pdf_extract_kit.py 12.7 KB
Newer Older
1
from loguru import logger
myhloli's avatar
myhloli committed
2
import os
3
import time
4
from pypandoc import convert_text
5
6
7


os.environ['NO_ALBUMENTATIONS_UPDATE'] = '1'  # 禁止albumentations检查更新
myhloli's avatar
myhloli committed
8
9
10
11
12
13
try:
    import cv2
    import yaml
    import argparse
    import numpy as np
    import torch
14
    import torchtext
15

16
17
    if torchtext.__version__ >= "0.18.0":
        torchtext.disable_torchtext_deprecation_warning()
myhloli's avatar
myhloli committed
18
19
20
21
22
23
24
    from PIL import Image
    from torchvision import transforms
    from torch.utils.data import Dataset, DataLoader
    from ultralytics import YOLO
    from unimernet.common.config import Config
    import unimernet.tasks as tasks
    from unimernet.processors import load_processor
赵小蒙's avatar
update:  
赵小蒙 committed
25

26
27
except ImportError as e:
    logger.exception(e)
28
29
30
    logger.error(
        'Required dependency not installed, please install by \n'
        '"pip install magic-pdf[full] detectron2 --extra-index-url https://myhloli.github.io/wheels/"')
myhloli's avatar
myhloli committed
31
    exit(1)
赵小蒙's avatar
update:  
赵小蒙 committed
32

33
34
35
from magic_pdf.model.pek_sub_modules.layoutlmv3.model_init import Layoutlmv3_Predictor
from magic_pdf.model.pek_sub_modules.post_process import get_croped_image, latex_rm_whitespace
from magic_pdf.model.pek_sub_modules.self_modify import ModifiedPaddleOCR
36
37
38
from magic_pdf.model.pek_sub_modules.structeqtable.StructTableModel import StructTableModel


39
40
def table_model_init(model_path, max_time=400, _device_='cpu'):
    table_model = StructTableModel(model_path, max_time=max_time, device=_device_)
41
    return table_model
42

赵小蒙's avatar
update:  
赵小蒙 committed
43

44
45
46
def mfd_model_init(weight):
    mfd_model = YOLO(weight)
    return mfd_model
赵小蒙's avatar
update:  
赵小蒙 committed
47
48


49
def mfr_model_init(weight_dir, cfg_path, _device_='cpu'):
50
51
52
53
54
55
56
    args = argparse.Namespace(cfg_path=cfg_path, options=None)
    cfg = Config(args)
    cfg.config.model.pretrained = os.path.join(weight_dir, "pytorch_model.bin")
    cfg.config.model.model_config.model_name = weight_dir
    cfg.config.model.tokenizer_config.path = weight_dir
    task = tasks.setup_task(cfg)
    model = task.build_model(cfg)
57
    model = model.to(_device_)
58
59
    vis_processor = load_processor('formula_image_eval', cfg.config.datasets.formula_rec_eval.vis_processor.eval)
    return model, vis_processor
赵小蒙's avatar
update:  
赵小蒙 committed
60
61


62
63
64
65
66
def layout_model_init(weight, config_file, device):
    model = Layoutlmv3_Predictor(weight, config_file, device)
    return model


67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
class MathDataset(Dataset):
    def __init__(self, image_paths, transform=None):
        self.image_paths = image_paths
        self.transform = transform

    def __len__(self):
        return len(self.image_paths)

    def __getitem__(self, idx):
        # if not pil image, then convert to pil image
        if isinstance(self.image_paths[idx], str):
            raw_image = Image.open(self.image_paths[idx])
        else:
            raw_image = self.image_paths[idx]
        if self.transform:
            image = self.transform(raw_image)
83
            return image
84
85


86
class CustomPEKModel:
87

88
89
90
91
92
93
94
95
96
97
98
99
100
101
    def __init__(self, ocr: bool = False, show_log: bool = False, **kwargs):
        """
        ======== model init ========
        """
        # 获取当前文件(即 pdf_extract_kit.py)的绝对路径
        current_file_path = os.path.abspath(__file__)
        # 获取当前文件所在的目录(model)
        current_dir = os.path.dirname(current_file_path)
        # 上一级目录(magic_pdf)
        root_dir = os.path.dirname(current_dir)
        # model_config目录
        model_config_dir = os.path.join(root_dir, 'resources', 'model_config')
        # 构建 model_configs.yaml 文件的完整路径
        config_path = os.path.join(model_config_dir, 'model_configs.yaml')
102
        with open(config_path, "r", encoding='utf-8') as f:
103
104
105
106
            self.configs = yaml.load(f, Loader=yaml.FullLoader)
        # 初始化解析配置
        self.apply_layout = kwargs.get("apply_layout", self.configs["config"]["layout"])
        self.apply_formula = kwargs.get("apply_formula", self.configs["config"]["formula"])
107
        self.table_config = kwargs.get("table_config", self.configs["config"]["table_config"])
108
        self.apply_table = self.table_config.get("is_table_recog_enable", False)
109
110
        self.apply_ocr = ocr
        logger.info(
111
112
            "DocAnalysis init, this may take some times. apply_layout: {}, apply_formula: {}, apply_ocr: {}, apply_table: {}".format(
                self.apply_layout, self.apply_formula, self.apply_ocr, self.apply_table
赵小蒙's avatar
update:  
赵小蒙 committed
113
            )
114
115
116
        )
        assert self.apply_layout, "DocAnalysis must contain layout model."
        # 初始化解析方案
117
        self.device = kwargs.get("device", self.configs["config"]["device"])
118
        logger.info("using device: {}".format(self.device))
119
        models_dir = kwargs.get("models_dir", os.path.join(root_dir, "resources", "models"))
120
        logger.info("using models_dir: {}".format(models_dir))
121

