pdf_extract_kit.py 19.1 KB
Newer Older
1
from loguru import logger
myhloli's avatar
myhloli committed
2
import os
3
import time
4
5
from pathlib import Path
import shutil
6
from magic_pdf.libs.Constants import *
7
from magic_pdf.libs.clean_memory import clean_memory
8
from magic_pdf.model.model_list import AtomicModel
9
10

os.environ['NO_ALBUMENTATIONS_UPDATE'] = '1'  # 禁止albumentations检查更新
11
os.environ['YOLO_VERBOSE'] = 'False'  # disable yolo logger
myhloli's avatar
myhloli committed
12
13
14
15
16
17
try:
    import cv2
    import yaml
    import argparse
    import numpy as np
    import torch
18
    import torchtext
19

20
21
    if torchtext.__version__ >= "0.18.0":
        torchtext.disable_torchtext_deprecation_warning()
myhloli's avatar
myhloli committed
22
23
24
25
26
27
28
    from PIL import Image
    from torchvision import transforms
    from torch.utils.data import Dataset, DataLoader
    from ultralytics import YOLO
    from unimernet.common.config import Config
    import unimernet.tasks as tasks
    from unimernet.processors import load_processor
赵小蒙's avatar
update:  
赵小蒙 committed
29

30
31
except ImportError as e:
    logger.exception(e)
32
33
    logger.error(
        'Required dependency not installed, please install by \n'
34
        '"pip install magic-pdf[full] --extra-index-url https://myhloli.github.io/wheels/"')
myhloli's avatar
myhloli committed
35
    exit(1)
赵小蒙's avatar
update:  
赵小蒙 committed
36

37
from magic_pdf.model.pek_sub_modules.layoutlmv3.model_init import Layoutlmv3_Predictor
38
from magic_pdf.model.pek_sub_modules.post_process import latex_rm_whitespace
39
from magic_pdf.model.pek_sub_modules.self_modify import ModifiedPaddleOCR
40
from magic_pdf.model.pek_sub_modules.structeqtable.StructTableModel import StructTableModel
41
42
43
44
45
46
47
48
49
50
51
52
from magic_pdf.model.ppTableModel import ppTableModel


def table_model_init(table_model_type, model_path, max_time, _device_='cpu'):
    if table_model_type == STRUCT_EQTABLE:
        table_model = StructTableModel(model_path, max_time=max_time, device=_device_)
    else:
        config = {
            "model_dir": model_path,
            "device": _device_
        }
        table_model = ppTableModel(config)
53
    return table_model
54

赵小蒙's avatar
update:  
赵小蒙 committed
55

56
57
58
def mfd_model_init(weight):
    mfd_model = YOLO(weight)
    return mfd_model
赵小蒙's avatar
update:  
赵小蒙 committed
59
60


61
def mfr_model_init(weight_dir, cfg_path, _device_='cpu'):
62
63
    args = argparse.Namespace(cfg_path=cfg_path, options=None)
    cfg = Config(args)
64
    cfg.config.model.pretrained = os.path.join(weight_dir, "pytorch_model.pth")
65
66
67
68
    cfg.config.model.model_config.model_name = weight_dir
    cfg.config.model.tokenizer_config.path = weight_dir
    task = tasks.setup_task(cfg)
    model = task.build_model(cfg)
69
    model.to(_device_)
70
    model.eval()
71
    vis_processor = load_processor('formula_image_eval', cfg.config.datasets.formula_rec_eval.vis_processor.eval)
72
73
    mfr_transform = transforms.Compose([vis_processor, ])
    return [model, mfr_transform]
赵小蒙's avatar
update:  
赵小蒙 committed
74
75


76
77
78
79
80
def layout_model_init(weight, config_file, device):
    model = Layoutlmv3_Predictor(weight, config_file, device)
    return model


81
82
83
84
85
def ocr_model_init(show_log: bool = False, det_db_box_thresh=0.3, lang=None):
    if lang is not None:
        model = ModifiedPaddleOCR(show_log=show_log, det_db_box_thresh=det_db_box_thresh, lang=lang)
    else:
        model = ModifiedPaddleOCR(show_log=show_log, det_db_box_thresh=det_db_box_thresh)
86
87
88
    return model


