pdf_extract_kit.py 18.8 KB
Newer Older
1
from loguru import logger
myhloli's avatar
myhloli committed
2
import os
3
import time
4

5
from magic_pdf.libs.Constants import *
6
from magic_pdf.libs.clean_memory import clean_memory
7
from magic_pdf.model.model_list import AtomicModel
liukaiwen's avatar
liukaiwen committed
8
from .mfr_cudagraph import GraphRunner
9
10

os.environ['NO_ALBUMENTATIONS_UPDATE'] = '1'  # 禁止albumentations检查更新
11
os.environ['YOLO_VERBOSE'] = 'False'  # disable yolo logger
myhloli's avatar
myhloli committed
12
13
14
15
16
17
try:
    import cv2
    import yaml
    import argparse
    import numpy as np
    import torch
18
    import torchtext
19

20
21
    if torchtext.__version__ >= "0.18.0":
        torchtext.disable_torchtext_deprecation_warning()
myhloli's avatar
myhloli committed
22
23
24
25
26
27
28
    from PIL import Image
    from torchvision import transforms
    from torch.utils.data import Dataset, DataLoader
    from ultralytics import YOLO
    from unimernet.common.config import Config
    import unimernet.tasks as tasks
    from unimernet.processors import load_processor
赵小蒙's avatar
update:  
赵小蒙 committed
29

30
31
except ImportError as e:
    logger.exception(e)
32
33
    logger.error(
        'Required dependency not installed, please install by \n'
34
        '"pip install magic-pdf[full] --extra-index-url https://myhloli.github.io/wheels/"')
myhloli's avatar
myhloli committed
35
    exit(1)
赵小蒙's avatar
update:  
赵小蒙 committed
36

37
from magic_pdf.model.pek_sub_modules.layoutlmv3.model_init import Layoutlmv3_Predictor
38
from magic_pdf.model.pek_sub_modules.post_process import latex_rm_whitespace
39
from magic_pdf.model.pek_sub_modules.self_modify import ModifiedPaddleOCR
40
from magic_pdf.model.pek_sub_modules.structeqtable.StructTableModel import StructTableModel
41
42
43
44
45
46
47
48
49
50
51
52
from magic_pdf.model.ppTableModel import ppTableModel


def table_model_init(table_model_type, model_path, max_time, _device_='cpu'):
    if table_model_type == STRUCT_EQTABLE:
        table_model = StructTableModel(model_path, max_time=max_time, device=_device_)
    else:
        config = {
            "model_dir": model_path,
            "device": _device_
        }
        table_model = ppTableModel(config)
53
    return table_model
54

赵小蒙's avatar
update:  
赵小蒙 committed
55

56
57
58
def mfd_model_init(weight):
    mfd_model = YOLO(weight)
    return mfd_model
赵小蒙's avatar
update:  
赵小蒙 committed
59
60


61
def mfr_model_init(weight_dir, cfg_path, _device_='cpu'):
62
63
    args = argparse.Namespace(cfg_path=cfg_path, options=None)
    cfg = Config(args)
64
    cfg.config.model.pretrained = os.path.join(weight_dir, "pytorch_model.pth")
65
66
67
68
    cfg.config.model.model_config.model_name = weight_dir
    cfg.config.model.tokenizer_config.path = weight_dir
    task = tasks.setup_task(cfg)
    model = task.build_model(cfg)
69
    model.to(_device_)
70
    model.eval()
liukaiwen's avatar
liukaiwen committed
71
72
73
74
75
    model = model.to(_device_)
    if 'cuda' in _device_:
        decoder_runner = GraphRunner(model.model.model.decoder.model.decoder, max_batchs=128, max_kvlens=256,
                                     device=_device_)
        model.model.model.decoder.model.decoder = decoder_runner
76
    vis_processor = load_processor('formula_image_eval', cfg.config.datasets.formula_rec_eval.vis_processor.eval)
77
78
    mfr_transform = transforms.Compose([vis_processor, ])
    return [model, mfr_transform]
赵小蒙's avatar
update:  
赵小蒙 committed
79
80


81
82
83
84
85
def layout_model_init(weight, config_file, device):
    model = Layoutlmv3_Predictor(weight, config_file, device)
    return model