122
123
124
        # 初始化公式识别
        if self.apply_formula:
            # 初始化公式检测模型
125
126
            self.mfd_model = mfd_model_init(str(os.path.join(models_dir, self.configs["weights"]["mfd"])))

127
            # 初始化公式解析模型
128
129
130
            mfr_weight_dir = str(os.path.join(models_dir, self.configs["weights"]["mfr"]))
            mfr_cfg_path = str(os.path.join(model_config_dir, "UniMERNet", "demo.yaml"))
            self.mfr_model, mfr_vis_processors = mfr_model_init(mfr_weight_dir, mfr_cfg_path, _device_=self.device)
131
            self.mfr_transform = transforms.Compose([mfr_vis_processors, ])
132
133
134
135
136
137
138

        # 初始化layout模型
        self.layout_model = Layoutlmv3_Predictor(
            str(os.path.join(models_dir, self.configs['weights']['layout'])),
            str(os.path.join(model_config_dir, "layoutlmv3", "layoutlmv3_base_inference.yaml")),
            device=self.device
        )
139
140
141
        # 初始化ocr
        if self.apply_ocr:
            self.ocr_model = ModifiedPaddleOCR(show_log=show_log)
赵小蒙's avatar
update:  
赵小蒙 committed
142

143
        # init structeqtable
144
        if self.apply_table:
145
146
147
            max_time = self.table_config.get("max_time", 400)
            self.table_model = table_model_init(str(os.path.join(models_dir, self.configs["weights"]["table"])),
                                                max_time=max_time, _device_=self.device)
148
        logger.info('DocAnalysis init done!')
赵小蒙's avatar
update:  
赵小蒙 committed
149

150
151
    def __call__(self, image):

152
153
154
        latex_filling_list = []
        mf_image_list = []

155
156
157
158
159
160
        # layout检测
        layout_start = time.time()
        layout_res = self.layout_model(image, ignore_catids=[])
        layout_cost = round(time.time() - layout_start, 2)
        logger.info(f"layout detection cost: {layout_cost}")

161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
        if self.apply_formula:
            # 公式检测
            mfd_res = self.mfd_model.predict(image, imgsz=1888, conf=0.25, iou=0.45, verbose=True)[0]
            for xyxy, conf, cla in zip(mfd_res.boxes.xyxy.cpu(), mfd_res.boxes.conf.cpu(), mfd_res.boxes.cls.cpu()):
                xmin, ymin, xmax, ymax = [int(p.item()) for p in xyxy]
                new_item = {
                    'category_id': 13 + int(cla.item()),
                    'poly': [xmin, ymin, xmax, ymin, xmax, ymax, xmin, ymax],
                    'score': round(float(conf.item()), 2),
                    'latex': '',
                }
                layout_res.append(new_item)
                latex_filling_list.append(new_item)
                bbox_img = get_croped_image(Image.fromarray(image), [xmin, ymin, xmax, ymax])
                mf_image_list.append(bbox_img)

            # 公式识别
            mfr_start = time.time()
            dataset = MathDataset(mf_image_list, transform=self.mfr_transform)
            dataloader = DataLoader(dataset, batch_size=64, num_workers=0)
            mfr_res = []
            for mf_img in dataloader:
                mf_img = mf_img.to(self.device)
                output = self.mfr_model.generate({'image': mf_img})
                mfr_res.extend(output['pred_str'])
            for res, latex in zip(latex_filling_list, mfr_res):
                res['latex'] = latex_rm_whitespace(latex)
            mfr_cost = round(time.time() - mfr_start, 2)
            logger.info(f"formula nums: {len(mf_image_list)}, mfr time: {mfr_cost}")
190

myhloli's avatar
myhloli committed
191
        # ocr识别
192
        if self.apply_ocr:
193
194
            ocr_start = time.time()
            pil_img = Image.fromarray(image)
195
196
197