89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
class MathDataset(Dataset):
    def __init__(self, image_paths, transform=None):
        self.image_paths = image_paths
        self.transform = transform

    def __len__(self):
        return len(self.image_paths)

    def __getitem__(self, idx):
        # if not pil image, then convert to pil image
        if isinstance(self.image_paths[idx], str):
            raw_image = Image.open(self.image_paths[idx])
        else:
            raw_image = self.image_paths[idx]
        if self.transform:
            image = self.transform(raw_image)
105
            return image
106
107


108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
class AtomModelSingleton:
    _instance = None
    _models = {}

    def __new__(cls, *args, **kwargs):
        if cls._instance is None:
            cls._instance = super().__new__(cls)
        return cls._instance

    def get_atom_model(self, atom_model_name: str, **kwargs):
        if atom_model_name not in self._models:
            self._models[atom_model_name] = atom_model_init(model_name=atom_model_name, **kwargs)
        return self._models[atom_model_name]


def atom_model_init(model_name: str, **kwargs):

    if model_name == AtomicModel.Layout:
        atom_model = layout_model_init(
            kwargs.get("layout_weights"),
            kwargs.get("layout_config_file"),
            kwargs.get("device")
        )
    elif model_name == AtomicModel.MFD:
        atom_model = mfd_model_init(
            kwargs.get("mfd_weights")
        )
    elif model_name == AtomicModel.MFR:
        atom_model = mfr_model_init(
            kwargs.get("mfr_weight_dir"),
            kwargs.get("mfr_cfg_path"),
            kwargs.get("device")
        )
    elif model_name == AtomicModel.OCR:
        atom_model = ocr_model_init(
            kwargs.get("ocr_show_log"),
144
145
            kwargs.get("det_db_box_thresh"),
            kwargs.get("lang")
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
        )
    elif model_name == AtomicModel.Table:
        atom_model = table_model_init(
            kwargs.get("table_model_type"),
            kwargs.get("table_model_path"),
            kwargs.get("table_max_time"),
            kwargs.get("device")
        )
    else:
        logger.error("model name not allow")
        exit(1)

    return atom_model


161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
#  Unified crop img logic
def crop_img(input_res, input_pil_img, crop_paste_x=0, crop_paste_y=0):
    crop_xmin, crop_ymin = int(input_res['poly'][0]), int(input_res['poly'][1])
    crop_xmax, crop_ymax = int(input_res['poly'][4]), int(input_res['poly'][5])
    # Create a white background with an additional width and height of 50
    crop_new_width = crop_xmax - crop_xmin + crop_paste_x * 2
    crop_new_height = crop_ymax - crop_ymin + crop_paste_y * 2
    return_image = Image.new('RGB', (crop_new_width, crop_new_height), 'white')

    # Crop image
    crop_box = (crop_xmin, crop_ymin, crop_xmax, crop_ymax)
    cropped_img = input_pil_img.crop(crop_box)
    return_image.paste(cropped_img, (crop_paste_x, crop_paste_y))
    return_list = [crop_paste_x, crop_paste_y, crop_xmin, crop_ymin, crop_xmax, crop_ymax, crop_new_width, crop_new_height]
    return return_image, return_list


178
class CustomPEKModel:
179

180
181
182
183
184
185
186
187
188
189
190
191
192
193
    def __init__(self, ocr: bool = False, show_log: bool = False, **kwargs):
        """
        ======== model init ========
        """
        # 获取当前文件(即 pdf_extract_kit.py)的绝对路径
        current_file_path = os.path.abspath(__file__)
        # 获取当前文件所在的目录(model)
        current_dir = os.path.dirname(current_file_path)
        # 上一级目录(magic_pdf)
        root_dir = os.path.dirname(current_dir)
        # model_config目录
        model_config_dir = os.path.join(root_dir, 'resources', 'model_config')
        # 构建 model_configs.yaml 文件的完整路径
        config_path = os.path.join(model_config_dir, 'model_configs.yaml')
194
        with open(config_path, "r", encoding='utf-8') as f:
195
196
197
198
            self.configs = yaml.load(f, Loader=yaml.FullLoader)
        # 初始化解析配置
        self.apply_layout = kwargs.get("apply_layout", self.configs["config"]["layout"])
        self.apply_formula = kwargs.get("apply_formula", self.configs["config"]["formula"])
199
        # table config
200
        self.table_config = kwargs.get("table_config", self.configs["config"]["table_config"])
201
        self.apply_table = self.table_config.get("is_table_recog_enable", False)
202
        self.table_max_time = self.table_config.get("max_time", TABLE_MAX_TIME_VALUE)
203
        self.table_model_type = self.table_config.get("model", TABLE_MASTER)
204
        self.apply_ocr = ocr
205
        self.lang = kwargs.get("lang", None)
206
        logger.info(
207
208
            "DocAnalysis init, this may take some times. apply_layout: {}, apply_formula: {}, apply_ocr: {}, apply_table: {}, lang: {}".format(
                self.apply_layout, self.apply_formula, self.apply_ocr, self.apply_table, self.lang
赵小蒙's avatar
update:  
赵小蒙 committed
209
            )
210
211
212
        )
        assert self.apply_layout, "DocAnalysis must contain layout model."
        # 初始化解析方案
213
        self.device = kwargs.get("device", self.configs["config"]["device"])
214
        logger.info("using device: {}".format(self.device))
215
        models_dir = kwargs.get("models_dir", os.path.join(root_dir, "resources", "models"))
216
        logger.info("using models_dir: {}".format(models_dir))
217