86
87
88
89
90
def ocr_model_init(show_log: bool = False, det_db_box_thresh=0.3, lang=None):
    if lang is not None:
        model = ModifiedPaddleOCR(show_log=show_log, det_db_box_thresh=det_db_box_thresh, lang=lang)
    else:
        model = ModifiedPaddleOCR(show_log=show_log, det_db_box_thresh=det_db_box_thresh)
91
92
93
    return model


94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
class MathDataset(Dataset):
    def __init__(self, image_paths, transform=None):
        self.image_paths = image_paths
        self.transform = transform

    def __len__(self):
        return len(self.image_paths)

    def __getitem__(self, idx):
        # if not pil image, then convert to pil image
        if isinstance(self.image_paths[idx], str):
            raw_image = Image.open(self.image_paths[idx])
        else:
            raw_image = self.image_paths[idx]
        if self.transform:
            image = self.transform(raw_image)
110
            return image
111
112


113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
class AtomModelSingleton:
    _instance = None
    _models = {}

    def __new__(cls, *args, **kwargs):
        if cls._instance is None:
            cls._instance = super().__new__(cls)
        return cls._instance

    def get_atom_model(self, atom_model_name: str, **kwargs):
        if atom_model_name not in self._models:
            self._models[atom_model_name] = atom_model_init(model_name=atom_model_name, **kwargs)
        return self._models[atom_model_name]


def atom_model_init(model_name: str, **kwargs):

    if model_name == AtomicModel.Layout:
        atom_model = layout_model_init(
            kwargs.get("layout_weights"),
            kwargs.get("layout_config_file"),
            kwargs.get("device")
        )
    elif model_name == AtomicModel.MFD:
        atom_model = mfd_model_init(
            kwargs.get("mfd_weights")
        )
    elif model_name == AtomicModel.MFR:
        atom_model = mfr_model_init(
            kwargs.get("mfr_weight_dir"),
            kwargs.get("mfr_cfg_path"),
            kwargs.get("device")
        )
    elif model_name == AtomicModel.OCR:
        atom_model = ocr_model_init(
            kwargs.get("ocr_show_log"),
149
150
            kwargs.get("det_db_box_thresh"),
            kwargs.get("lang")
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
        )
    elif model_name == AtomicModel.Table:
        atom_model = table_model_init(
            kwargs.get("table_model_type"),
            kwargs.get("table_model_path"),
            kwargs.get("table_max_time"),
            kwargs.get("device")
        )
    else:
        logger.error("model name not allow")
        exit(1)

    return atom_model


166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
#  Unified crop img logic
def crop_img(input_res, input_pil_img, crop_paste_x=0, crop_paste_y=0):
    crop_xmin, crop_ymin = int(input_res['poly'][0]), int(input_res['poly'][1])
    crop_xmax, crop_ymax = int(input_res['poly'][4]), int(input_res['poly'][5])
    # Create a white background with an additional width and height of 50
    crop_new_width = crop_xmax - crop_xmin + crop_paste_x * 2
    crop_new_height = crop_ymax - crop_ymin + crop_paste_y * 2
    return_image = Image.new('RGB', (crop_new_width, crop_new_height), 'white')

    # Crop image
    crop_box = (crop_xmin, crop_ymin, crop_xmax, crop_ymax)
    cropped_img = input_pil_img.crop(crop_box)
    return_image.paste(cropped_img, (crop_paste_x, crop_paste_y))
    return_list = [crop_paste_x, crop_paste_y, crop_xmin, crop_ymin, crop_xmax, crop_ymax, crop_new_width, crop_new_height]
    return return_image, return_list


