDF file
└── some_pdf_spans.pdf                   # smallest granularity bbox position information diagram
294
295
```

xuchao's avatar
xuchao committed
296
For more information about the output files, please refer to the [Output File Description](docs/output_file_en_us.md).
297

xuchao's avatar
xuchao committed
298
### API
赵小蒙's avatar
赵小蒙 committed
299

xuchao's avatar
xuchao committed
300
Processing files from local disk
301

赵小蒙's avatar
赵小蒙 committed
302
303
304
```python
image_writer = DiskReaderWriter(local_image_dir)
image_dir = str(os.path.basename(local_image_dir))
305
jso_useful_key = {"_pdf_type": "", "model_list": []}
赵小蒙's avatar
赵小蒙 committed
306
307
pipe = UNIPipe(pdf_bytes, jso_useful_key, image_writer)
pipe.pipe_classify()
xuchao's avatar
xuchao committed
308
pipe.pipe_analyze()
赵小蒙's avatar
赵小蒙 committed
309
310
311
312
pipe.pipe_parse()
md_content = pipe.pipe_mk_markdown(image_dir, drop_mode="none")
```

xuchao's avatar
xuchao committed
313
Processing files from object storage
314

赵小蒙's avatar
赵小蒙 committed
315
316
317
318
319
```python
s3pdf_cli = S3ReaderWriter(pdf_ak, pdf_sk, pdf_endpoint)
image_dir = "s3://img_bucket/"
s3image_cli = S3ReaderWriter(img_ak, img_sk, img_endpoint, parent_path=image_dir)
pdf_bytes = s3pdf_cli.read(s3_pdf_path, mode=s3pdf_cli.MODE_BIN)
320
jso_useful_key = {"_pdf_type": "", "model_list": []}
赵小蒙's avatar
赵小蒙 committed
321
322
pipe = UNIPipe(pdf_bytes, jso_useful_key, s3image_cli)
pipe.pipe_classify()
xuchao's avatar
xuchao committed
323
pipe.pipe_analyze()
赵小蒙's avatar
赵小蒙 committed
324
325
326
327
pipe.pipe_parse()
md_content = pipe.pipe_mk_markdown(image_dir, drop_mode="none")
```

xuchao's avatar
xuchao committed
328
For detailed implementation, refer to:
329

xuchao's avatar
xuchao committed
330
331
- [demo.py Simplest Processing Method](demo/demo.py)
- [magic_pdf_parse_main.py More Detailed Processing Workflow](demo/magic_pdf_parse_main.py)
赵小蒙's avatar
赵小蒙 committed
332

xuchao's avatar
xuchao committed
333
### Development Guide
赵小蒙's avatar
赵小蒙 committed
334

xuchao's avatar
xuchao committed
335
TODO
赵小蒙's avatar
赵小蒙 committed
336

xuchao's avatar
xuchao committed
337
# TODO
赵小蒙's avatar
赵小蒙 committed
338

xuchao's avatar
xuchao committed
339
340
341
342
343
- [ ] Semantic-based reading order
- [ ] List recognition within the text
- [ ] Code block recognition within the text
- [ ] Table of contents recognition
- [x] Table recognition
344
- [ ] [Chemical formula recognition](docs/chemical_knowledge_introduction/introduction.pdf)
xuchao's avatar
xuchao committed
345
- [ ] Geometric shape recognition
赵小蒙's avatar
赵小蒙 committed
346

xuchao's avatar
xuchao committed
347
# Known Issues
348

xuchao's avatar
xuchao committed
349
350
351
352
353
354
- Reading order is segmented based on rules, which can cause disordered sequences in some cases
- Vertical text is not supported
- Lists, code blocks, and table of contents are not yet supported in the layout model
- Comic books, art books, elementary school textbooks, and exercise books are not well-parsed yet
- Enabling OCR may produce better results in PDFs with a high density of formulas
- If you are processing PDFs with a large number of formulas, it is strongly recommended to enable the OCR function. When using PyMuPDF to extract text, overlapping text lines can occur, leading to inaccurate formula insertion positions.