218
219
        atom_model_manager = AtomModelSingleton()

220
221
222
        # 初始化公式识别
        if self.apply_formula:
            # 初始化公式检测模型
223
224
225
226
227
            # self.mfd_model = mfd_model_init(str(os.path.join(models_dir, self.configs["weights"]["mfd"])))
            self.mfd_model = atom_model_manager.get_atom_model(
                atom_model_name=AtomicModel.MFD,
                mfd_weights=str(os.path.join(models_dir, self.configs["weights"]["mfd"]))
            )
228
            # 初始化公式解析模型
229
230
            mfr_weight_dir = str(os.path.join(models_dir, self.configs["weights"]["mfr"]))
            mfr_cfg_path = str(os.path.join(model_config_dir, "UniMERNet", "demo.yaml"))
231
232
233
234
235
236
237
238
            # self.mfr_model, mfr_vis_processors = mfr_model_init(mfr_weight_dir, mfr_cfg_path, _device_=self.device)
            # self.mfr_transform = transforms.Compose([mfr_vis_processors, ])
            self.mfr_model, self.mfr_transform = atom_model_manager.get_atom_model(
                atom_model_name=AtomicModel.MFR,
                mfr_weight_dir=mfr_weight_dir,
                mfr_cfg_path=mfr_cfg_path,
                device=self.device
            )
239
240

        # 初始化layout模型
241
242
243
244
245
246
247
248
249
        # self.layout_model = Layoutlmv3_Predictor(
        #     str(os.path.join(models_dir, self.configs['weights']['layout'])),
        #     str(os.path.join(model_config_dir, "layoutlmv3", "layoutlmv3_base_inference.yaml")),
        #     device=self.device
        # )
        self.layout_model = atom_model_manager.get_atom_model(
            atom_model_name=AtomicModel.Layout,
            layout_weights=str(os.path.join(models_dir, self.configs['weights']['layout'])),
            layout_config_file=str(os.path.join(model_config_dir, "layoutlmv3", "layoutlmv3_base_inference.yaml")),
250
251
            device=self.device
        )
252
253
        # 初始化ocr
        if self.apply_ocr:
drunkpig's avatar
drunkpig committed
254

255
256
257
258
            # self.ocr_model = ModifiedPaddleOCR(show_log=show_log, det_db_box_thresh=0.3)
            self.ocr_model = atom_model_manager.get_atom_model(
                atom_model_name=AtomicModel.OCR,
                ocr_show_log=show_log,
259
260
                det_db_box_thresh=0.3,
                lang=self.lang
261
            )
262
        # init table model
263
        if self.apply_table:
264
            table_model_dir = self.configs["weights"][self.table_model_type]
265
266
267
268
269
270
271
272
273
            # self.table_model = table_model_init(self.table_model_type, str(os.path.join(models_dir, table_model_dir)),
            #                                     max_time=self.table_max_time, _device_=self.device)
            self.table_model = atom_model_manager.get_atom_model(
                atom_model_name=AtomicModel.Table,
                table_model_type=self.table_model_type,
                table_model_path=str(os.path.join(models_dir, table_model_dir)),
                table_max_time=self.table_max_time,
                device=self.device
            )
drunkpig's avatar
drunkpig committed
274