183
class CustomPEKModel:
184

185
186
187
188
189
190
191
192
193
194
195
196
197
198
    def __init__(self, ocr: bool = False, show_log: bool = False, **kwargs):
        """
        ======== model init ========
        """
        # 获取当前文件(即 pdf_extract_kit.py)的绝对路径
        current_file_path = os.path.abspath(__file__)
        # 获取当前文件所在的目录(model)
        current_dir = os.path.dirname(current_file_path)
        # 上一级目录(magic_pdf)
        root_dir = os.path.dirname(current_dir)
        # model_config目录
        model_config_dir = os.path.join(root_dir, 'resources', 'model_config')
        # 构建 model_configs.yaml 文件的完整路径
        config_path = os.path.join(model_config_dir, 'model_configs.yaml')
199
        with open(config_path, "r", encoding='utf-8') as f:
200
201
202
203
            self.configs = yaml.load(f, Loader=yaml.FullLoader)
        # 初始化解析配置
        self.apply_layout = kwargs.get("apply_layout", self.configs["config"]["layout"])
        self.apply_formula = kwargs.get("apply_formula", self.configs["config"]["formula"])
204
        # table config
205
        self.table_config = kwargs.get("table_config", self.configs["config"]["table_config"])
206
        self.apply_table = self.table_config.get("is_table_recog_enable", False)
207
        self.table_max_time = self.table_config.get("max_time", TABLE_MAX_TIME_VALUE)
208
        self.table_model_type = self.table_config.get("model", TABLE_MASTER)
209
        self.apply_ocr = ocr
210
        self.lang = kwargs.get("lang", None)
211
        logger.info(
212
213
            "DocAnalysis init, this may take some times. apply_layout: {}, apply_formula: {}, apply_ocr: {}, apply_table: {}, lang: {}".format(
                self.apply_layout, self.apply_formula, self.apply_ocr, self.apply_table, self.lang
赵小蒙's avatar
update:  
赵小蒙 committed
214
            )
215
216
217
        )
        assert self.apply_layout, "DocAnalysis must contain layout model."
        # 初始化解析方案
218
        self.device = kwargs.get("device", self.configs["config"]["device"])
219
        logger.info("using device: {}".format(self.device))
220
        models_dir = kwargs.get("models_dir", os.path.join(root_dir, "resources", "models"))
221
        logger.info("using models_dir: {}".format(models_dir))
222

223
224
        atom_model_manager = AtomModelSingleton()

225
226
227
        # 初始化公式识别
        if self.apply_formula:
            # 初始化公式检测模型
228
229
230
231
232
            # self.mfd_model = mfd_model_init(str(os.path.join(models_dir, self.configs["weights"]["mfd"])))
            self.mfd_model = atom_model_manager.get_atom_model(
                atom_model_name=AtomicModel.MFD,
                mfd_weights=str(os.path.join(models_dir, self.configs["weights"]["mfd"]))
            )
233
            # 初始化公式解析模型
234
235
            mfr_weight_dir = str(os.path.join(models_dir, self.configs["weights"]["mfr"]))
            mfr_cfg_path = str(os.path.join(model_config_dir, "UniMERNet", "demo.yaml"))
236
237
238
239
240
241
242
243
            # self.mfr_model, mfr_vis_processors = mfr_model_init(mfr_weight_dir, mfr_cfg_path, _device_=self.device)
            # self.mfr_transform = transforms.Compose([mfr_vis_processors, ])
            self.mfr_model, self.mfr_transform = atom_model_manager.get_atom_model(
                atom_model_name=AtomicModel.MFR,
                mfr_weight_dir=mfr_weight_dir,
                mfr_cfg_path=mfr_cfg_path,
                device=self.device
            )
244
245

        # 初始化layout模型
246
247
248
249
250
251
252
253
254
        # self.layout_model = Layoutlmv3_Predictor(
        #     str(os.path.join(models_dir, self.configs['weights']['layout'])),
        #     str(os.path.join(model_config_dir, "layoutlmv3", "layoutlmv3_base_inference.yaml")),
        #     device=self.device
        # )
        self.layout_model = atom_model_manager.get_atom_model(
            atom_model_name=AtomicModel.Layout,
            layout_weights=str(os.path.join(models_dir, self.configs['weights']['layout'])),
            layout_config_file=str(os.path.join(model_config_dir, "layoutlmv3", "layoutlmv3_base_inference.yaml")),
255
256
            device=self.device
        )
257
258
        # 初始化ocr
        if self.apply_ocr:
drunkpig's avatar
drunkpig committed
259