            # 筛选出需要OCR的区域和公式区域
            ocr_res_list = []
198
199
200
201
            single_page_mfdetrec_res = []
            for res in layout_res:
                if int(res['category_id']) in [13, 14]:
                    single_page_mfdetrec_res.append({
202
203
                        "bbox": [int(res['poly'][0]), int(res['poly'][1]),
                                 int(res['poly'][4]), int(res['poly'][5])],
204
                    })
205
206
207
208
209
210
211
212
213
214
215
                elif int(res['category_id']) in [0, 1, 2, 4, 6, 7]:
                    ocr_res_list.append(res)

            # 对每一个需OCR处理的区域进行处理
            for res in ocr_res_list:
                xmin, ymin = int(res['poly'][0]), int(res['poly'][1])
                xmax, ymax = int(res['poly'][4]), int(res['poly'][5])

                paste_x = 50
                paste_y = 50
                # 创建一个宽高各多50的白色背景
216
217
                new_width = xmax - xmin + paste_x * 2
                new_height = ymax - ymin + paste_y * 2
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
                new_image = Image.new('RGB', (new_width, new_height), 'white')

                # 裁剪图像
                crop_box = (xmin, ymin, xmax, ymax)
                cropped_img = pil_img.crop(crop_box)
                new_image.paste(cropped_img, (paste_x, paste_y))

                # 调整公式区域坐标
                adjusted_mfdetrec_res = []
                for mf_res in single_page_mfdetrec_res:
                    mf_xmin, mf_ymin, mf_xmax, mf_ymax = mf_res["bbox"]
                    # 将公式区域坐标调整为相对于裁剪区域的坐标
                    x0 = mf_xmin - xmin + paste_x
                    y0 = mf_ymin - ymin + paste_y
                    x1 = mf_xmax - xmin + paste_x
                    y1 = mf_ymax - ymin + paste_y
234
235
                    # 过滤在图外的公式块
                    if any([x1 < 0, y1 < 0]) or any([x0 > new_width, y0 > new_height]):
236
237
238
239
240
241
242
                        continue
                    else:
                        adjusted_mfdetrec_res.append({
                            "bbox": [x0, y0, x1, y1],
                        })

                # OCR识别
243
244
                new_image = cv2.cvtColor(np.asarray(new_image), cv2.COLOR_RGB2BGR)
                ocr_res = self.ocr_model.ocr(new_image, mfd_res=adjusted_mfdetrec_res)[0]
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264

                # 整合结果
                if ocr_res:
                    for box_ocr_res in ocr_res:
                        p1, p2, p3, p4 = box_ocr_res[0]
                        text, score = box_ocr_res[1]

                        # 将坐标转换回原图坐标系
                        p1 = [p1[0] - paste_x + xmin, p1[1] - paste_y + ymin]
                        p2 = [p2[0] - paste_x + xmin, p2[1] - paste_y + ymin]
                        p3 = [p3[0] - paste_x + xmin, p3[1] - paste_y + ymin]
                        p4 = [p4[0] - paste_x + xmin, p4[1] - paste_y + ymin]

                        layout_res.append({
                            'category_id': 15,
                            'poly': p1 + p2 + p3 + p4,
                            'score': round(score, 2),
                            'text': text,
                        })

265
266
267
            ocr_cost = round(time.time() - ocr_start, 2)
            logger.info(f"ocr cost: {ocr_cost}")

268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
        # 表格识别 table recognition
        if self.apply_table:
            pil_img = Image.fromarray(image)
            for layout in layout_res:
                if layout.get("category_id", -1) == 5:
                    poly = layout["poly"]
                    xmin, ymin = int(poly[0]), int(poly[1])
                    xmax, ymax = int(poly[4]), int(poly[5])

                    paste_x = 50
                    paste_y = 50
                    # 创建一个宽高各多50的白色背景 create a whiteboard with 50 larger width and length
                    new_width = xmax - xmin + paste_x * 2
                    new_height = ymax - ymin + paste_y * 2
                    new_image = Image.new('RGB', (new_width, new_height), 'white')

                    # 裁剪图像 crop image
                    crop_box = (xmin, ymin, xmax, ymax)
                    cropped_img = pil_img.crop(crop_box)
                    new_image.paste(cropped_img, (paste_x, paste_y))
                    start_time = time.time()
289
                    logger.info("------------------table recognition processing begins-----------------")
290
291
292
                    latex_code = self.table_model.image2latex(new_image)[0]
                    end_time = time.time()
                    run_time = end_time - start_time
293
                    logger.info(f"------------table recognition processing ends within {run_time}s-----")
294
                    layout["latex"] = latex_code
295

296
        return layout_res