275
276
277
278
279
280
281
282
283
284
285
            home_directory = Path.home()
            det_source = os.path.join(models_dir, table_model_dir, DETECT_MODEL_DIR)
            rec_source = os.path.join(models_dir, table_model_dir, REC_MODEL_DIR)
            det_dest_dir = os.path.join(home_directory, PP_DET_DIRECTORY)
            rec_dest_dir = os.path.join(home_directory, PP_REC_DIRECTORY)

            if not os.path.exists(det_dest_dir):
                shutil.copytree(det_source, det_dest_dir)
            if not os.path.exists(rec_dest_dir):
                shutil.copytree(rec_source, rec_dest_dir)

286
        logger.info('DocAnalysis init done!')
赵小蒙's avatar
update:  
赵小蒙 committed
287

288
289
    def __call__(self, image):

290
291
        page_start = time.time()

292
293
294
        latex_filling_list = []
        mf_image_list = []

295
296
297
298
        # layout检测
        layout_start = time.time()
        layout_res = self.layout_model(image, ignore_catids=[])
        layout_cost = round(time.time() - layout_start, 2)
299
        logger.info(f"layout detection time: {layout_cost}")
300

301
302
        pil_img = Image.fromarray(image)

303
304
        if self.apply_formula:
            # 公式检测
305
            mfd_start = time.time()
306
            mfd_res = self.mfd_model.predict(image, imgsz=1888, conf=0.25, iou=0.45, verbose=True)[0]
307
            logger.info(f"mfd time: {round(time.time() - mfd_start, 2)}")
308
309
310
311
312
313
314
315
316
317
            for xyxy, conf, cla in zip(mfd_res.boxes.xyxy.cpu(), mfd_res.boxes.conf.cpu(), mfd_res.boxes.cls.cpu()):
                xmin, ymin, xmax, ymax = [int(p.item()) for p in xyxy]
                new_item = {
                    'category_id': 13 + int(cla.item()),
                    'poly': [xmin, ymin, xmax, ymin, xmax, ymax, xmin, ymax],
                    'score': round(float(conf.item()), 2),
                    'latex': '',
                }
                layout_res.append(new_item)
                latex_filling_list.append(new_item)
318
319
                # bbox_img = get_croped_image(pil_img, [xmin, ymin, xmax, ymax])
                bbox_img = pil_img.crop((xmin, ymin, xmax, ymax))
320
321
322
323
324
325
326
327
328
                mf_image_list.append(bbox_img)

            # 公式识别
            mfr_start = time.time()
            dataset = MathDataset(mf_image_list, transform=self.mfr_transform)
            dataloader = DataLoader(dataset, batch_size=64, num_workers=0)
            mfr_res = []
            for mf_img in dataloader:
                mf_img = mf_img.to(self.device)
329
330
                with torch.no_grad():
                    output = self.mfr_model.generate({'image': mf_img})
331
332
333
334
335
                mfr_res.extend(output['pred_str'])
            for res, latex in zip(latex_filling_list, mfr_res):
                res['latex'] = latex_rm_whitespace(latex)
            mfr_cost = round(time.time() - mfr_start, 2)
            logger.info(f"formula nums: {len(mf_image_list)}, mfr time: {mfr_cost}")
336

337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
        # Select regions for OCR / formula regions / table regions
        ocr_res_list = []
        table_res_list = []
        single_page_mfdetrec_res = []
        for res in layout_res:
            if int(res['category_id']) in [13, 14]:
                single_page_mfdetrec_res.append({
                    "bbox": [int(res['poly'][0]), int(res['poly'][1]),
                             int(res['poly'][4]), int(res['poly'][5])],
                })
            elif int(res['category_id']) in [0, 1, 2, 4, 6, 7]:
                ocr_res_list.append(res)
            elif int(res['category_id']) in [5]:
                table_res_list.append(res)