260
261
262
263
            # self.ocr_model = ModifiedPaddleOCR(show_log=show_log, det_db_box_thresh=0.3)
            self.ocr_model = atom_model_manager.get_atom_model(
                atom_model_name=AtomicModel.OCR,
                ocr_show_log=show_log,
264
265
                det_db_box_thresh=0.3,
                lang=self.lang
266
            )
267
        # init table model
268
        if self.apply_table:
269
            table_model_dir = self.configs["weights"][self.table_model_type]
270
271
272
273
274
275
276
277
278
            # self.table_model = table_model_init(self.table_model_type, str(os.path.join(models_dir, table_model_dir)),
            #                                     max_time=self.table_max_time, _device_=self.device)
            self.table_model = atom_model_manager.get_atom_model(
                atom_model_name=AtomicModel.Table,
                table_model_type=self.table_model_type,
                table_model_path=str(os.path.join(models_dir, table_model_dir)),
                table_max_time=self.table_max_time,
                device=self.device
            )
drunkpig's avatar
drunkpig committed
279

280
        logger.info('DocAnalysis init done!')
赵小蒙's avatar
update:  
赵小蒙 committed
281

282
283
    def __call__(self, image):

284
285
        page_start = time.time()

286
287
288
        latex_filling_list = []
        mf_image_list = []

289
290
291
292
        # layout检测
        layout_start = time.time()
        layout_res = self.layout_model(image, ignore_catids=[])
        layout_cost = round(time.time() - layout_start, 2)
293
        logger.info(f"layout detection time: {layout_cost}")
294

295
296
        pil_img = Image.fromarray(image)

297
298
        if self.apply_formula:
            # 公式检测
299
            mfd_start = time.time()
300
            mfd_res = self.mfd_model.predict(image, imgsz=1888, conf=0.25, iou=0.45, verbose=True)[0]
301
            logger.info(f"mfd time: {round(time.time() - mfd_start, 2)}")
302
303
304
305
306
307
308
309
310
311
            for xyxy, conf, cla in zip(mfd_res.boxes.xyxy.cpu(), mfd_res.boxes.conf.cpu(), mfd_res.boxes.cls.cpu()):
                xmin, ymin, xmax, ymax = [int(p.item()) for p in xyxy]
                new_item = {
                    'category_id': 13 + int(cla.item()),
                    'poly': [xmin, ymin, xmax, ymin, xmax, ymax, xmin, ymax],
                    'score': round(float(conf.item()), 2),
                    'latex': '',
                }
                layout_res.append(new_item)
                latex_filling_list.append(new_item)
312
313
                # bbox_img = get_croped_image(pil_img, [xmin, ymin, xmax, ymax])
                bbox_img = pil_img.crop((xmin, ymin, xmax, ymax))
314
315
316
317
318
319
320
321
322
                mf_image_list.append(bbox_img)

            # 公式识别
            mfr_start = time.time()
            dataset = MathDataset(mf_image_list, transform=self.mfr_transform)
            dataloader = DataLoader(dataset, batch_size=64, num_workers=0)
            mfr_res = []
            for mf_img in dataloader:
                mf_img = mf_img.to(self.device)
323
324
                with torch.no_grad():
                    output = self.mfr_model.generate({'image': mf_img})
325
326
327
328
329
                mfr_res.extend(output['pred_str'])
            for res, latex in zip(latex_filling_list, mfr_res):
                res['latex'] = latex_rm_whitespace(latex)
            mfr_cost = round(time.time() - mfr_start, 2)
            logger.info(f"formula nums: {len(mf_image_list)}, mfr time: {mfr_cost}")
330

331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
        # Select regions for OCR / formula regions / table regions
        ocr_res_list = []
        table_res_list = []
        single_page_mfdetrec_res = []
        for res in layout_res:
            if int(res['category_id']) in [13, 14]:
                single_page_mfdetrec_res.append({
                    "bbox": [int(res['poly'][0]), int(res['poly'][1]),
                             int(res['poly'][4]), int(res['poly'][5])],
                })
            elif int(res['category_id']) in [0, 1, 2, 4, 6, 7]:
                ocr_res_list.append(res)
            elif int(res['category_id']) in [5]:
                table_res_list.append(res)