赵小蒙's avatar
赵小蒙 committed
355

356

xuchao's avatar
xuchao committed
357
# FAQ
358

xuchao's avatar
xuchao committed
359
[FAQ in Chinese](docs/FAQ_zh_cn.md)
赵小蒙's avatar
赵小蒙 committed
360

xuchao's avatar
xuchao committed
361
[FAQ in English](docs/FAQ_en_us.md)
赵小蒙's avatar
赵小蒙 committed
362

赵小蒙's avatar
赵小蒙 committed
363
364
# All Thanks To Our Contributors

365
<a href="https://github.com/opendatalab/MinerU/graphs/contributors">
赵小蒙's avatar
赵小蒙 committed
366
367
368
369
370
371
372
  <img src="https://contrib.rocks/image?repo=opendatalab/MinerU" />
</a>

# License Information

[LICENSE.md](LICENSE.md)

xuchao's avatar
xuchao committed
373
This project currently uses PyMuPDF to achieve advanced functionality. However, since it adheres to the AGPL license, it may impose restrictions on certain usage scenarios. In future iterations, we plan to explore and replace it with a more permissive PDF processing library to enhance user-friendliness and flexibility.
赵小蒙's avatar
赵小蒙 committed
374
375

# Acknowledgments
376

xuchao's avatar
xuchao committed
377
378
- [PDF-Extract-Kit](https://github.com/opendatalab/PDF-Extract-Kit)
- [StructEqTable](https://github.com/UniModal4Reasoning/StructEqTable-Deploy)
赵小蒙's avatar
赵小蒙 committed
379
380
- [PaddleOCR](https://github.com/PaddlePaddle/PaddleOCR)
- [PyMuPDF](https://github.com/pymupdf/PyMuPDF)
赵小蒙's avatar
赵小蒙 committed
381
382
- [fast-langdetect](https://github.com/LlmKira/fast-langdetect)
- [pdfminer.six](https://github.com/pdfminer/pdfminer.six)
赵小蒙's avatar
赵小蒙 committed
383

赵小蒙's avatar
赵小蒙 committed
384
385
386
# Citation

```bibtex
Conghui He's avatar
Conghui He committed
387
388
389
390
391
392
393
@article{he2024opendatalab,
  title={Opendatalab: Empowering general artificial intelligence with open datasets},
  author={He, Conghui and Li, Wei and Jin, Zhenjiang and Xu, Chao and Wang, Bin and Lin, Dahua},
  journal={arXiv preprint arXiv:2407.13773},
  year={2024}
}

赵小蒙's avatar
赵小蒙 committed
394
395
396
397
398
399
400
401
402
@misc{2024mineru,
    title={MinerU: A One-stop, Open-source, High-quality Data Extraction Tool},
    author={MinerU Contributors},
    howpublished = {\url{https://github.com/opendatalab/MinerU}},
    year={2024}
}
```

# Star History
赵小蒙's avatar
赵小蒙 committed
403

赵小蒙's avatar
赵小蒙 committed
404
405
406
407
408
409
<a>
 <picture>
   <source media="(prefers-color-scheme: dark)" srcset="https://api.star-history.com/svg?repos=opendatalab/MinerU&type=Date&theme=dark" />
   <source media="(prefers-color-scheme: light)" srcset="https://api.star-history.com/svg?repos=opendatalab/MinerU&type=Date" />
   <img alt="Star History Chart" src="https://api.star-history.com/svg?repos=opendatalab/MinerU&type=Date" />
 </picture>
myhloli's avatar
myhloli committed
410
</a>
qiangqiang199's avatar
qiangqiang199 committed
411

xuchao's avatar
xuchao committed
412
# Magic-doc
413

xuchao's avatar
xuchao committed
414
415
416
[Magic-Doc](https://github.com/InternLM/magic-doc) Fast speed ppt/pptx/doc/docx/pdf extraction tool

# Magic-html
417

xuchao's avatar
xuchao committed
418
419
[Magic-HTML](https://github.com/opendatalab/magic-html) Mixed web page extraction tool

qiangqiang199's avatar
qiangqiang199 committed
420
# Links
xuchao's avatar
xuchao committed
421

qiangqiang199's avatar
qiangqiang199 committed
422
423
- [LabelU (A Lightweight Multi-modal Data Annotation Tool)](https://github.com/opendatalab/labelU)
- [LabelLLM (An Open-source LLM Dialogue Annotation Platform)](https://github.com/opendatalab/LabelLLM)
qiangqiang199's avatar
qiangqiang199 committed
424
- [PDF-Extract-Kit (A Comprehensive Toolkit for High-Quality PDF Content Extraction)](https://github.com/opendatalab/PDF-Extract-Kit)