352
353
354
        if torch.cuda.is_available():
            properties = torch.cuda.get_device_properties(self.device)
            total_memory = properties.total_memory / (1024 ** 3)  # 将字节转换为 GB
355
            if total_memory <= 10:
356
357
358
359
                gc_start = time.time()
                clean_memory()
                gc_time = round(time.time() - gc_start, 2)
                logger.info(f"gc time: {gc_time}")
360

myhloli's avatar
myhloli committed
361
        # ocr识别
362
        if self.apply_ocr:
363
            ocr_start = time.time()
364
            # Process each area that requires OCR processing
365
            for res in ocr_res_list:
366
367
368
                new_image, useful_list = crop_img(res, pil_img, crop_paste_x=50, crop_paste_y=50)
                paste_x, paste_y, xmin, ymin, xmax, ymax, new_width, new_height = useful_list
                # Adjust the coordinates of the formula area
369
370
371
                adjusted_mfdetrec_res = []
                for mf_res in single_page_mfdetrec_res:
                    mf_xmin, mf_ymin, mf_xmax, mf_ymax = mf_res["bbox"]
372
                    # Adjust the coordinates of the formula area to the coordinates relative to the cropping area
373
374
375
376
                    x0 = mf_xmin - xmin + paste_x
                    y0 = mf_ymin - ymin + paste_y
                    x1 = mf_xmax - xmin + paste_x
                    y1 = mf_ymax - ymin + paste_y
377
                    # Filter formula blocks outside the graph
378
                    if any([x1 < 0, y1 < 0]) or any([x0 > new_width, y0 > new_height]):
379
380
381
382
383
384
                        continue
                    else:
                        adjusted_mfdetrec_res.append({
                            "bbox": [x0, y0, x1, y1],
                        })

385
                # OCR recognition
386
387
                new_image = cv2.cvtColor(np.asarray(new_image), cv2.COLOR_RGB2BGR)
                ocr_res = self.ocr_model.ocr(new_image, mfd_res=adjusted_mfdetrec_res)[0]
388

389
                # Integration results
390
391
392
393
394
                if ocr_res:
                    for box_ocr_res in ocr_res:
                        p1, p2, p3, p4 = box_ocr_res[0]
                        text, score = box_ocr_res[1]

395
                        # Convert the coordinates back to the original coordinate system
396
397
398
399
400
401
402
403
404
405
406
407
                        p1 = [p1[0] - paste_x + xmin, p1[1] - paste_y + ymin]
                        p2 = [p2[0] - paste_x + xmin, p2[1] - paste_y + ymin]
                        p3 = [p3[0] - paste_x + xmin, p3[1] - paste_y + ymin]
                        p4 = [p4[0] - paste_x + xmin, p4[1] - paste_y + ymin]

                        layout_res.append({
                            'category_id': 15,
                            'poly': p1 + p2 + p3 + p4,
                            'score': round(score, 2),
                            'text': text,
                        })

408
            ocr_cost = round(time.time() - ocr_start, 2)
409
            logger.info(f"ocr time: {ocr_cost}")
410

411
412
        # 表格识别 table recognition
        if self.apply_table:
413
414
415
416
            table_start = time.time()
            for res in table_res_list:
                new_image, _ = crop_img(res, pil_img)
                single_table_start_time = time.time()
417
                # logger.info("------------------table recognition processing begins-----------------")
418
419
                latex_code = None
                html_code = None
420
421
                if self.table_model_type == STRUCT_EQTABLE:
                    with torch.no_grad():
422
                        latex_code = self.table_model.image2latex(new_image)[0]
423
424
                else:
                    html_code = self.table_model.img2html(new_image)
drunkpig's avatar
drunkpig committed
425

426
                run_time = time.time() - single_table_start_time
427
                # logger.info(f"------------table recognition processing ends within {run_time}s-----")
428
429
430
                if run_time > self.table_max_time:
                    logger.warning(f"------------table recognition processing exceeds max time {self.table_max_time}s----------")
                # 判断是否返回正常
431
432
433
434
435
436
437

                if latex_code:
                    expected_ending = latex_code.strip().endswith('end{tabular}') or latex_code.strip().endswith(
                        'end{table}')
                    if expected_ending:
                        res["latex"] = latex_code
                    else:
438
                        logger.warning(f"table recognition processing fails, not found expected LaTeX table end")
439
440
                elif html_code:
                    res["html"] = html_code
441
                else:
442
443
444
445
                    logger.warning(f"table recognition processing fails, not get latex or html return")
            logger.info(f"table time: {round(time.time() - table_start, 2)}")

        logger.info(f"-----page total time: {round(time.time() - page_start, 2)}-----")
446

447
        return layout_res
liukaiwen's avatar
liukaiwen committed
448
449