346
347
348
349
350
351
352
353
        if torch.cuda.is_available():
            properties = torch.cuda.get_device_properties(self.device)
            total_memory = properties.total_memory / (1024 ** 3)  # 将字节转换为 GB
            if total_memory <= 8:
                gc_start = time.time()
                clean_memory()
                gc_time = round(time.time() - gc_start, 2)
                logger.info(f"gc time: {gc_time}")
354

myhloli's avatar
myhloli committed
355
        # ocr识别
356
        if self.apply_ocr:
357
            ocr_start = time.time()
358
            # Process each area that requires OCR processing
359
            for res in ocr_res_list:
360
361
362
                new_image, useful_list = crop_img(res, pil_img, crop_paste_x=50, crop_paste_y=50)
                paste_x, paste_y, xmin, ymin, xmax, ymax, new_width, new_height = useful_list
                # Adjust the coordinates of the formula area
363
364
365
                adjusted_mfdetrec_res = []
                for mf_res in single_page_mfdetrec_res:
                    mf_xmin, mf_ymin, mf_xmax, mf_ymax = mf_res["bbox"]
366
                    # Adjust the coordinates of the formula area to the coordinates relative to the cropping area
367
368
369
370
                    x0 = mf_xmin - xmin + paste_x
                    y0 = mf_ymin - ymin + paste_y
                    x1 = mf_xmax - xmin + paste_x
                    y1 = mf_ymax - ymin + paste_y
371
                    # Filter formula blocks outside the graph
372
                    if any([x1 < 0, y1 < 0]) or any([x0 > new_width, y0 > new_height]):
373
374
375
376
377
378
                        continue
                    else:
                        adjusted_mfdetrec_res.append({
                            "bbox": [x0, y0, x1, y1],
                        })

379
                # OCR recognition
380
381
                new_image = cv2.cvtColor(np.asarray(new_image), cv2.COLOR_RGB2BGR)
                ocr_res = self.ocr_model.ocr(new_image, mfd_res=adjusted_mfdetrec_res)[0]
382

383
                # Integration results
384
385
386
387
388
                if ocr_res:
                    for box_ocr_res in ocr_res:
                        p1, p2, p3, p4 = box_ocr_res[0]
                        text, score = box_ocr_res[1]

389
                        # Convert the coordinates back to the original coordinate system
390
391
392
393
394
395
396
397
398
399
400
401
                        p1 = [p1[0] - paste_x + xmin, p1[1] - paste_y + ymin]
                        p2 = [p2[0] - paste_x + xmin, p2[1] - paste_y + ymin]
                        p3 = [p3[0] - paste_x + xmin, p3[1] - paste_y + ymin]
                        p4 = [p4[0] - paste_x + xmin, p4[1] - paste_y + ymin]

                        layout_res.append({
                            'category_id': 15,
                            'poly': p1 + p2 + p3 + p4,
                            'score': round(score, 2),
                            'text': text,
                        })

402
            ocr_cost = round(time.time() - ocr_start, 2)
403
            logger.info(f"ocr time: {ocr_cost}")
404

405
406
        # 表格识别 table recognition
        if self.apply_table:
407
408
409
410
            table_start = time.time()
            for res in table_res_list:
                new_image, _ = crop_img(res, pil_img)
                single_table_start_time = time.time()
411
                # logger.info("------------------table recognition processing begins-----------------")
412
413
                latex_code = None
                html_code = None
414
415
                if self.table_model_type == STRUCT_EQTABLE:
                    with torch.no_grad():
416
                        latex_code = self.table_model.image2latex(new_image)[0]
417
418
                else:
                    html_code = self.table_model.img2html(new_image)
drunkpig's avatar
drunkpig committed
419

420
                run_time = time.time() - single_table_start_time
421
                # logger.info(f"------------table recognition processing ends within {run_time}s-----")
422
423
424
                if run_time > self.table_max_time:
                    logger.warning(f"------------table recognition processing exceeds max time {self.table_max_time}s----------")
                # 判断是否返回正常
425
426
427
428
429
430
431

                if latex_code:
                    expected_ending = latex_code.strip().endswith('end{tabular}') or latex_code.strip().endswith(
                        'end{table}')
                    if expected_ending:
                        res["latex"] = latex_code
                    else:
432
                        logger.warning(f"table recognition processing fails, not found expected LaTeX table end")
433
434
                elif html_code:
                    res["html"] = html_code
435
                else:
436
437
438
439
                    logger.warning(f"table recognition processing fails, not get latex or html return")
            logger.info(f"table time: {round(time.time() - table_start, 2)}")

        logger.info(f"-----page total time: {round(time.time() - page_start, 2)}-----")
440

441
        return layout_res